Critical RF Measurements in Cable, Satellite and Terrestrial DTV Systems

Similar documents
Video Quality Monitors Sentry Edge II Datasheet

Video Reference Timing with Tektronix Signal Generators

Video Quality Monitors

RFM220 ISDB-Tb Measurement Demodulator

Black and Frozen Frame Detection

MPEG Solutions. Transition to H.264 Video. Equipment Under Test. Test Domain. Multiplexer. TX/RTX or TS Player TSCA

How-To Guide. LQV (Luminance Qualified Vector) Measurements with the WFM8200/8300

Advanced Test Equipment Rentals ATEC (2832)

Using Triggered Video Capture to Improve Picture Quality

46 GBaud Multi-Format Optical Transmitter

Automated Limit Testing

40 Gb/s PatternPro Programmable Pattern Generator PPG4001 Datasheet

Analyzing 8b/10b Encoded Signals with a Real-time Oscilloscope Real-time triggering up to 6.25 Gb/s on 8b/10b encoded data streams

40 Gb/s PatternPro Programmable Pattern Generator PPG4001 Datasheet

Quick Signal Integrity Troubleshooting with Integrated Logic Analyzers & Oscilloscopes

Spearhead Display. How To Guide

Video Quality Monitors Sentry Edge Datasheet

Optical Sampling Modules 80C01 80C02 80C07B 80C08C 80C10 80C11 80C12

Troubleshooting Analog to Digital Converter Offset using a Mixed Signal Oscilloscope APPLICATION NOTE

Limit and Mask Test Application Module

PatternPro Error Detector PED3200 and PED4000 Series Datasheet

SignalCorrect Software and TCS70902 Calibration Source Option SC SignalCorrect software

Electrical Sampling Modules Datasheet 80E11 80E11X1 80E10B 80E09B 80E08B 80E07B 80E04 80E03 80E03-NV

The use of Time Code within a Broadcast Facility

Measuring and Interpreting Picture Quality in MPEG Compressed Video Content

Debugging Memory Interfaces using Visual Trigger on Tektronix Oscilloscopes

The Benefits of External Waveform Monitors in Color Correction for Video. Application Note

A LOW COST TRANSPORT STREAM (TS) GENERATOR USED IN DIGITAL VIDEO BROADCASTING EQUIPMENT MEASUREMENTS

Higher-Order Modulation and Turbo Coding Options for the CDM-600 Satellite Modem

Keysight E4729A SystemVue Consulting Services

Troubleshooting and Analyzing Digital Video Signals with CaptureVu

Understanding. FFT Overlap Processing. A Tektronix Real-Time Spectrum Analyzer Primer

Debugging a Mixed Signal Design with a Tektronix Mixed Signal Oscilloscope

Electrical Sampling Modules

Logic Analyzer Triggering Techniques to Capture Elusive Problems

Tektronix Logic Analyzer Probes P6900 Series Datasheet for DDR Memory Applications

Optical Sampling Modules 80C02 80C07B 80C08C 80C10 80C10B 80C11 80C12

Identifying Setup and Hold Violations with a Mixed Signal Oscilloscope APPLICATION NOTE

Timesaving Tips for Digital Debugging with a Logic Analyzer

DQT1000 MODEL DIGITAL TO QAM TRANSCODER WITH DIGITAL PROCESSING AND MULTIPLEXING

PAM4 Transmitter Analysis

ATSC compliance and tuner design implications

KTVN Silver Springs DTV Translator. K29BN D in KTVN Shop

Tektronix Video Signal Generators

Video Quality Monitors Sentry Datasheet: VNM-SEN

Automatic Changeover Unit ECO8000 Datasheet

Video Quality Monitors Sentry Datasheet

Transmission System for ISDB-S

Low Cost, High Speed Spectrum Analyzers For RF Manufacturing APPLICATION NOTE

Automatic Changeover Unit ECO8020 Datasheet

Coherent Lightwave Signal Analyzer

C-PHY Essentials Transmitter Test Solution TekExpress C-PHY Essentials Tx

Accuracy Delta Time Accuracy Resolution Jitter Noise Floor

Z Technology's RF NEWSLETTER DTV edition -- May 2002

Portable TV Meter (LCD) USER S MANUAL

Arbitrary Waveform Generators AWGSYNC01 Synchronization Hub Datasheet

TROUBLESHOOTING DIGITALLY MODULATED SIGNALS, PART 2 By RON HRANAC

5 Series MSO Serial Triggering and Analysis Applications 5-SRAUDIO, 5-SRAUTO, 5-SRCOMP, and 5-SREMBD Datasheet Serial triggering

