Dynamic re-referencing Microvolt-level measurements with the R&S RTO oscilloscopes

Similar documents
Product Brochure Version HZ-15_16_17_bro_en_ _v0100.indd 1

R&S FSV-K40 Phase Noise Measurement Application Specifications

R&S FSW-K160RE 160 MHz Real-Time Measurement Application Specifications

Product Brochure Version R&S RSC Step Attenuator Where precise signal levels count

R&S FPS-K18 Amplifier Measurements Specifications

R&S HA-Z24E External Preamplifier 1 GHz to 85 GHz Specifications

R&S ZN-Z103 Calibration Unit Specifications. Data Sheet V02.01

Test and Communications Antennas for the R&S TS8991 OTA Performance Test System Specifications

Scope of the art Scope Rider Handheld digital oscilloscope

R&S RT-ZM Modular Probe System

R&S FSW-B512R Real-Time Spectrum Analyzer 512 MHz Specifications

R&S GX465 Digital Wideband Storage Device Recording and replaying of I/Q data with up to 80 MHz bandwidth

R&S ZN-Z154 Calibration Unit Specifications

R&S RT-Zxx High-Bandwidth Probes Specifications

R&S HF907DC SHF Downconverter Specifications

R&S RT-Zxx High-Voltage and Current Probes Specifications

Oscilloscopes for debugging automotive Ethernet networks

R&S FSW-K144 5G NR Measurement Application Specifications

Test and Communications Antennas for the R&S TS8991 OTA Performance Test System Specifications

R&S FSW-K54 EMI Measurement Application Detecting and eliminating electromagnetic

Product Brochure Version R&S TSML-CW Radio Network Analyzer Powerful scanner for CW applications

R&S ELEKTRA EMI Test Software Easy to use software for measuring electromagnetic disturbances

R&S ZN-Z85 Switch Matrix Specifications

R&S GX460 Digital Wideband Storage Device Recording and replaying device for I/Q data with up to 40 MHz bandwidth

Product Brochure Version R&S ENV A Four-Line V-Network RFI voltage measurements at high currents

R&S ZN-Z151/-Z152/-Z153 Calibration Unit Specifications

Meeting your needs R&S RTO2000 Digital Oscilloscope

R&S ZN-ZTW Torque Wrench Specifications

Pre-5G-NR Signal Generation and Analysis Application Note

R&S MDS-21 Absorbing Clamp Measurement of disturbance power and screening effectiveness on cables

R&S SFD DOCSIS Signal Generator Signal generator for DOCSIS 3.1 downstream and upstream

R&S ZNrun Automated Test Software PC-based server platform for automated VNA tests

R&S RT-Zxx Standard Probes Specifications

R&S FSV-K73 3G FDD UE (UL) Measurements incl. HSUPA Specifications

Product Brochure Version R&S OSP Open Switch and Control Platform Modular solution for RF switch and control tasks

R&S RSC Step Attenuator Where precise signal levels count

R&S Spectrum Rider FPH Handheld spectrum analyzer

R&S SMBV-Z1 Reference Frequency Converter Specifications

RF amplifier testing from wafer to design-in

Product Brochure Version R&S OSP Open Switch and Control Platform Modular solution for RF switch and control tasks

R&S FSV-K8 Bluetooth /EDR Measurement Application Specifications

Advanced Techniques for Spurious Measurements with R&S FSW-K50 White Paper

R&S ZN-Z32/-Z33 Automatic In-line Calibration Modules Ensuring high accuracy with thermal vacuum testing and multiport measurements

Mastering Phase Noise Measurements (Part 3)

R&S ZVA-Zxx Millimeter-Wave Converters Specifications

R&S CA210 Signal Analysis Software Offline analysis of recorded signals and wideband signal scenarios

Iterative Direct DPD White Paper

Analyze Frequency Response (Bode Plots) with R&S Oscilloscopes Application Note

R&S FSV-K76 TD-SCDMA BS (DL) Measurements Specifications

Troubleshooting EMI in Embedded Designs White Paper

R&S FSW-K76/-K77 3GPP TD-SCDMA BS/UE Measurement Applications Specifications

R&S ADMC8 Multicoupler Active UHF multicoupler for 8-port ATC signal distribution

R&S AVG050 DVB Satellite Receiver Specifications

Your partner in testing the Internet of Things

R&S TS-PFG Function Generator Module Dual-channel arbitrary waveform generator with isolated outputs

R&S DST200 RF Diagnostic Chamber Specifications

R&S TS-ISC In-System Calibration Kit On-site calibration solution for R&S CompactTSVP

R&S ZV-Z81 Multiport Test Set, models.05/.09/.29 Specifications

Be ahead in 5G. Turn visions into reality.

