Graphical Perception. Graphical Perception. Which best encodes quantities?

Similar documents
Graphical Perception. Graphical Perception. Graphical Perception. Which best encodes quantities? Jeffrey Heer Stanford University

CSE Data Visualization. Graphical Perception. Jeffrey Heer University of Washington

Recap of Last (Last) Week

Principles of Data Visualization. Jeffrey University of Washington

Visual Encoding Design

Data Visualization (CIS 468)

Lecture 5: Clustering and Segmentation Part 1

S. S. Stevens papers,

CSE Data Visualization. Color. Jeffrey Heer University of Washington

Statistics for Engineers

Minimizing the Perception of Chromatic Noise in Digital Images

Music 175: Pitch II. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) June 2, 2015

BBM 413 Fundamentals of Image Processing Dec. 11, Erkut Erdem Dept. of Computer Engineering Hacettepe University. Segmentation Part 1

ARCH 121 INTRODUCTION TO ARCHITECTURE I WEEK

Design for Information

Murdoch redux. Colorimetry as Linear Algebra. Math of additive mixing. Approaching color mathematically. RGB colors add as vectors

Tech Paper. HMI Display Readability During Sinusoidal Vibration

Edge-Aware Color Appearance. Supplemental Material

Barbara Tversky. using space to represent space and meaning

Visualizing Social Networks

Musical Acoustics Lecture 15 Pitch & Frequency (Psycho-Acoustics)

Chapt er 3 Data Representation

What is the lowest contrast spatial frequency you can see? High. x x x x. Contrast Sensitivity. x x x. x x. Low. Spatial Frequency (c/deg)

Color in Information Visualization

Processes for the Intersection

The Lecture Contains: Frequency Response of the Human Visual System: Temporal Vision: Consequences of persistence of vision: Objectives_template

2. MESSAGES OF THE ELEMENTS AND THEIR COMBINATION

The theory of data visualisation

DATA VISUALIZATION BE A VISUAL NINJA APRIL 7, 2015

Code : is a set of practices familiar to users of the medium

arxiv: v1 [cs.dl] 20 May 2016

Audio Feature Extraction for Corpus Analysis

Colour Reproduction Performance of JPEG and JPEG2000 Codecs

The Development of a Synthetic Colour Test Image for Subjective and Objective Quality Assessment of Digital Codecs

2 2 Relay outputs. M DIN W72 H7mm. LE7 Weekly/Yearly timer

Motion Video Compression

GCT535- Sound Technology for Multimedia Timbre Analysis. Graduate School of Culture Technology KAIST Juhan Nam

1. Use interesting materials and/or techniques. Title: Medium: Comments:

The Art and Science of Depiction. Color. Fredo Durand MIT- Lab for Computer Science

Relationships Between Quantitative Variables

Announcements. Project Turn-In Process. and URL for project on a Word doc Upload to Catalyst Collect It

Delivery test of the ALFOSC camera with E2V CCD Ser. no

Divider Motion heading graphics

On the relationship between the spatial channels for luminance and disparity processing

Design Principles and Practices. Cassini Nazir, Clinical Assistant Professor Office hours Wednesdays, 3-5:30 p.m. in ATEC 1.

Speech Recognition and Signal Processing for Broadcast News Transcription

1/29/2008. Announcements. Announcements. Announcements. Announcements. Announcements. Announcements. Project Turn-In Process. Quiz 2.

Announcements. Project Turn-In Process. Project 1A: Project 1B. and URL for project on a Word doc Upload to Catalyst Collect It

Bootstrap Methods in Regression Questions Have you had a chance to try any of this? Any of the review questions?

Common Spatial Patterns 2 class BCI V Copyright 2012 g.tec medical engineering GmbH

Relationships. Between Quantitative Variables. Chapter 5. Copyright 2006 Brooks/Cole, a division of Thomson Learning, Inc.

