BY ADRIAN MESSER, UE Systems, Inc.

Similar documents
Using Ultrasound and Infrared Technologies for Metal-Clad Switchgear Inspections

Enhanced Diagnostics through Ultrasound Imaging

Methods of Inspection to Determine the Presence of Potential Arc Flash Incidents

Corona and Tracking Conditions in Metal-clad Switchgear Case Studies

What you can t hear can hurt you!

GESTAMP CHATTANOOGA, LLC CHATTANOOGA, TENNESSEE

An Introduction to Vibration Analysis Theory and Practice

Incorrect Temperature Measurements: The Importance of Transmissivity and IR Viewing Windows

220KV EHV NETWORK AT RELIANCE JAMNAGAR REFINERY COMPLEX

Limitations of a Load Pull System

ELECTRICAL SAFETY INSPECTION REPORT

Identification - electrical services

DLP200M 2 Relay Module for Heating and Cooling Plants

TWIN-PUMP. Dual line system. Designed to work all the day, every day in extreme condition and difficult environments

PRINCIPLES AND APPLICATIONS

DLP600M 6+1 Relay Module for Heating and Cooling Plants

Safety Codes Council Conference Banff C Panel Discussion

HOW TO START A PREDICTIVE MAINTENANCE PROGRAM. Richard D. Hall. National Electrical Carbon Products

GP-500 SERIES - Low Voltage

SECTION MEDIUM VOLTAGE CABLE INSTALLATION. 1. Section Underground Ducts and Manholes.

Work no. 2. Doru TURCAN - dr.ing. SKF Romania Gabriel KRAFT - dr.ing. SKF Romania

POWER FACTOR CORRECTION

This module senses temperature and humidity. Output: Temperature and humidity display on serial monitor.

Colour Explosion Proof Video Camera USER MANUAL VID-C

ELECTRICAL SAFETY INSPECTION REPORT. MTM Garments Ltd.

Dry Type Transformers. Section 10. BuyLog Catalog 10-1

SURGE PROTECTIVE DEVICES

Operating Manual (Edition 04/2004) sinamics. Line Reactors SINAMICS G130

Slot-type Photomicrosensor with connector or pre-wired models (Non-modulated) *1. configuration. Dark-ON/Light-ON

Reciprocating Machine Protection

HEALTH AND SAFETY MANUAL

Installation of Optical Fiber

Noise Detector ND-1 Operating Manual

MILLITARY SPECIFICATION SHEET

Upgrading to LEDs?: Things to Think About So it Doesn t Go Horribly, Horribly Wrong

SPECIAL SPECIFICATION 6735 Video Optical Transceiver

HAL Series. Versatile range of production line testers.

Operating Instructions 07/2007 Edition. SINAMICS G130/G150 Line harmonics filter. sinamics

SPECIAL SPECIFICATION 6686 BSIF CCTV Central Equipment

SINAMICS G130 / G150. Line harmonics filter. Operating Instructions 05/2010 SINAMICS

Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab

A Unique Power Supply for the PEP II Klystron at SLAC*

APQ Series Type C Power Factor Correction Banks

Underground Cable Diagnostic Testing Utilizing Partial Discharge Technique

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V

Toronto Hydro - Electric System

Generator protection relay

PCR AUTOMATIC HEAT TREATMENT CONSOLE

Test Procedure for Common Path Distortion (CPD)

Preventing Fieldbus Physical Layer Problems

AUTOMATIC TRANSFER SWITCHES. Product Guide

Pelletizer Motor Bearing Damage Detection Based on Vibration Data. John J. Yu Carl Feng Wang Tony Wei Zhou Nicolas Péton Haibo Lin Jun Quan

Localization of Noise Sources in Large Structures Using AE David W. Prine, Northwestern University ITI, Evanston, IL, USA