R&S GU221 Filter Control Unit Specifications

R&S TS-PMB Switch Matrix Module High-density, 90-channel, full matrix relay multiplexer module

R&S CONTEST ITS Test cases and applications

R&S TS-PIO4 Digital Functional Test Module 32-channel programmable digital I/O module

R&S DDF200M Digital Direction Finder Specifications

R&S ZVA-Zxx Millimeter-Wave Converters Specifications

R&S ZVA110 Vector Network Analyzer Specifications

Benefits of the R&S RTO Oscilloscope's Digital Trigger. <Application Note> Products: R&S RTO Digital Oscilloscope

Test Device Containment Module (TCM) Optimal conditions for reliable results

R&S FS-Z60/75/90/110 Harmonic Mixers for the R&S FSP/FSU/ FSQ/FSUP/FSV

R&S NESTOR-FOR Crime Scene Investigation

Multi-port calibration by using a two port calibration unit. Application Note. Products: R&S ZVT R&S ZNB

Product Brochure Version R&S AdVISE Visual Inspection Software A new way to eliminate human inattention

R&S VENICE On air. 24/7.

Configuring the R&S BTC for ATSC 3.0 Application Note

EUTRA/LTE Downlink Specifications

EUTRA/LTE Measurement Application Specifications

R&S FPC1000 Spectrum Analyzer Specifications

Fast. Accurate. USB-capable. Power sensors from Rohde & Schwarz

Step-by-step guide Designing for EMI testing (step-by-step guide) Improve your time to market with oscilloscopes

R&S NESTOR-FOR Alibi Verification

Rohde & Schwarz Service that adds value

R&S FSQ-K91/K91n/K91ac WLAN a/b/g/j/n/ac Application Firmware Specifications

Fast. Accurate. USB-capable. Power sensors from Rohde & Schwarz

R&S ZND Vector Network Analyzer Specifications

R&S TS-PSM5 High-Power Switching Module Automotive DUT supply and load switching up to 50 A

R&S PSL3 Industrial Controller The powerful industrial controller

R&S FPC Spectrum Analyzer Unexpected performance in entry class

R&S ZND Vector Network Analyzer Basic, solid-performance network analysis

R&S VSE Vector Signal Explorer Base Software Specifications

Concise NFC Demo Guide using R&S Test Equipment Application Note

DOCSIS 3.1 Full channel loading Maximizing data throughput

Efficient analysis of power and signal integrity and EMC

R&S RT-ZVCxx Multi-Channel Power Probe Specifications

R&S ETH Handheld TV Analyzer Portable DVB-T/H signal analysis up to 3.6/8 GHz

LabVIEW driver history for the R&S RTH Handheld Digital Oscilloscope Driver Documentation

R&S TS-BCAST DVB-H IP Packet Inserter Compact DVB H signal generator with integrated IP packet inserter

Five Reasons to Upgrade from Legacy VNAs to a R&S ZNB Vector Network Analyzer

Rohde & Schwarz Service that adds value

R&S TS-PSM3 High-Power Switching Module Automotive DUT supply and load switching up to 30 A

R&S TSMx Radio Network Analyzers Powerful scanner family for mobile applications

Transcription:

RTO_app-bro_3607-2855-92_v0100.indd 1 Microvolt-level measurements with the R&S RTO Test & Measurement Application Brochure 01.00 Dynamic re-referencing Microvolt-level measurements with the R&S RTO oscilloscopes 08.09.2015 15:34:05