Graphics Concepts. David Cairns

Spatial Forms Generated by Music The Case Study

Photoshop assignment. What is a Picture? Discussion. Reading. Visions of Light. Visions of Light

UC San Diego UC San Diego Previously Published Works

AUD 6306 Speech Science

VISUAL VOCABULARY LECTURE 2 TYPOGRAPHY II COUNTY COLLEGE OF MORRIS PROFESSOR GAYLE REMBOLD FURBERT

THE SENSATION OF COLOUR

2. Form. Products are often designed purely with form in mind (e.g. fashion items like watches, shoes and bags).

1.4.5.A2 Formalism in dance, music, theatre, and visual art varies according to personal, cultural, and historical contexts.

Introduction to Psychology Prof. Braj Bhushan Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur

Lecture 5: Clustering and Segmenta4on Part 1

Brain-Computer Interface (BCI)

Permutations of the Octagon: An Aesthetic-Mathematical Dialectic

Urban Space and Architectural Scale - Two Examples of Empirical Research in Architectural Aesthetics

Marc I. Johnson, Texture Technologies Corp. 6 Patton Drive, Hamilton, MA Tel

Technical Specifications

SHORT TERM PITCH MEMORY IN WESTERN vs. OTHER EQUAL TEMPERAMENT TUNING SYSTEMS

Display Characterization by Eye: Contrast Ratio and Discrimination Throughout the Grayscale

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED)

Pitch Perception. Roger Shepard

Development of Simple-Matrix LCD Module for Motion Picture

A bit of Mechanical Engineering

DESIGN PRINCIPLES AND ELEMENTS. By Mark Gillan

Supplemental Material: Color Compatibility From Large Datasets

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Quarterly Progress and Status Report. Violin timbre and the picket fence

Vannevar Bush: As We May Think

DAT335 Music Perception and Cognition Cogswell Polytechnical College Spring Week 6 Class Notes

MEASURING LOUDNESS OF LONG AND SHORT TONES USING MAGNITUDE ESTIMATION

4.9 BEAM BLANKING AND PULSING OPTIONS

Audiovisual Archiving Terminology

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2002

Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex

StaMPS Persistent Scatterer Exercise

Music Similarity and Cover Song Identification: The Case of Jazz

1 Overview of MPEG-2 multi-view profile (MVP)

SHOWLINE SL BEAM 100 LED LUMINAIRE SPECIFICATIONS.

MOBILE DEFENDERS : QUALITY GUIDE FEBRUARY 2019 MOBILE DEFENDERS QUALITY GUIDE. Shenzhen, China: Our second home.

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria

COMP Test on Psychology 320 Check on Mastery of Prerequisites

What You ll Learn Today

MASTER'S THESIS. Listener Envelopment

The Research of Controlling Loudness in the Timbre Subjective Perception Experiment of Sheng

MULTIMEDIA TECHNOLOGIES

2.2. VIDEO DISPLAY DEVICES

InSync White Paper : Achieving optimal conversions in UHDTV workflows April 2015

ELEMENTS AND PRINCIPLES OF DESIGN

I.Safety Prevention Measures

Transcription:

CS448B :: 11 Oct 2012 Graphical Perception Graphical Perception The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs. Jeffrey Heer Stanford University Which best encodes quantities? Position Length Area Volume Value (Brightness) Color Hue Orientation (Angle) Shape Mackinlay s ranking of encodings QUANTITATIVE ORDINAL NOMINAL Position Position Position Length Density (Val) Color Hue Angle Color Sat Texture Slope Color Hue Connection Area (Size) Texture Containment Volume Connection Density (Val) Density (Val) Containment Color Sat Color Sat Length Shape Color Hue Angle Length Texture Slope Angle Connection Area (Size) Slope Containment Volume Area Shape Shape Volume 1

Topics Signal Detection Magnitude Estimation Pre-Attentive Visual Processing Using Multiple Visual Encodings Gestalt Grouping Change Blindness Detection Detecting Brightness Detecting Brightness (128, 128, 128) (144, 144, 144) Which is brighter? Which is brighter? 2

Detecting Brightness Which is brighter? Detecting Brightness (134, 134, 134) (128, 128, 128) Just Noticeable Difference JND (Weber s Law) Ratios more important than magnitude Most continuous variation in stimuli perceived in discrete steps Which is brighter? 3