How to Guide. Closed Caption Monitoring. WFM6120/7020/7120 & WVR6020/7020/7120 Version Software

DigiPoints Volume 2. Student Workbook. Module 5 Headend Digital Video Processing

Calibrate, Characterize and Emulate Systems Using RFXpress in AWG Series

Latest Trends in Worldwide Digital Terrestrial Broadcasting and Application to the Next Generation Broadcast Television Physical Layer

DTV1010 DTV Measurement Receiver

Network Line Card Testing using the TDS3000B DPO Application Note. Line Card Testing Example: Throughput = Shippable Dollars

PD1600. Satellite Gateways. Media Distribution. Headend in a Box. Applications. Features

PROLINK Premium. Time proof investment

MPEG Transport Stream Monitor MTM400

AMD-53-C TWIN MODULATOR / MULTIPLEXER AMD-53-C DVB-C MODULATOR / MULTIPLEXER INSTRUCTION MANUAL

Dual Scope Synchronization

Hands-On DVB-T2 and MPEG Essentials for Digital Terrestrial Broadcasting

4T2-Portable test set DVB terrestrial analyser system

R&S SFD DOCSIS Signal Generator Signal generator for DOCSIS 3.1 downstream and upstream

MIGRATION TO FULL DIGITAL CHANNEL LOADING ON A CABLE SYSTEM. Marc Ryba Motorola Broadband Communications Sector

Memory Interface Electrical Verification and Debug

Introduction This application note describes the XTREME-1000E 8VSB Digital Exciter and its applications.

Advanced HDTV System Analyzers

PROLINK Premium. An instrument for every budget. Easily choose the instrument to fit your needs

The new standard for customer entertainment

Satellite Digital Broadcasting Systems

TV4U QUAD DVB-S2 to DVB-C TRANSMODULATOR

Test Receiver EFA ATSC/8VSB ITU-T J.83/B M/N Analog TV

News from Rohde&Schwarz Number 195 (2008/I)

DIGITAL TELEVISION TRANSMISSION STANDARDS

1080P DVB-T MODULATOR WITH HDMI LOOP THROUGH + RF output + RF input

REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS

New video compression standards: meeting the test challenges

Laboratory platform DVB-T technology v1

ATSC Recommended Practice: Transmission Measurement and Compliance for Digital Television

DATV on ISS? How can this become a reality? Wolf-Henning Rech DF9IC / N1EOW Thomas Sailer HB9JNX / AE4WA

Keysight Technologies Decoding Automotive Key Fob Communication based on Manchester-encoded ASK Modulation

AN2056 APPLICATION NOTE

Error Performance Analysis of a Concatenated Coding Scheme with 64/256-QAM Trellis Coded Modulation for the North American Cable Modem Standard

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals

Digital Video/Mobile TV Test Suit - Lite

Digital TV Monitor MTM400A Datasheet

ANNEX-AA. Structure of ISDB-T system and its technical features

B Joon Tae Kim Jong Gyu Oh Yong Ju Won Jin Sub Seop Lee

R&S ETH Handheld TV Analyzer Portable DVB-T/H signal analysis up to 3.6/8 GHz

Comprehensive Production Tool Solution for 4K/UHD, WCG and HDR Content Creation PRISM Datasheet

4K & DVB-S2X HOW OPERATORS CAN BE COST-EFFECTIVE. Market Trend. Introduction. 4K & DVB-S2X. How Operators Can Be Cost-effective

Transcription:

Critical RF Measurements in Cable, Satellite and Terrestrial DTV Systems The secret to maintaining reliable and high-quality services over different digital television transmission systems is to focus on critical factors that may compromise the integrity of the system. This application note describes those critical RF measurements which help to detect such problems before viewers lose their service and picture completely. Modern digital cable, satellite, and terrestrial systems behave quite differently when compared to traditional analog TV as the signal is subjected to noise, distortion, and interferences along its path. Today s consumers are familiar with simple analog TV reception. If the picture quality is poor, an indoor antenna can usually be adjusted to get a viewable picture. Even if the picture quality is still poor, and if the program is of enough interest, the viewer will usually continue watching as long as there is sound. DTV is not this simple. Once reception is lost, the path to recovery isn t always obvious. The problem could be caused by MPEG table errors, or merely from the RF power dropping below the operational threshold or the cliff point. RF problems can include any of the following: satellite dish or Low-Noise Block Converter (LNB) issues, terrestrial RF signal reflections, poor noise performance, or channel interference; and cable amplifier or modulator faults. There are a couple of ways to solve DTV reception problems. One solution is to make set-top receivers more tolerant to degraded signals. A better solution is for the network to maintain a clean, high-quality RF signal. To ensure this, Tektronix provides critical RF measurements for 8-VSB, 8PSK, QPSK, COFDM and QAM modulation schemes, integrated with real-time MPEG monitoring in a single instrument, the MTM400. This instrument can be economically deployed at various points within the transmission chain from downlink and encoding, through multiplexing and remultiplexing to final delivery via uplink, head-end, and transmitter sites.

Using the MTM400, an operator can make critical RF measurements at a fraction of the cost of dedicated RF test equipment. Web-based remote control allows the correct measurements to be made at the appropriate signal layers throughout the transmission chain, thus ensuring that cost-effective results can be guaranteed. The Key RF parameters RF signal strength How much signal is being received Constellation diagram Characterizes link and modulator performance MER An early indicator of signal (Modulation degradation, MER is the ratio Error Ratio) of the power of the signal to the power of the error vectors, expressed in db EVM EVM is a measurement similar (Error Vector to MER but expressed differently. Magnitude) EVM is the ratio of the amplitude of the RMS error vector to the amplitude of the largest symbol, expressed as a percentage BER BER is a measure of how hard (Bit Error Rate) the Forward Error Correction (FEC) has to work BER = Bits corrected Total bits sent TEF The TEF is an indicator that the (Transport Error Flag) FEC is failing to correct all transmission errors BER or Bit Error Rate This is the ratio of bits in error to total bits delivered. Early DTV monitoring receivers provided an indication of bit error rate as the only measure of digital signal quality. This is simple to implement since the data is usually provided by the tuner demodulator chipset and is easily processed. However, tuners may often output BER after the Forward Error Correction (FEC) has been applied. It is better to measure BER before FEC ( pre-viterbi ) so that an indication is given of how hard the FEC is working. After the Viterbi de-interleave process, Reed-Solomon (RS) decoding will correct errored bits to give quasi error-free signal at the output. This is applicable when the transmission system is operating well away from the cliff point, where few data errors occur and pre-viterbi bit error rates are near zero. As the system approaches the edge of the cliff, the pre-viterbi BER increases gradually, the post-viterbi more steeply, and the post-fec (after RS) very steeply. Therefore, FEC has the effect of sharpening the angle of the cliff. As a result, very sensitive bit error rate measurements do give a warning, but usually too late for any corrective action to be taken. It is still useful to display BER to allow documentation and quantification of the signal quality being delivered. BER can also be used to log long-term system trends. It is best used to identify periodic, transient impairments. BER measurements are usually expressed in engineering notation and are often displayed as an instantaneous rate and an average rate. Typical targets are: 1E-09, quasi error-free at 2E-04; critical BER: 1E-03; and out-of-service: greater than 1E-03. TEF is also referred to as Reed-Solomon uncorrected block counts 2 www.tektronix.com/video