Fluke 279 FC True-rms Thermal Multimeter

RG NDT INTERNATIONAL INC. Drill Pipe and Tubing Inspection System

MIKRO POWER FACTOR CORRECTION COMPONENTS

Condition Monitoring Program: A Need to Improve Performance of Machineries

Overall vibration, severity levels and crest factor plus 3 CF+ White Paper

TECHNICAL SUPPORT , or FD151CV-LP Installation and Operation Manual 15.1 Low Profile LCD

LW10-T600. P10 Led Wall Display

(Notices) NOTICES FROM EUROPEAN UNION INSTITUTIONS AND BODIES COMMISSION

EMI/EMC diagnostic and debugging

INSTRUCTION & OPERATION MANUAL. MODEL MMW-05 (5kW) MUROMACHI MICROWAVE FIXATION SYSTEM

Jul03 Rev C EC

THE EFFECT OF LOOSE CONNECTORS ON SHIELDING EFFECTIVENESS

FORENSIC CASEBOOK. By Bob Huddleston, Eastman Chemical Co. One of the most common. reasons for marriage failure

About vacuum power tubes.

Dramatic Vibration Improvement due to Ring-Section Pump Foundation Repair Based on ODS in a Power Plant

PanelView 1400e CRT Maintenance

Overall vibration, severity levels and crest factor plus

INSULATION CONDITION OF DRY-CURED XLPE CABLES MEASURED OVER A PERIOD OF 13 YEARS

Model Number Structure

SPECIAL SPECIFICATION 2344 TMC Support Equipment

MODEL PA II-R (1995-MSRP $549.00)

BTC and SMT Rework Challenges

Photoelectric Sensors E3F2

MS2540 Current Loop Receiver with RS485 Communication

LED MODULES READYLINE DL

SureFire PDI Lubricator

FD104CV. Installation and Operation Manual 10.4 LCD MAN FD104CV. TECHNICAL SUPPORT , or Document Number: Rev:

USER MANUAL. 28" 4K Ultra HD Monitor L28TN4K

Medium and High Voltage Circuit Breakers Characteristic Time Quantities of the Circuit Breaker with Applications

Introduction. Characteristics (Note 1, 2) Parameters Typical Value Units Conditions

8000 Plus Series Safety Light Curtain Installation Sheet ( CD206A/ CD206B )

2 2 Relay outputs. M DIN W72 H7mm. LE7 Weekly/Yearly timer

USER MANUAL. 27 Full HD Widescreen LED Monitor L270E

Implementation of LED Roadway Lighting

LED Driver Linear / area fixed output

Improved Synchronization System for Thermal Power Station

The Distortion Magnifier

Linear Probe Encoder Page 1 of 7. Description. Features

SPECIAL SPECIFICATION 1291 Fiber Optic Video Data Transmission Equipment

Model LTM-1400 User Manual LTM Multiformat 1x4 Assignment Router / DA. (Component, Y/C, Composite, Balanced Audio, RS422) 2001 Laird Telemedia.

Weekly Time Switch. Rated time Time setting range Time division 24 hrs x 7 days 00:00 to 23:59 1min

M4000 Diagnostic Test System For Power Apparatus Condition Assessment

HYL-080D1750G358. Constant current LED driver DALI Dimmable. LED Driver. Product description. Benefits. Interfaces.

MultiMac. Eddy Current Instrument for Encircling Coil, Sector and Rotary Probe Testing of Tube, Bar, & Wire

Dry Type Transformers Section 10

ELECTRICAL INCIDENT REPORT BUSHFIRE NEAR 22 NUKKLGUP LOOP YALLINGUP WESTERN AUSTRALIA 5 JANUARY Report prepared by: EnergySafety WA EIS

Transcription:

ELECTRICAL EQUIPMENT RELIABILITY WITH ULTRASOUND AND INFRARED BY ADRIAN MESSER, UE Systems, Inc. Ultrasound and infrared technologies are a perfect match when conducting inspections of electrical equipment. At any voltage, thermal anomalies and sources of ultrasound such as tracking and arcing can occur. Corona can also occur at 1,000 volts and greater. Any of these conditions threaten the reliability of the equipment being inspected. Typical electrical components that can be inspected with ultrasound and infrared include switchgear, load interrupter switches, breakers, transformers, motor control centers, and terminal transition cabinets. This article provides information on how using both infrared and ultrasound for electrical inspections can identify more problems sooner. Further, it will show how safety is increased when using ultrasound to scan enclosed electrical gear prior to opening for additional inspection. As a complement to infrared inspections and to aid in the proper diagnosis of the condition, recorded ultrasonic examples will be shown in fast Fourier transform and time wave form from spectrum analysis software to show how to properly diagnose electrical anomalies. This form of analysis is referred to as ultrasound imaging. WHAT IS ULTRASOUND? Hand-held airborne and structure-borne ultrasound instruments sense and receive high-frequency sound waves produced from various sources that include turbulence such as a compressed air leak, friction as in an underlubricated bearing, and ionization in electrical discharges. These high-frequency sounds are above the range of normal human hearing and therefore cannot be heard. The instrument receives the high-frequency sound, and through 92 WINTER 2017

a process called heterodyning, translates the high-frequency sound into an audible sound heard through the inspector s headset. The sound is then presented as a decibel (db) reading on the display panel of the instrument. Ultrasound is probably the most versatile of any predictive maintenance technology. Typical applications for ultrasound include compressed air and gas leak detection, bearings, motors, gearboxes, valves, steam traps, hydraulic applications, and condition-based lubrication of bearings and rotating equipment. When it comes to electrical inspection, ultrasound instrumentation can be used on almost any energized electrical equipment including metal-clad switchgear, transformers, substations, relays, and motor control centers. Ultrasound instruments inspect energized electrical components on low-, medium-, and high-voltage systems. Traditional inspection of energized electrical equipment has been performed by noncontact infrared cameras. However, in recent years, ultrasound instruments have been added to these inspections for various reasons. One of the main reasons has been safety. An ultrasound inspection of electrical equipment can be performed without opening the cabinet or enclosure. ULTRASOUND AND IR One electrical anomaly ultrasound will detect is corona (Figure 1 and Figure 2). Even though corona produces little to no heat, it does produce ultrasonic emissions. If the inspector s ultrasound instrument has on-board sound recording capability, the ultrasonic emission from corona can be recorded and further analyzed for a correct diagnosis. A note of importance on corona: It is only present in voltage above 1,000 volts. At 1,000 volts and greater, the dielectric strength of air can be exceeded, and ionization of air surrounding a connection can occur. If inspection is done on voltages below 1,000 volts and ultrasound is heard, the inspector can rule out corona as a possible diagnosis. Figure 1 and Figure 2: These images show an infrared view and a photo of obvious signs of destructive corona. Typically, corona does not show a significant temperature difference with infrared. (Photos courtesy of Jim Brady) When the recorded ultrasonic signature of corona is looked at in spectrum analysis software (Figure 3), very prominent 60 Hz harmonics are noticeable. If the sound Figure 3: Recorded Ultrasound of Corona in an FFT Spectral View NETAWORLD 93

