A Comparison of Dry Versus Gel Filled Optical Cables

Similar documents
Selecting the correct cable type for Outside Plant Application

Mid-Span Access of Loose-Tube Ribbon Fiber Optic Cable

Color Codes of Optical Fiber and Color Shade Measurement Standards in Optical Fiber Cables

FREEDM Loose Tube Interlocking Armored Cables

Underground Installation of Optical Fiber Cable by Pulling

TECHNICAL SPECIFICATION

SOLO ADSS Short-Span Cables, Fibers

Installation of Optical Fiber

White Paper. Next Generation of Fiber Optic Loose Tube Cable. ABSTRACT INTRODUCTION. Stephen Martin, Product Line Manager, RCDD

SPECIFICATION. Optical Fiber Cable

SPECIFICATION 96F SM LOOSE TUBE, DRY CORE MINI CABLE

MiniXtend Cable with Binderless* FastAccess Technology Jacket and Buffer Tube Removal Procedures. 1. General. 2. Precautions

OPTICAL FIBER CABLE, ALL DIELECTRIC SELF SUPPORTING CABLE

Micro Cables, Application (Ducts & Accessories, Equipments, Installation)

OPTICAL FIBRE CABLES. for very-high bit transmission and FTTx networks

Product Catalogue. Fibre Optic Cable

Customer-Owned Outside Plant

Specification for Loose Tube Fiber Optic Cable (Non-Metallic, Dry Block, Figure-8) (G.652.D)

SPECIFICATION 192F SM LOOSE TUBE, DRY CORE MINI CABLE

HES HACILAR ELEKTRİK SANAYİ VE TİC.A.Ş.

Our cables at: ATHENS AIRPORT PIRAEUS PORT TUNNEL IN PARIS NATIONAL PETROLEUM OIL COMPANY

Non-metallic Aerial Distribution Optical Cables for FTTH Networks

TENDER SUMMARY. Tender Title:

Empowering businesses through innovative network solutions.

SINGLE MODE OPTICAL FIBER CABLE SPECIFICATION (ARSS)

Revision No. 4 Page No. Page 1 of 7

Newsletter

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE

SUMITOMO PRODUCT SPECIFICATION. FutureFLEX. TCxxMSOS-2 HIGH PERFORMANCE OSP TUBE CABLE SERIES WITH GALVANIZED STEEL INTERLOCKED ARMORING

Detailed Specifications & Technical Data

FusionLink Central Tube Ribbon Preparation & handling procedure

New Ultra-Density Fiber Cable Technology for FTTx and Access Markets Using New SpiderWeb Ribbon

Product Classification. Dimensions. Environmental Specifications. General Specifications. Material Specifications. Mechanical Specifications

SUMITOMO PRODUCT SPECIFICATION. FutureFLEX. TCxxTOX / TOD DIELECTRIC OSP TUBE CABLE SERIES

Micro duct Cable with HDPE Sheath for Installation by Blowing

ALTOS LITE Loose Tube, Gel-Free Cables with FastAccess Technology, Fibers

SUMITOMO PRODUCT SPECIFICATION. FutureFLEX. TCxxTOX-2 OSP TUBE CABLE SERIES WITH GALVANIZED STEEL INTERLOCKED ARMORING

We design, build, and manage web-scale networks for the needs of tomorrow. System Integration SERVICES

Installing a Wire Mesh Pulling Grip on All-Dielectric DX Armored Fiber Optic Cables

Sumitomo Cable Specification SE-*DB. 100% Dry - Armored Central Tube Ribbon Cable with Fibers. Issued: January 2014

Delaware County Community College Project # Marple Campus Renovation - Phase % Construction Documents November 23, 2011

STANDARD FOR MULTI-DWELLING UNIT (MDU) OPTICAL FIBER CABLE. Publication S First Edition - June 2012

SUMITOMO PRODUCT SPECIFICATION. FutureFLEX. TCxxMSOS DIELECTRIC HIGH PERFORMANCE OSP TUBE CABLE SERIES

Loose Tube Cable Mid-Span Access for Splicing For Series 11D, 1GD, 12D, 1AD, 1DD, 1CD, 11, 1G, 12, 12L, 1A, 1D, 1C, 1NY, 13, 1H, HZD and HZA