Information in color and value Value is perceived as ordered Encode ordinal variables (O) Encode continuous variables (Q) [not as well] Steps in font size Sizes standardized in 16 th century a a a a a a a a a a a a a a a a 6 7 8 9 10 11 12 14 16 18 21 24 36 48 60 72 Hue is normally perceived as unordered Encode nominal variables (N) using color Estimating Magnitude Compare area of circles 4

Steven s Power Law Compare length of bars [graph from Wilkinson 99, based on Stevens 61] Exponents of power law Sensation Exponent Loudness 0.6 Brightness 0.33 Smell 0.55 (Coffee) - 0.6 (Heptane) Taste 0.6 (Saccharine) -1.3 (Salt) Temperature 1.0 (Cold) 1.6 (Warm) Vibration 0.6 (250 Hz) 0.95 (60 Hz) Duration 1.1 Pressure 1.1 Heaviness 1.45 Electic Shock 3.5 [Psychophysics of Sensory Function, Stevens 61] Apparent magnitude scaling [Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96] S = 0.98A 0.87 [from Flannery 71] 5

Proportional symbol map Graduated sphere map Newspaper Circulation [Cartography: Thematic Map Design, Figure 8.8, p. 172, Dent, 96] Steven s Power Law The law predicts bias: the deviation of population-averaged estimates from the true values. Cleveland & McGill It doesn t necessarily predict error! What if length averages to the true value but most estimates exhibit high deviation? [graph from Wilkinson 99, based on Stevens 61] 6

[Cleveland and McGill 84] [Cleveland and McGill 84] Relative magnitude estimation Most accurate Position (common) scale Position (non-aligned) scale Length Slope Angle Area Volume [Cleveland and McGill 84] Least accurate Color hue-saturation-density 7

Mackinlay s ranking of encodings QUANTITATIVE ORDINAL NOMINAL Position Position Position Length Density (Value) Color Hue Angle Color Sat Texture Slope Color Hue Connection Area (Size) Texture Containment Volume Connection Density (Value) Density (Value) Containment Color Sat Color Sat Length Shape Color Hue Angle Length Texture Slope Angle Connection Area (Size) Slope Containment Volume Area Shape Shape Volume Administrivia Assignment 1 Scores and comments have been returned. If you have any questions, please send them to cs448b@cs or come to office hours! Assignment 2: Visual Data Analysis Use visualization software (Tableau) to form & answer questions First steps: Step 1: Pick a domain Step 2: Pose questions Step 3: Find Data Iterate Create visualizations Interact with data Refine your questions Make wiki notebook Keep record of your analysis Prepare a final graphic and caption Due by 1:00pm on Tuesday, October 16 8

Next Week (Oct 16 & 18) Jeff will be out attending VisWeek conference Tue 10/16: D3: Data-Driven Documents Guest lecturer: Vadim Ogievetsky (MetaMarkets) This tutorial is intended to jumpstart A3, which will be assigned on Tuesday. Pre-attentive vs. Attentive Visual Processing Tue 10/18: Graph Visualization Guest lecturer: Diana MacLean (Stanford CS PhD) How many 3 s How many 3 s 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686 [based on slide from Stasko] [based on slide from Stasko] 9

Visual pop-out: Color Visual pop-out: Shape http://www.csc.ncsu.edu/faculty/healey/pp/index.html http://www.csc.ncsu.edu/faculty/healey/pp/index.html Feature Conjunctions Pre-Attentive features http://www.csc.ncsu.edu/faculty/healey/pp/index.html [Information Visualization. Figure 5. 5 Ware 04] 10

More Pre-attentive Features Line (blob) orientation Julesz & Bergen [1983]; Wolfe et al. [1992] Length Triesman & Gormican [1988] Width Julesz [1985] Size Triesman & Gelade [1980] Curvature Triesman & Gormican [1988] Number Julesz [1985]; Trick & Pylyshyn [1994] Terminators Julesz & Bergen [1983] Intersection Julesz & Bergen [1983] Closure Enns [1986]; Triesman & Souther [1985] Colour (hue) Nagy & Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995]; Bauer et al. [1996] Intensity Beck et al. [1983]; Triesman & Gormican [1988] Flicker Julesz [1971] Direction of motion Nakayama & Silverman [1986]; Driver & McLeod [1992] Binocular lustre Wolfe & Franzel [1988] Stereoscopic depth Nakayama & Silverman [1986] 3-D depth cues Enns [1990] Lighting direction Enns [1990] Pre-attentive conjunctions Spatial conjunctions are often pre-attentive Motion and 3D disparity Motion and color Motion and shape 3D disparity and color 3D disparity and shape Most conjunctions are not pre-attentive http://www.csc.ncsu.edu/faculty/healey/pp/index.html Feature-integration theory Multiple Attributes Feature maps for orientation & color [Green] Treisman s feature integration model [Healey 04] 11