In order to clearly visualize and make repeatable measurements on signals with amplitudes of less than 1/100 of a division, and stabilize signals captured over very long periods, the R&S RTO oscilloscope s powerful combination of measurement and math channel capabilities allows corrective offset adjustments on individual acquisitions more than one hundred times per second. Your task The task is to make precise and repeatable long-term measurements on small signals with DC offset or drift and lowfrequency noise components. Examples Small signal changes riding on large signals Precise low-level measurements with minimum averaging and low trace-to-trace noise Very-high-resolution, repeatable measurements at large vertical scale settings to accommodate signals with large dynamic range Long-term measurements with consistent screen placement for easier visual analysis Mask tests on very small signal amplitudes requiring reliable and consistent trace placement Use of short averaging time for measurements with lowfrequency noise and drift/offset Accurate RMS measurements on low-level signals Signal changes that are referred to a changing baseline Background Modern oscilloscopes provide well-known tools to help reduce the effects of high-frequency noise, including analog bandwidth limiting, digital filtering, decimation and trace averaging. Conversely, methods of dealing with low-frequency noise (thermal, flicker, 1/f) and drift are limited. Offset is generally a fixed value for a particular sensor/ probe/oscilloscope channel, which may be simply adjusted or compensated for with a value that is used in a math channel equation (e.g. re-scale), by auto-zeroing or in an offset setting for a probe. In some cases, the offset value may be too small for the offset or auto-zero functions to fully cancel the offset voltage. In addition, the offset is subject to drift and usually affected by changes in gain or attenuation settings. Drift is a phenomenon that is difficult to counteract; it is any change in the zero point or gain occurring over a period that is significantly longer than the sampling or measurement period. Drift may have both stochastic and deterministic components, caused by factors such as humidity, vibration, component aging, power supply variations (which are themselves subject to these factors), 1/f noise, radiation, changes in magnetic characteristics, and more. Example A sensor system has a positive, thermally induced zero point drift of 5 % of the measured signal amplitude over a 20-minute period, and 1/f noise that is significant below 1 Hz If the acquisition period is one second, trace averaging of 60 gives one-minute averages; during that period, drift is 0.25 % For every averaging period, 1/2 of the 0.25 % per minute drift will be eliminated. If the drift is continuous, averaging will only reduce the drift-induced offset by 0.125 % of the full-scale value, only 1/40th of the total drift-induced offset after 20 minutes The 1/f noise is reduced, but may not be eliminated, as 1/f noise has no lower frequency limit After this sensor system reaches thermal equilibrium, averaging will have no effect on the amount of offset in the zero point. Averaging can only correct drift or noise that occurs within a period that is shorter than the averaging period. 2 RTO_app-bro_3607-2855-92_v0100.indd 2 08.09.2015 15:34:05

T & M solution: dynamic re-referencing with the R&S RTO oscilloscope In order to capture microvolt-level signals, the user can make use of R&S RTO benefits, such as: Low-noise frontend HD mode, providing up to 16-bit resolution at 50 MHz, with simultaneous single-point control of bandwidth and resolution Precise digital triggering on signals of as little as 0.02 division amplitude Triggering on serial and parallel data buses to enable measurement and evaluation of intelligent system components Excellent linearity due to frontend performance and single-core ADC with ENOB of > 7 bit at 1 GHz bandwidth Powerful math channels with the following features: Ability to use measurement results in math channel definitions Trace averaging (in floating-point numerical format) Flexible digital filtering with FIR and moving average The principle The Mean measurement, used with a gate, is performed on a part of the acquisition that is stable during every acquisition; the resulting value is subtracted from the trace. The math channel waveform will then be locked to the reference level. This process effectively removes noise at frequencies below the acquisition period, including drift and offset. If the selected reference is at 0 V, the math channel waveform will be re-referenced to ground. If the reference level is a known level that is not 0 V, then the measured reference level voltage is simply added to the math channel definition as a constant. Setting up the R&S RTO for re-referencing Triggering When the measured signal has level changes > 0.02 division, the R&S RTO can provide a stable trigger. If the signal has < 0.02 divisions of amplitude or drifts significantly, it is generally possible to find another trigger source that is synchronous with the signal of interest, such as: A supply voltage change A signal state change of an Enable or other control line A command signal applied to the DUT via a serial bus, such as I2C, or one of the many other interfaces that can be used as trigger sources in the R&S RTO Reference measurement setup Typically, a Mean measurement is used to filter noise that may be present in the sampled signal, and a gate is applied to it to select a stable portion of the waveform as the reference. The measurement setup requires first setting the source channel of the measurement, the type of measurement and finally the gate period. (Note: The source channel must be active and the State box checked to make the gate selection visible on the screen.) The gating Start and Stop times are adjusted to match the desired reference part of the measured waveform. In the example shown below, the zero volt section of the trigger waveform (Ch3Wfm1, in green) corresponds to the zero current part of the measured waveform (Ch1Wfm1, in yellow). As a result, it is easy to see where the gate needs to be placed. The principle of dynamic re-referencing 19,1 V 19,0 V Gated measurement of 19 V Channel waveform 19,0 V = 0,1 V Gated measurement reference level Math waveform of re-reference signal Rohde & Schwarz Dynamic re-referencing 3 RTO_app-bro_3607-2855-92_v0100.indd 3 08.09.2015 15:34:06

