Quad ADC EV10AQ190A Synchronization of Multiple ADCs

Similar documents
Interleaving Two AT84CS001

Dithering in Analog-to-digital Conversion

Synchronizing Multiple ADC08xxxx Giga-Sample ADCs

GHz Sampling Design Challenge

Trigger synchronization and phase coherent in high speed multi-channels data acquisition system

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

SignalTap Plus System Analyzer

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

DP8212 DP8212M 8-Bit Input Output Port

LCD Triplex Drive with COP820CJ

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

Digital Circuits I and II Nov. 17, 1999

Figure 1 shows a simple implementation of a clock switch, using an AND-OR type multiplexer logic.

Logic Analyzer Triggering Techniques to Capture Elusive Problems

AN-822 APPLICATION NOTE

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Simple PICTIC Commands

FLIP-FLOPS AND RELATED DEVICES

Decade Counters Mod-5 counter: Decade Counter:

Memory Interfaces Data Capture Using Direct Clocking Technique Author: Maria George

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active.

Physics 120 Lab 10 (2018): Flip-flops and Registers

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Cathode-Ray Oscilloscope (CRO)

PGT104 Digital Electronics. PGT104 Digital Electronics

Chapter 5 Flip-Flops and Related Devices

74LVQ374 Low Voltage Octal D-Type Flip-Flop with 3-STATE Outputs

Solutions to Embedded System Design Challenges Part II

CLC011 Serial Digital Video Decoder

3-Channel 8-Bit D/A Converter

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

Achieving Timing Closure in ALTERA FPGAs

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel)

The NOR latch is similar to the NAND latch

Memory Interfaces Data Capture Using Direct Clocking Technique Author: Maria George

Lecture 8: Sequential Logic

Notes on Digital Circuits

16 Stage Bi-Directional LED Sequencer

A New Hardware Implementation of Manchester Line Decoder

Timing Pulses. Important element of laboratory electronics. Pulses can control logical sequences with precise timing.

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs

Operating Instructions

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states.

NOT RECOMMENDED FOR NEW DESIGNS ( 1, 2/3) OR ( 2, 4/6) CLOCK GENERATION CHIP

Final Exam review: chapter 4 and 5. Supplement 3 and 4

CX1725W Liquid Cooled, Hollow Anode Two-Gap Metal/Ceramic Thyratron

Design and implementation (in VHDL) of a VGA Display and Light Sensor to run on the Nexys4DDR board Report and Signoff due Week 6 (October 4)

Application Note. A Collection of Application Hints for the CS501X Series of A/D Converters. By Jerome Johnston

Features of the 745T-20C: Applications of the 745T-20C: Model 745T-20C 20 Channel Digital Delay Generator

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN

4-BIT PARALLEL-TO-SERIAL CONVERTER

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

Notes on Digital Circuits

EXPERIMENT #6 DIGITAL BASICS

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory

DIGITAL ELECTRONICS MCQs

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

NI-DAQmx Device Considerations

Technical Article MS-2714

Chapter 4: One-Shots, Counters, and Clocks

AD9884A Evaluation Kit Documentation

Altera JESD204B IP Core and ADI AD9144 Hardware Checkout Report

Asynchronous inputs. 9 - Metastability and Clock Recovery. A simple synchronizer. Only one synchronizer per input

Smart Night Light. Figure 1: The state diagram for the FSM of the ALS.

GFT Channel Digital Delay Generator

Procedure for DDR Clock Skew and Jitter Measurements

Introduction to Microprocessor & Digital Logic

LCD Direct Drive Using HPC

CCD Datasheet Electron Multiplying CCD Sensor Back Illuminated, 1024 x 1024 Pixels 2-Phase IMO

NS8050U MICROWIRE PLUSTM Interface

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

Asynchronous (Ripple) Counters

Clocks. Sequential Logic. A clock is a free-running signal with a cycle time.