How to Improve on BER use MER The TR 101 290 standard describes measurement guidelines for DVB systems. One measurement, Modulation Error Ratio (MER), is designed to provide a single figure of merit of the received signal. MER is intended to give an early indication of the ability of the receiver to correctly decode the transmitted signal. In effect, MER compares the actual location of a received symbol (as representing a digital value in the modulation scheme) to its ideal location. As the signal degrades, the received symbols are located further from their ideal locations and the measured MER value will decrease. Ultimately the symbols will be incorrectly interpreted, and the bit error rate will rise; this is the threshold or cliff point. BER Pre-Viterbi v. MER (Calibration ON) BER 1.80E-02 1.60E-02 1.40E-02 1.20E-02 1.00E-02 8.00E-03 6.00E-03 4.00E-03 2.00E-03 0.00E+00 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 MER (db) Figure 1. A 64-QAM receiver with MER measurement capability. Figure 1 shows a graph, which was obtained by connecting the MER receiver to a test modulator. Noise was then gradually introduced and the MER and pre-viterbi BER values recorded. With no additive noise, the MER starts at 35 db with the BER near zero. Note that as noise is increased the MER gradually decreases, while the BER stays constant. When the MER reaches 26 db, the BER starts to climb, indicating the cliff point is near. MER indicates progressive system degradation long before reaching the cliff point. The Importance of MER Because Tektronix equipment can measure to a high value of ultimate MER (typically 38 db in QAM systems, 37 db in COFDM systems and 36 db in 8-VSB systems), then monitoring equipment sited at the head-end modulator can provide early indication of signal degradation as the downstream MER reduction factor (safety margin) is known or can be measured close to or at the subscriber site. Common set-top boxes may fail to correctly demodulate or drop out at 24 db (for 64-QAM) and 30 db (for 256- QAM). Other typical measuring equipment having a lower ultimate MER measurement will not give such an early warning of signal degradation. Typical ultimate MER at a cable (QAM) head-end is 35 db to 37 db. A typical value of MER in an analog cable system is 45 db. The difference between analog and digital levels is 10 db, giving a digital MER in distribution systems of around 35 db. www.tektronix.com/video 3

Quadrature phase axis Measurement Values Increasing MER Proactive Monitoring EVM Reactive Monitoring Digital Cliff Pre-Vierbi BER Post-Vierbi BER Post-Reed/Solomon BER Target symbol Error vector Transmitted symbol In-phase axis Decreasing Far Away Approaching Cliff Near Over Proximity to Digital Cliff Figure 2. How MER and EVM can be used to predict how much safety margin the system has before BER rapidly rises and reception is lost. Figure 3. Error vector. EVM or Error Vector Magnitude Q EVM is a measurement similar to MER but expressed differently. EVM is expressed as the percentage ratio of the amplitude of the RMS error vector to the amplitude of the largest symbol. EVM increases as impairment increases, while MER decreases as impairment increases. MER and EVM can be derived from each other. EVM is the distance that a carrier is detected on the IQ (in-phase and quadrature) constellation from the theoretical perfect landing point (Figure 3) and is the ratio of errored signal vectors to maximum signal amplitude and is expressed as an RMS percentage value. EVM is defined in an annex of TR 101 290. The Tektronix MTM400 provides both MER and EVM measurement capability. I Local carrier oscillator 90 degrees phase shift Figure 4. QAM modulator. Sum QAM output signal 4 www.tektronix.com/video