2178 Fiber Optic Splice Case and 2181 Cable Addition Kit

ANSI/ICEA S STANDARD FOR OPTICAL FIBER OUTSIDE PLANT COMMUNICATIONS CABLE

Sumitomo Cable Specification SE-*RD. All-Dielectric Ribbon Cable with Fibers. Issued: April 2014

FIBER OPTIC CABLE CUT TO YOUR EXACT SPECS TO SAVE YOU TIME AND MONEY

Electric Co-op Solutions Guide

Optical Fibre Cable Technical Specification. Duct Cable GYFTY-24,48,72,144,216B1.3

FIBER OPTIC CABLES. Models GYXTC-8SS GJFJV

OCC Installation Round Messenger Guidelines Excerpt from Optical Cable Corporation s INSTALLATION GUIDE

The advantages of using reduced coating diameter optical fibers (200µm) in ADSS cables for deployment in FTTx networks

Buffer Tube Midspan Access Tool Accessing fibers in buffer tube procedure

Are You Leaving Money on the Table? Making Strategic OSP Cable Choices

Introduction to Fiber Optic Cable Technology Jerry Bednarczyk, PE Course Content

Power and Control T YPE BY RAVI GANATR November/December IAEI NEWS

Purchase Now ANSI/ICEA S

2178 L/S Series Fiber Optic Splice Cases and Accessories

Industry solutions: Broadcast

Sumitomo Cable Specification SE-*RU. OFNP Rated Central Tube Cable with Optical Fibers. Issued: December 2014

LD Series High Performance Loose Tube Fiberoptic Cables

Number of Fiber 6 Core 12 Core. Part Number

HERA RETICULATION FIBRE CABLE PRODUCT REQUIREMENTS

1993 Specifications CSJ SPECIAL SPECIFICATION ITEM Fiber Optic Cable System

Number of Fiber 6 Core 12 Core 24 Core 48 Core

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to:

Special Specification 6242 Special Fiber Optic Cable

FOSC-600 C and D I N S T A L L A T I O N I N S T R U C T I O N

e-enterable Fiber Optic Splice Closure (Re-Enterable Aerial Closure for Access Service)

NC-1000 INSTALLATION MANUAL NC-1000 FIBRE OPTIC CROSS-CONNECTION SYSTEM

SPECIAL SPECIFICATION 6559 Telecommunication Cable

FIBER OPTIC CABLE PULLING

Dry-Core ADSS Cable Placement

Cable installation guidelines

Public Works Division Lighting District Fiber Optic Specifications April 2009

TELECOM SOLUTIONS SOLUTIONS CATALOGUE INNOVATIVE FIBRE OPTIC CABLE SOLUTIONS

GBRE. Multi Loose Tube Cables Outdoor A-DQ(ZN)B2Y Improved Rodent Protection. Ordering Information. Applications. Features & Benefits

2179-CD Series Fiber Optic Splice Closure. Installation Instructions

OCC Installation Figure 8 Guidelines Excerpt from Optical Cable Corporation s INSTALLATION GUIDE

OCC Installation Conduit Guidelines Excerpt from Optical Cable Corporation s INSTALLATION GUIDE

Fiber drop cable solutions. Flexible solutions for the evolving networks of tomorrow

Standard FTTH Drop Cable. FTTH DROP - nb6a1/g657a1

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE AND COMPONENTS. July 19, 2013

Number of Fiber 12 Core 24 Core 48 Core. Part Number

1. General. 1. Scope. 2. Quality Assurance

Crimplok. Connectors. 3M Crimplok ST* Connector Multimode 1. 3M Crimplok SC Connector Single-mode 2

1. Scope OUTDOOR OFC-ADSS, SM(0.9) LOOSE TUBE BLACK

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to:

INSTALLATION INSTRUCTIONS

Mining and Petrochemical Fiber Optic Cables

Water blocking tape. Locator ridge HPA-0486

SECTION FIBER OPTIC STATION CABLES

SPECIAL SPECIFICATION 8540 Telecommunication Cable

The Next Wave Building Tomorrow s Network Today. Roger Vaughn Solutions Engineer OFS