Features. For price, delivery, and to place orders, please contact Hittite Microwave Corporation:

MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS)

DSM GHz Linear Chirping Source

HMC-C060 HIGH SPEED LOGIC. 43 Gbps, D-TYPE FLIP-FLOP MODULE. Features. Typical Applications. General Description. Functional Diagram

NEW MEXICO STATE UNIVERSITY Electrical and Computer Engineering Department. EE162 Digital Circuit Design Fall Lab 5: Latches & Flip-Flops

BLOCK CODING & DECODING

LMH0344 3Gbps HD/SD SDI Adaptive Cable Equalizer

Operating Manual Ver.1.1

DEDICATED TO EMBEDDED SOLUTIONS

Slide 1. Flip-Flops. Cross-NOR SR flip-flop S R Q Q. hold reset set not used. Cross-NAND SR flip-flop S R Q Q. not used reset set hold 1 Q.

Unit 9 Latches and Flip-Flops. Dept. of Electrical and Computer Eng., NCTU 1

Application Note. Serial Line Coding Converters AN-CM-264

74F273 Octal D-Type Flip-Flop

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER

Altera JESD204B IP Core and ADI AD6676 Hardware Checkout Report

GREAT 32 channel peak sensing ADC module: User Manual

DT9837 Series. High Performance, USB Powered Modules for Sound & Vibration Analysis. Key Features:

FPGA TechNote: Asynchronous signals and Metastability

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

Logic Analysis Basics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

Logic Analysis Basics

BER MEASUREMENT IN THE NOISY CHANNEL

RX40_V1_0 Measurement Report F.Faccio

CCD220 Back Illuminated L3Vision Sensor Electron Multiplying Adaptive Optics CCD

Transcription:

Synchronization of Multiple ADCs Application Note Applies to EV10AQ190A 1. Introduction This application note provides some recommendations for the correct synchronization of multiple EV10AQ190A Quad 10-bit 1.25 Gsps ADCs. It first presents the single ADC signal usage and then provides some recommendations with regard to the device settings and system / board design to obtain the best performance of the device. This document applies to the: EV10AQ190A Quad 10-bit 1.25 Gsps ADC This document should be read with all other applicable documentation related to this part The key to successful synchronization is to reset each converter into a known state and to release the reset in a known timeslot. The signal is used to reset the component and so this should be used in the synchronization scheme. resets the internal timers and it also resets the test signal generation circuitry. It should be used in the following situations; After power up or power configuration:- when switching the ADC from standby (full or partial) to normal mode. After channel mode configuration:- when switching the ADC from four-channel mode to one-channel mode. For entering test sequence:- when switching the ADC from normal running mode to ramp or flashing mode. It is not needed when the ADC is switched from test mode (ramp or flashing), to normal running mode. The timing functionality of the signal is shown in Figure 1-1 on page 2. From the rising edge of the Data Ready clocks return to zero and after the falling edge of the Data Ready clocks start to toggle, after a fixed delay. There is a minimum period that the pulse should be active for correct operation of this function. Visit our website: www.e2v.com for the latest version of the datasheet

Figure 1-1. Timing in 4-Channel Mode, 1:1 DMUX Mode (for each Channel) Note: X refers to A, B, C and D. A new functionality for the version A of the silicon which can be selected using the Control register address 0x01 bit 10, available using SPI, will enable a mode that will be timed to the falling edge of and will also not stop the Data Ready signal from toggling while is high. The timing diagram for this mode (RM = 1) is shown below. 2

Figure 1-2. Timing in 4-Channel mode, RM = 1 1:1 DMUX mode (for each channel) A delay y can be added to extend the time of the reset, this could be used to provide a delay in the output of good data from one ADC to another in a multi-adc system. Note that the time from the falling edge of to the first edge of DATA READY is constant, fixed and defined. This applies for all clock frequencies greater than 1.2GHz. For the region between 1.1GHz and 1.2GHz the delay between the falling edge of and the first DATA READY edge increases by one clock cycle. For this reason it is recommended that the part be used above the clock frequency of 1.2GHz (a sample rate of 600MHz). For correct operation, the pulse should maintain the timing constraints shown in Figure 1-3 on page 4. Failure to conform to these rules may mean that the part would not respond in time to the signal and would add a cycle to the delay. In the worst case the Data Ready clocks may not respond correctly. 3