Modulation and System Variations The signals used in satellite, cable, and terrestrial digital television transmission systems are modulated using quadrature modulation schemes, where phase and amplitude are modulated to represent data symbols. The most common modulation schemes used in digital television transmission are all variants of Quadrature Amplitude Modulation (QAM). For example, in commonly used terrestrial digital modulation schemes, COFDM (as used in DVB-T transmissions) uses 16- QAM or 64-QAM and 8-VSB (as used in ATSC transmissions) uses an 8-column system. In satellite, the digital modulation scheme used is Quaternary or Quadrature Phase Shift Keying (QPSK), which is equivalent to 4-QAM. QPSK is a very robust modulation scheme, and has been in use for several years. QPSK is also used for contribution feeds and makes a more efficient use of the available bandwidth, but needs a better carrier-to-noise ratio. Cable systems build on this, and have a wider range of schemes, which are still evolving. Additional modulation levels (16-QAM, 64-QAM, 256-QAM and 1024-QAM) improve spectral efficiency, thereby providing more channels within a given bandwidth. In U.S. systems, 64-QAM can transmit 27 Mb per second, allowing the transmission of the equivalent of six to 10 SD channels or 1 HD channel within a 6 MHz bandwidth. 256- QAM can transmit 38.8 Mbps or the equivalent of 11 to 20 SD channels or two HD channels within a 6 MHz band- Figure 5. Modulation schemes. width. New compression techniques can provide up to three HD channels over 256-QAM. In European systems, the 8 MHz bandwidth allows up to 56 Mb per second over QAM-256. Three regional QAM cable standards are specified in ITU.J83 as follows: Annex A Europe Annex B North America Annex C Asia The MTM400 has RF interface options and measurement capabilities for all the above QAM standards, as well as 8PSK & QPSK for satellite applications and 8-VSB & COFDM for terrestrial applications. www.tektronix.com/video 5

Constellation Displays The constellation display is the digital equivalent of a vectorscope display, showing in-phase (I) and quadrature (Q) components of the QAM signal. A symbol is the smallest piece of information transmitted in a given modulation system. Quadrature phase axis Transmitted Symbols (shown as dots) are the individual symbol landings For QAM-64, a symbol represents 6 bits. This is then plotted as a single point. These symbol bits have been processed using a complex transcoding process from the original MPEG-2 transport stream. This involves Reed- Solomon encoding, interleaving, randomization, trellis for QAM Annex B systems and convolutional (Viterbi) encoding for QPSK systems. The idea is to protect and correct bit errors, provide immunity from burst noise, and spread energy evenly throughout the spectrum. After reversing these processes in the decoder, quasi error-free bitstreams must be restored. Because of this error correction, merely inspecting the transport stream will not provide any indication that channel or modulators and processing amplifiers are inducing errors, pushing the system closer to the digital cliff point. Once Transport Error Flags (TEFs) start being reported in the MPEG stream, it is usually too late to take any corrective action. Figure 6. Constellation basics. The Constellation Diagram In-phase axis Inter-symbol Interference Zones Decision Boundaries This can be considered as an array of 2-D eye diagrams of the digital signal, with symbol landing points having acceptable limits or decision boundaries. The closer the points are together in the cloud of received symbols, the better the signal quality. Since the diagram maps amplitude and phase on the screen, the shape of the array can be used to diagnose and determine many system or channel faults and distortions, and help pin down the cause. Constellation diagrams are useful for identifying the following modulation problems: Amplitude imbalance Quadrature error Coherent interference Phase noise, amplitude noise Phase error Modulation Error Ratio 6 www.tektronix.com/video

Quadrature phase axis In-phase axis Figure 7. An error in quadrature between the in-phase and quadrature axes of the constellation shapes it into a diamond instead of a square. Figure 8. A screen capture from an MTM400, showing quadrature error with IQ phase error of five degrees. Amplitude Imbalance Quadrature phase axis In-phase axis Figure 9. A difference in gain between the in-phase and quadrature components of the constellation shapes it into a rectangle instead of a square. Figure 10. This MTM400 plot shows an IQ amplitude imbalance of 10%. Remote Constellation The MTM400 uses Web-browser technology, so it is unique in that the constellation display can be viewed in a different location or even country to an unmanned test probe position using the Internet or a dedicated network. The user interface also has adjustable persistence so the spots can be made to fade away on older carriers received, like traditional instruments. Quadrature Error Quadrature error pushes symbol landing-points nearer to the boundary limits and therefore reduces noise margin. It occurs when I and Q are not spaced exactly 90 degrees apart. The result is that the constellation diagram loses its squareness and takes on the appearance of a parallelogram or rhombus (see Figures 7 and 8). Note: The MTM400 screen shots below are all from instruments with tests set up so that MER and EVM are similar in all cases. Only the constellation shapes differ. www.tektronix.com/video 7