One-dimensional: Lightness One-dimensional: Shape White White White Black Black Black White White Black White Correlated dims: Shape or lightness Orthogonal dims: Shape & lightness 12

Speeded Classification Speeded Classification Redundancy Gain Facilitation in reading one dimension when the other provides redundant information Filtering Interference Difficulty in ignoring one dimension while attending to the other Response Time C 1 O C 1 O Lightness Shape Interference Gain Dimension Classified Types of Dimensions Size and Value Integral Filtering interference and redundancy gain Separable No interference or gain Configural Interference, condensation, no redundancy gain Asymmetrical One dim separable from other, not vice versa Example: The Stroop effect color naming is influenced by word identity, but word naming is not influenced by color W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995) 13

Orientation and Size (Single Mark) Shape and Size (Single Mark) How well can you see temperature or precipitation? Is there a correlation between the two? [MacEachren 95] Easier to see one shape across multiple sizes than one size of across multiple shapes? [MacEachren 95] Length and Length (Single Mark) Angle and Angle (Composed Marks) [MacEachren 95] [MacEachren 95] 14

Summary of Integral-Separable Integral Set Each card has 4 features: Color Symbol Number Shading/Texture A set consists of 3 cards in which each feature is the SAME or DIFFERENT on each card. [Figure 5.25, Color Plate 10, Ware 2000] Separable Adrien Treuille s applet http://www.cs.washington.edu/homes/treuille/resc/set Principles Gestalt Grouping Figure/Ground Proximity Similarity Symmetry Connectedness Continuity Closure Common Fate Transparency 15

Figure/Ground Figure/Ground Principle of surroundedness Ambiguous Principle of relative size http://www.aber.ac.uk/media/modules/mc10220/visper07.html Ambiguous Unambiguous (?) http://www.aber.ac.uk/media/modules/mc10220/visper07.html Proximity Similarity [Ware 00] Rows dominate due to similarity [from Ware 04] 16

Symmetry Connectedness Bilateral symmetry gives strong sense of figure [from Ware 04] Connectedness overrules proximity, size, color shape [from Ware 04] Continuity Continuity: Vector fields We prefer smooth not abrupt changes [from Ware 04] Connections are clearer with smooth contours [from Ware 04] Prefer field that shows smooth continuous contours [from Ware 04] 17

Closure Common Fate We see a circle behind a rectangle, not a broken circle [from Ware 04] Dots moving together are grouped Illusory contours [from Durand 02] http://coe.sdsu.edu/eet/articles/visualperc1/start.htm Transparency Requires continuity and proper color correspondence [from Ware 04] Layering and Small Multiples 18

Layering: Gridlines Layering: Gridlines Electrocardiogram tracelines [from Tufte 90] Stravinsky score [from Tufte 90] Setting Gridline Contrast Layering: color and line width How light can gridlines be and remain visible? How dark can gridlines be and not distract? Safe setting: 20% Alpha [Stone & Bartram 2009] [Heer & Bostock 2010] IBM Series III Copier [from Tufte 90] 19

Small Multiples Change Blindness [Figure 2.11, p. 38, MacEachren 95] Change Blindness Change detection [Example from Palmer 99, originally due to Rock] 20

Change detection Demonstrations http://www.psych.ubc.ca/~rensink/flicker/download/ http://www.youtube.com/watch?v=ahg6qcgoay4 Summary Choosing effective visual encodings requires knowledge of visual perception Visual features/attributes Individual attributes often pre-attentive Multiple attributes may be separable, often integral Gestalt principles provide high-level guidelines We don t always see everything that is there 21