Figure 1-3. Timing Relative to the Clock Note: if you want that the 4 internal ADC sampling the same analog input signal in the same moment, you need to calibrate the 4 ADC internal sampling clocks using the Phase register. Test Functions for Synchronization The converter has two in built functions to aid synchronization, flashing patterns and ramp pattern. The flashing patterns produce an output of all 1 s for one output sample followed by a period of 0 s. This period can be programmed by SPI register to be 10, 11 or 15. The flashing pattern can be used by the FPGA during a training procedure in which delays within the FPGA are adjusted to give best performance of the interface. This procedure is explained in application notes from the major FPGA manufacturers Xilinx xapp880 Altera AN580 The other pattern produced by the converter is the ramp, this is of use during the debug stage where the output ramp can be used to confirm correct operation of the interface. Detecting Synchronisation information in the data. There are a number of possible ways for the FPGA to use data from the ADC to perform synchronization. 4

Trigger The QUAD 10bit has 4 Data ready but for the FPGA you could use only one or two Data Ready output signal, because after signal, all internal ADC are synchronous and all Data Ready output signal toggle synchronously. One of these Data Ready output signals could be used as TRIGGER signal Figure 1-4. Using the Data Ready Signal to Calibrate Delays ADC 1 Data Ready as TRIGGER1 The Timing could be: T= X T= Y With a relation between X and Y: Y= nx The system receive the TRIGGER signal coming from several ADCs and we could calculate the delay of each ADC. TRIG1 TRIG2 Other solution is to use the Ramp test mode. In this case the FPGA of each ADC could detect the transition 1024 to 0 and FPGA would generate a TRIG signal based on this. The ramp test is active via a SPI register, but the activation using this can t be synchronous for all ADCs because of the timing imprecision in SPI writes A signal should be used to be sure that all ADC are synchronous. in this case the restart of ramp signal is synchronous; and you could detect a difference of timing between several ADC. 5

Figure 1-5. Using the Ramp Signal for Synchronization Rampe1 ADC 1 FPGA 1 TRIG 1 Rampe2 ADC 2 FPGA 2 TRIG 2 TRIG 1 TRIG 2 Another solution is to generate in the input analog data a large step or over range condition which could be used to synchronize data at the FPGA. 6

System Diagram of Multiple ADC Synchronization. Figure 1-6 below shows a laboratory set-up to demonstrate synchronization of two ADCs. Figure 1-6. Set-up for Experimental Tests on ADC Synchronization Agilent 8133A Pulse Gen HP8665B Clock Gen RF O/P Timebase Ext I/P Pulse O/P /OP Balun Equal length cables for and Clock Clock Clock EV10AQ190 EV10AQ190 P7313 12.5GHz Diff Probe TDS71604 scope Figure 1-7. Oscilloscope Screen Shot Image DR Part 15 DR Part 1 7

2. EV10AQ190A ADC Hardware Signals 2.1 ADC Synchronization Signal (, N) The, N signal has LVDS electrical characteristics. It is active high and should last at least T syncmin ns to work properly. The best way to implement this interface is to use a deticated LVDS interface which could be using an FPGA output or a LVDS buffer. Figure 2-1. FPGA Signal with LVDS Flip Flop QUAD 10 LVDS Flip-Flops FPGA_Syncp FPGA_Syncn 2 N D DN Q QN P N The Low LVDS signal come from FPGA goes to a Flip-flop (input D and DN) The Clock 1 of QUAD 10bit goes to Flip-Flops (input and N) but the signal is inverted Positive clock signal goes to N and negative clock signal goes to -> In this case the signal of FPGA is sampling with the falling edge of Clock of QUAD 10bit and you are sure to respect the timing. Note: if you used a LVDS flip flop, you could connect directly the output of flip flop to QUAD 10 bit. 8