Math channel setup After the measurement has been defined, it is ready for use in a math channel formula. When the stable part of the signal is zero or is to be used as the baseline, the math channel formula (using channels and measurements as above) is as follows: Ch1Wfm1 Meas1 When the nonzero reference is a known value, e.g. measured to be 3.65 V, the formula would be: Ch1Wfm1 Meas1 + 3.65 V In the math channel Setup tab, it is advisable to select Vertical scale > Manual. The user may also select additional signal processing options with the Mode button/dropdown menu: envelope/ average/rms Sample signals and configuration. Math channel basic setup. Math channel formula entry. Rohde & Schwarz Dynamic re-referencing 4 RTO_app-bro_3607-2855-92_v0100.indd 4 08.09.2015 15:34:07

An example Summary The following is a good example of re-referencing, with an effective math channel zoom factor of 500 and a measured signal level amplitude of 1/500th of a division. Dynamic re-referencing enhances the use of the wide dynamic range provided in the R&S RTO, allowing greater precision and ease of use and reducing long-term measurement errors. The waveform to be measured is repetitive, a 256 Hz signal with a 200 µv level change that is superimposed on an 80 mv signal with two 40 mv steps (red trace at bottom). This shows the large dynamic range possible with the R&S RTO, measuring a signal that is only 0.02 % of the 1 V full-scale value. HD mode is used with a 20 khz bandwidth. The math channel is set to 20 averaging. On the oscilloscope screen (10 s persistence setting), the 200 µv signal is clearly visible, with an offset equivalent to 400 divisions. The persistence shows the stability of the signal, and the measurement statistics confirm the signal s standard deviation of 44 µv (approx. 0.004 % of the fullscale value, > 14 bit). Measuring a signal of 1/500th division amplitude and 1/400th of the main signal. Rohde & Schwarz Dynamic re-referencing 5 RTO_app-bro_3607-2855-92_v0100.indd 5 08.09.2015 15:34:08

Service that adds value Worldwide Local and personalized Customized and flexible Uncompromising quality Long-term dependability About Rohde & Schwarz The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago, this independent company has an extensive sales and service network and is present in more than 70 countries. The electronics group is among the world market leaders in its established business fields. The company is headquartered in Munich, Germany. It also has regional headquarters in Singapore and Columbia, Maryland, USA, to manage its operations in these regions. Sustainable product design Environmental compatibility and eco-footprint Energy efficiency and low emissions Longevity and optimized total cost of ownership Certified Quality Management ISO 9001 Certified Environmental Management ISO 14001 Rohde & Schwarz GmbH & Co. KG www.rohde-schwarz.com Trade names are trademarks of the owners PD 3607.2855.92 Version 01.00 September 2015 (ch) Dynamic re-referencing Data without tolerance limits is not binding Subject to change 2015 Rohde & Schwarz GmbH & Co. KG 81671 Munich, Germany 3607.2855.92 01.00 PDP 1 en R&S is a registered trademark of Rohde & Schwarz GmbH & Co. KG 3607.2855.92 01.00 PDP 1 en Regional contact Europe, Africa, Middle East +49 89 4129 12345 customersupport@rohde-schwarz.com North America 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com Latin America +1 410 910 79 88 customersupport.la@rohde-schwarz.com Asia Pacific +65 65 13 04 88 customersupport.asia@rohde-schwarz.com China +86 800 810 82 28 +86 400 650 58 96 customersupport.china@rohde-schwarz.com 3607285592 RTO_app-bro_3607-2855-92_v0100.indd 6 08.09.2015 15:34:08