GYFTY TECHNICAL SPECIFICATIONS FOR GYFTY CABLE

Instrumentation & copper telecom cables

Understanding the True Cost of Cable Cuts

Flygt Submersible Motor Cables

Mini-breakout & Mini-bundle cable. Riser cabling solution

Transcription:

Application Notes A Comparison of Dry Versus Gel Filled Optical Cables Author John Peters Issued December 2012 Abstract The dry cable design compares favorably with a wet design that uses a flooding compound in the voids within the cable core and/or a thixotropic gel within the buffer tube to achieve comparable water blocking performance. Keywords Dry cable, super absorbent powder, fiber buffer tubes, cable weight, environment friendly, cost savings

1.0 Introduction By filling the voids inside optical cables with a super absorbent water swellable materials instead of a flooding compound or gel, Sterlite Technologies offers a water block dry cable that provides users with an optical cable with superior water blocking ability. The dry cable design compares favorably with a wet design that uses a flooding compound in the voids within the cable core and/or a thixotropic gel within the buffer tube to achieve comparable water blocking performance. Sterlite's dry cable design offers the following benefits over wet cables: Faster splice preparation time Considerable overall cost savings compared to wet core Lighter weight cables Lower placing loads, or conversely, longer cable placements Easier to clean water blocking materials Fewer cleaning materials required 2.0 Water Blocking Fiber Optic Cable If any water reaches the core or inside the buffer tubes in a dry cable, it interacts with the super absorbent powder (SAP) material in the cable core or buffer tubes, causing it to swell as a physical barrier that blocks water migration along the cable. The SAP is deployed within the cable on cloth or yarns. Wet cable designs use flooding compounds and thixotropic gels to act as a physical barrier to prevent water migration by the filling all the interstitial space within the cable so that water will not find any way to pass through the cable. Sterlite dry cables provide the same high quality water penetration protection as wet core cables. Comparison between Wet Core and Dry Core Cables Cable Element Receiving Water Protection Wet Cable Dry Cable Fiber Buffer Tubes Spaces within Core Core Wrapping Flooding Gel Flooding Gel Polyester Tape SAP SAP Blocking Yarns, Tape SAP Water Blocking Tape Dry cables not only meet the water penetration and migration requirements of fiber optic cable specifications, they also are compatible with all other mechanical, physical, and environmental requirements of international fiber cable specifications, e.g., temperature cycling, hot and cold bending, impact resistance, crush resistance, tensile strength, material compatibility, and many more.

A fully wet cable would have its core filled with a flooding compound and its buffer tubes filled with a thixotropic gel. A fully dry cable would have its core and buffer tubes filled with SAP water blocking materials. It is however possible to have three versions of a water blocked cable: 1. 2. 3. Wet cable core and wet buffer tubes older style cable design, used on some cable in extremely wet areas or underwater. Dry cable core and wet buffer tubes A design that is commonly used in many cables sold today. Dry cable core and dry buffer tubes Light-weight cable that fully exploits the advantages of dry block cable. Dry core cables produced by Sterlite have proven themselves to be successful in outside use throughout the world. 3.0 Benefits of Dry Core Cables 3.1 Faster, Cost Saving in Time: Tests conducted by Sterlite preparing both dry and wet cables for splicing have shown it takes approximately 90 seconds less time per tube to clean the cable core and buffer tube for dry -core cables then for wet core cables. As a result, cleaning the water blocking material from its core at the end of a 72 fiber dry-core cable splice will save approximately 9 minutes. The same operation for a 144 fiber dry -core cable will save approximately 18 minutes. Experienced fiber technicians indicate that cleaning the fibers within the buffer tubes of a dry tube cable can be accomplished in approximately one third the time required for the same operation in a wet tube cable. For a 144 fiber cable it was estimated that a typical technician would require approximately 45 minutes to clean the gel from the fibers in the twelve buffer tubes in a dry tube cable and 135 minutes for the same operation in a wet tube cable. Table 1 and Figure 1 present a tabular and graphical summary of the times required to clean water blocking gel and SAP from the core, buffer tubes and fibers in a 144-fiber optical cable. The absolute time values will vary somewhat between individuals based on their skill level and working conditions, however the ratio, 1:3, between cleaning dry to wet units is believed to be valid. Table 1 Summary of Times Required to Clean Water Blocking Compound from a 144-Fiber Cable Cable Component Being Cleaned Core Buffer Tubes Total Time Flooded Core, Gel Filled Buffer Tubes 20 min 135 min 155 min Dry Core, Dry Buffer Tubes 5 min 45 min 50 min Time saved translates directly to cost savings. Using dry water blocking materials in the cable core and buffer tubes as compared to a flooding compound in the core and gel in the buffer tubes will save 105 minutes (155 minutes 50 minutes) for each cable end being prepared for splicing. Time saved for a complete splice is equivalent to the cost of 2 times 105 minutes. The factor of two is used to account for the fact that two cables need to be prepared to make a standard butt splice. The cost of materials (discussed in the next section) need to be included with the labor savings to estimate total cost savings.