Figure 2-2. Signal with ECL or PECL Flip Flop FPGA PECL or ECL Flip-Flops 350 3.3V 3.3V QUAD 10 FPGA_Syncp 2 N D Q 10nF 200 P FPGA_Syncn 10nF DN QN 10nF 200 N 200 GND GND Note: Take care with AC coupling signals that differentiation time constants do not produce errors in the delays. The Reset signal come from FPGA goes to a Flip-flop (input D and DN) The Clock 1 of QUAD 10bit goes to Flip-Flops (input and N) but the signal is inverted Positive clock signal goes to N and negative clock signal goes to -> In this case the signal of FPGA is sampling with the falling edge of Clock of QUAD 10bit and you are sure to respect the timing. For the Flip-flop you could use external devices like MC100EL29-D of On-Semiconductors http://www.onsemi.com/pub_link/collateral/mc100el29-d.pdf Note: If you used an ECL or PECL flip flop you need to add an AC capacitor + a resistor to fix a DC voltage on signal of QUAD. 9

Figure 2-3. Low speed FPGA signal FPGA QUAD 10 Flip-Flops Low_Syncp Low_Syncn D DN Q QN 2 N D DN Q QN P N Fast buffer or fast voltage comparator If the FPGA generated a low speed signal and if this signal is sampling with a high speed clock (like a 2.5GHz Clock QUAD), you could have a Meta-stability phenomena. In this case, it this better to add a fast buffer or fast voltage comparator between FPGA and Flip Flop to remove this problem. You could use the ADCMP580 fast SiGe Voltage comparators. Clock Driver For the clock, you need to have two clocks, one for the ADC and a other for the Flip Flop. In this case, a Clock buffer with fanout 2 is mandatory. Warning: This Clock buffer needs to have a very low jitter (< 100 fs rms) You could used AD9285 of Analog Devices for create to clock 1 and 2 I, differential ended. For transform 2 in opposition of phase, you need to inverse the polarity of this clock. Figure 2-4. Clock Driver _IN AD925 1 QUAD 2 Flip Flop Some recommendations Inphy: 25717CF clock buffer fanout 2 Inphy: 25707CP Fast latch AD: ADCMP580 Fast Voltage Comparator AD: AD925 clock buffer fanout 2 10

On Semi MC10EP52 or MC100EP52 Data Flip Flop Timing with external Latch Use an external faster latch, for resynchronize the signal with falling edge of, or used N (inverse clock). Note: you could use a faster Latch come from: ON Semiconductors or INPHI Figure 2-5. Re-timing _New N N T clock cycles min Figure 2-6. After re-timing _New T clock cycles min With this configuration, _New has no problem with Setup and Hold time specification Tsetup Internal Sampling clock Hold _New Tclock cycles min With this configuration, _New has no problem with Setup and Hold time specification In case you want to use the signal to synchronize several ADC and to use this signal as a TRIG- GER. You could applying a pulse train to the ADC s input without any problem For further information and assistance please contact Hotline-BDC@e2v.com 11

How to reach us Home page: www.e2v.com Sales offices: Europe Regional sales office e2v ltd 106 Waterhouse Lane Chelmsford Essex CM1 2QU England Tel: +44 (0)1245 493493 Fax: +44 (0)1245 492492 mailto: enquiries@e2v.com Americas e2v inc 520 White Plains Road Suite 450 Tarrytown, NY 10591 USA Tel: +1 (914) 592 6050 or 1-800-342-5338, Fax: +1 (914) 592-5148 mailto: enquiries-na@e2v.com e2v sas 16 Burospace F-91572 Bièvres Cedex France Tel: +33 (0) 16019 5500 Fax: +33 (0) 16019 5529 mailto: enquiries-fr@e2v.com e2v gmbh Industriestraße 29 82194 Gröbenzell Germany Tel: +49 (0) 8142 41057-0 Fax: +49 (0) 8142 284547 mailto: enquiries-de@e2v.com Asia Pacific e2v ltd 11/F., Onfem Tower, 29 Wyndham Street, Central, Hong Kong Tel: +852 3679 364 8/9 Fax: +852 3583 1084 mailto: enquiries-ap@e2v.com Product Contact: e2v Avenue de Rochepleine BP 123-38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 Hotline: mailto: hotline-bdc@e2v.com Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.