Figure 11. Noise error (QAM-64 cable system). Figure 13. MTM400 gain compression. Figure 12. Noise error (QPSK satellite source). Noise Errors Noise is the most common and unavoidable impairment to any signal, including QAM. Additive White Gaussian Noise (AWGN) is the normal type of noise impairment. As it is white (flat power density function in frequency) and gaussian (mathematically normal amplitude density), it spreads the received symbols in a cluster around the ideal location. Figure 14. This plot is from a source with seriously errored gain compression. Gain Compression This MTM400 live signal display allows you to see gain compression, causing rounding of the corner edges, in both I and Q axes, but only where the modulator, or fiber transport system, is being driven to its limits. This is happening at higher amplitude levels, showing non-linearity. It appears as a spherical or fish-eye lens view. 8 www.tektronix.com/video

Carrier Suppression Figure 15. Coherent interference. Figure 17. The effect of a DC offset on the In-phase axis, should the carrier be suppressed by 10 percent. The display is shifted to the right. Figure 16. Phase noise (jitter in I and Q). Figure 18. A correctly operating 256-QAM cable system. Coherent Interference Here a channel interferer or harmonic component happens to be phase-locked to the IQ signal. This results in an array of rings, or doughnuts. Phase Noise (Jitter in I and Q) Any carrier source or local oscillator in the signal chain has phase noise or phase jitter that is superimposed onto the received signal. Phase noise is displayed as concentric ring-arcs of carrier symbols. Acceptable Signal The IQ gain and phase errors are normally negligible in modern all-digital modulators. Such errors are not misalignment but rather equipment failure. Compression, on the other hand, can be generated in modulators, up-converters and transmission network. Figure 18 shows what a normal signal looks like. www.tektronix.com/video 9

Figure 20. QAM-B constellation with detailed measurements. Figure 19. Test menu with Power Low Parameter set to -65 dbm. New RF Interfaces for the MTM400 With the introduction of four new RF interface cards for the MTM400, several new measurements and displays are now available. The.new cards include support for ITU-J83B (QAM-B) including Level-2 interleaving, ATSC 8-VSB, 8PSK (Turbo FEC, Broadcom BCM4500), and DVB-T COFDM. The Input Power Level measurement is one of the many new parameters displayed to the right of each of the four new graphics displays. Along with the new measurements is the ability to set limits to determine when a measurement range has been exceeded. Figure 19 shows the Test menu along with the default Power Low parameter being changed from -120 dbm to -65 dbm. The new QAM-B RF interface supports level-2 interleaving as well as auto-detection of QAM 64 or 256, and Interleaving mode. Figure 20 shows a QAM 256 constellation in the 128-4 level-2 mode. The lower right corner of the GUI shows that the Modulation Format and the Interleaving Mode are set to Auto. Simply entering a new frequency will auto-detect the format and mode. Figure 21. ATSC 8VSB Symbol Distribution, Histogram, and RF measurements. The new ATSC 8VSB RF interface card is sensitive enough to receive low-power RF signals from an off-air antenna. The received power level is displayed to the right of the symbol distribution along with SNR, MER, EVM, and other important RF measurements. The vertical bands are a waterfall display represent each of the 8 possible symbols (see Figure 21). All of the distribution data is summed at the bottom of the diplay and represented by a histogram. A wide series of bands indicates poor signal quality, while narrow bands indicate clean symbol reception. 10 www.tektronix.com/video

Figure 23. 8PSK constellation display with RF measurements. Figure 22. ATSC 8VSB carrier at 647 MHz with several ghosts. Multipath or ghost signals can be quantified within the 8VSB signal by viewing the Equalizer tap graph. The x-axis starts with 6.7 us of pre-ghost information and ends at 45.5 us. The example shown in Figure 22 includes several ghosts or multipath signals on the same frequency. The first ghost is down 21 db at 5.5 us before the carrier, another down 21 db at 20 us after the carrier, and the last ghost down 34 db at 38 us after the carrier. DVB-S bandwidth has been expanded through the use of the 8PSK modulation scheme. This increased bandwidth allows for multiple HD channels on a single satellite transponder. Figure 23 shows an 8PSK signal being received from a live satellite feed. Several different 8PSK modulation schemes exist, and the MTM400 uses the Turbo 8PSK support by the BCM4500 demodulator. Figure 24. COFDM 16QAM constellation and RF measurements. COFDM is the modulation scheme used by DVB-T for terrestrial transmission. COFDM allows for QPSK, 16QAM and 64QAM formats. It allows for a hierarchical mode that can transmit one or two transports at the same time. Each carrier is divided into 2k or 8k smaller carriers. These lower data rate carries virtually eliminate Multipath from the signal. Figure 24 shows a 16QAM COFDM signal measured from an off-air signal. www.tektronix.com/video 11