210 135 155 45 50 20 0 5 Figure 1 Graphical Presentation of Time Required to Clean Water Blocking Compound from a 144-Fiber Cable 3.2 Uses fewer Materials, Cost Saving in Consumables: Cleaning the dry portion of any fiber cable uses less cleaning materials (wipers and cleaning solvent to cut through the flooding or thixotropic gel) than cleaning the same portion of the cable if it were wet. The solvent that is used to clean the excess gel or flooding compound from the cable core, around the buffer tubes, and around the fibers inside the buffer tubes is not required for fully dry cables. The reduction or elimination of these solvents in the installation process not only reduces the cost of installation, but also helps to create a cleaner work environment. It is expected that the materials used to clean dry cables is half that used for wet cables. 3.3 Reduction in Cable Weight, Easier to Place and Handle: Cable weight plays a significant role in the cable design. In dry cables, lightweight, water-blocking SAP tapes and yarns replace heavier water blocking gel and flooding compounds resulting in a reduction in cable weight. Cable placing load for underground plant and messenger strand tension is dependent upon cable weight. The required cable tensile strength is directly dependent on cable weight, e.g., the lighter the cable weight, the lower the placing load for a cable or conversely dry cables can be placed in longer lengths. Table 2 Typical "Dry" Versus Wet Optical Cable Weight Comparison Km) Type of Cable Wet Core Cable Weight (Kg/ Dry Core Reduction 72F Duct Cable 72F 112 105 6% Armored Cable 72F 170 163 4% ADSS Cable 110 104 5%

The 6% weight reduction for a dry core, 72-fiber, duct cable will result in a lower tensile force to place that cable in a duct. Lighter cables make the installation and blowing operation less difficult. 3.4 Environment Friendly: Since cleaning dry cable requires no or little chemical solvents to clean the gel and water blocking compound and uses less material for clean-up than a wet cable, there are no harmful materials and less scrap to dispose of with dry water blocking material and hence it keeps our environmental cleaner. 4.0 Conclusion As a result of extensive testing and numerous field installations, Sterlite Technologies can confidently announce that dry cables, produced by Sterlite, using an improved manufacturing process for optical fiber cable, not only meet all the required performance specifications, but also provide the user with a substantial installation cost saving while keeping the environment cleaner. Sterlite recommends the use of Dry core cables to its customers. 5.0 Summary Except for the most severe Outside Plant conditions, a single jacket, either metallic or dielectric armored cable will likely provide sufficient protection to the cable required for it to provide satisfactory performance under nearly all conditions. Finally, the cable sheath which provides the optimal balance between robustness and economics for the OSP service to be provided and environment to be encountered is the sheath design that will ultimately determine the optimal cable design. That means that it is a cable design that the installation crew and splicers are most comfortable with and have the necessary equipment to install and to maintain is an important issue that cannot be ignored. Also, the final cable design must be sufficiently robust to withstand the weather conditions it will encounter over its service lifetime. 6.0 Additional Information If there are additional questions on this topic or other fiber optic issues, please contact Sterlite Technologies at: Contact Information telecom.sales@sterlite.com www.sterlitetechnologies.com Copyright 2017 Sterlite Technologies Limited. All rights reserved. The word and design marks set forth herein are trademarks and/or registered trademarks of Sterlite Technologies and/or related affiliates and subsidiaries. All other trademarks listed herein are the property of their respective owners. www.sterlitetech.com