harmonic activity between the more dominant harmonics. As the condition worsens, a loss of the dominant 60Hz harmonics occurs, and uniformity in the amplitude of the recorded ultrasound decreases. Figure 4: Tracking in Time Series View Tracking (Figure 4) occurs when there is a lowcurrent pathway to ground across an insulator. Many refer to tracking as baby-arcing. This event is common where there is severe breakdown of the insulating material and loose connections. Tracking can occur in low, medium, and high voltages and is characterized as a steady buzzing sound with periodic crackling and popping sounds. Further damage is done when tracking is not corrected, and it will quickly lead to arcing. The transition from corona to tracking can lead to a destructive path across the insulation that creates pin-holes or spiderweb-like patterns that cause surface deterioration. When visually inspected, one can see an obvious tracking path on the surrounding surfaces. A conductive cloud of ionized air surrounds the connections. Once a tracking path is complete from phase to phase or phase to ground, flashover can occur. Figure 5: Arcing in Time Wave Form. Notice the lack of uniform harmonics and the sudden starts and stops of the discharge. recording is done outside of North America, one would see very dominant 50 Hz harmonics. Between the 60Hz harmonics, you would see frequency content. Frequency content is Figure 6: The time wave form from the recorded ultrasound shows characteristic patterns of arcing: changes in amplitude and a loss of welldefined 60 Hz harmonics. Finally, arcing happens when there is a discharge to ground across an insulator. Arcing can cause severe damage to equipment, plant/facility operations, and people. Melting of connectors, damage or loss of insulation, and fires usually result from electrical arcs. Arcing can easily be heard and detected with ultrasound. The sound characteristic for arcing is a rather erratic burst of discharges and popping sounds. These are identifiable when looking at a recorded ultrasound of arcing in the time wave form (Figure 5). EXAMPLES Arcing (Figure 6) was detected on the b-phase line side of this 2,000 amp main breaker. The arcing was worse when the load increased. The arcing had severely deteriorated the internal contacts, which eventually would become so deteriorated that the voltage drop could affect the downstream load. At this particular facility, the replacement cost for this item was approximately $20,000. 94 WINTER 2017

the winter months; this transformer typically operates at reduced loading during the winter months, as it supplies chillers and associated other plant equipment that normally does not work as hard during the winter. During the inspection, it was noted that the load was around 420 Amps per phase (Figure 8 and Figure 9). The next example, from a contactor, is on a piece of equipment called an orbit motor Figure 7a and Figure 7b: Images of 2,000 KVA Transformer The next example is from a 2,000 KVA 11KV- 415v cast-resin transformer (Figure 7a and Figure 7b). An inspection of this equipment was requested after audible noise in the area increased. The inspection was done during Figure 9: The time wave form of another 2,000KVA transformer in the same facility shows normal ultrasonic noise for this type of transformer. Figure 8: The time wave form of recorded ultrasound from this transformer shows characteristics of arcing. NETAWORLD 95

Figure 10a: Visible Light Picture of Orbit Motor Contactor (Figure 10a). A routine airborne ultrasound inspection was done, and distinct sounds of tracking were heard. Follow-up inspection with infrared showed an increased heat signature (Figure 10b) and the time wave form view revealed signs of tracking (Figure 11). CONCLUSION Ultrasound instruments are versatile and easy to use and can greatly enhance inspections on almost any electrical equipment. In the end, it s all about safety. Ultrasound inspections can be done prior to opening the energized gear to scan with infrared technology. If an ultrasonic emission is heard, the proper precautions can be taken before opening the energized cabinet. Figure 11: Time wave form view of the recorded ultrasound of this contactor shows distinct signs of severe tracking and early stages of arcing. Figure 10b: Infrared Image Showing Increased Heat Signature For those who rely on the services of an outside contractor to perform infrared scans, an ultrasound scan can be done between the annual infrared scans to see if any emissions are heard. When ultrasound and infrared are used together, an inspector has a greater chance of detecting anomalies that could potentially be missed when relying on a single technology. For best results, analyzing recorded ultrasounds in either the fast Fourier transform or time wave form view is the recommended method of diagnosing electrical anomalies heard with ultrasound. Adrian Messer, CMRP, is the Manager of U.S. Operations for UE Systems, Inc. For more than a decade, Adrian has helped facilities around the country transform their reliability programs by successfully implementing ultrasound technology for condition monitoring and energy conservation applications. As a subject matter expert on ultrasound technology and implementation best practices, Adrian has been a featured speaker at numerous industry events. He is a graduate of Clemson University and maintains close ties to the university, assisting current students in a mentorship program through the College of Business & Behavioral Science. Adrian is a Certified Maintenance & Reliability Professional (CMRP) through the Society of Maintenance & Reliability Professionals (SMRP). He is a charter member of the Carolinas Chapter of SMRP and currently serves as interim Chairman. 96 WINTER 2017