Figure 25. COFDM SNR graph from 2k carrier. Figure 26. COFDM Q-Channel correction magnitudes. COFDM can operate with 2k or 8k independent carriers. The SNR for each of the many different carries can be measured and displayed on a separate SNR graph (see Figure 25). COFDM maximizes the signal fidelity by sending a sequence of low-bit-rate known patterns across each of the many different frequencies. These special patterns are detected and used to calibrate the receiver for each of the 2k or 8k frequencies (for both I and Q). Figure 26 shows the offsets required for all 2k carriers that make up the single 8 MHz COFDM signal. The smaller the magnitude, the less correction required for a receiver. 12 www.tektronix.com/video

Conclusions It is better to predict system problems long before critical revenue earning services go off the air, rather than cure them. MER measurements are able to measure small changes in transmitter and system performance and are one of the best single figures-of-merit for any cable and satellite transmissions system. EVM and more traditional BER are useful for standard cross-equipment checks and as an aid to identify short-term signal degradation. Constellation displays help provide a reliable health check for RF transmission systems by indicating artifacts, distortion, or equipment drift. By combining these critical RF measurements with comprehensive MPEG transport stream monitoring and alarming in a single probe, system problems can be detected at an early stage, before viewers are affected. With the MTM400, Tektronix is able to provide all the critical RF measurements and interfaces, integrated with MPEG measurements in a single cost-effective monitoring probe. References International Telecommunications Union, ITU-T J.83, Series J: Digital multi-program system for television, sound and data services for cable distribution (04/97). ATSC Recommended Practice A/54A: Guide to the Use of the ATSC Digital Television Standard. Measurement Guidelines for DVB systems, ETSI Technical Report, TR101 290 V1.2.1 (2001-05) Digital Video Broadcasting (DVB); European Telecommunications Standard Institute. Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems EN 300 429 V1.2.1 (1998-04) European Standard (Telecommunications series). Broadcom BCM4500 Advanced Modulation Satellite Receiver: supporting QPSK and 8PSK with turbo code FEC, as well as DVB-S, DirecTV, and Digicipher-II QPSK systems. www.tektronix.com/video 13

14 www.tektronix.com/video

www.tektronix.com/video 15

Contact Tektronix: ASEAN / Australasia / Pakistan (65) 6356 3900 Austria +41 52 675 3777 Balkan, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 07 81 60166 Brazil & South America 55 (11) 3741-8360 Canada 1 (800) 661-5625 Central East Europe, Ukraine and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France & North Africa +33 (0) 1 69 86 81 81 Germany +49 (221) 94 77 400 Hong Kong (852) 2585-6688 India (91) 80-22275577 Italy +39 (02) 25086 1 Japan 81 (3) 6714-3010 Luxembourg +44 (0) 1344 392400 Mexico, Central America & Caribbean 52 (55) 56666-333 Middle East, Asia and North Africa +41 52 675 3777 The Netherlands 090 02 021797 Norway 800 16098 People s Republic of China 86 (10) 6235 1230 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea 82 (2) 528-5299 Russia & CIS 7 095 775 1064 South Africa +27 11 254 8360 Spain (+34) 901 988 054 Sweden 020 08 80371 Switzerland +41 52 675 3777 Taiwan 886 (2) 2722-9622 United Kingdom & Eire +44 (0) 1344 392400 USA 1 (800) 426-2200 For other areas contact Tektronix, Inc. at: 1 (503) 627-7111 Updated 15 June 2005 For Further Information Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com Copyright 2005, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 06/05 EA/WOW 2TW-17370-1