High-Speed ADC Building Blocks in 90 nm CMOS

Similar documents
Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling

Features. For price, delivery, and to place orders, please contact Hittite Microwave Corporation:

HMC-C060 HIGH SPEED LOGIC. 43 Gbps, D-TYPE FLIP-FLOP MODULE. Features. Typical Applications. General Description. Functional Diagram

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2011

LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES. Masum Hossain University of Alberta

A low jitter clock and data recovery with a single edge sensing Bang-Bang PD

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

Logic Design II (17.342) Spring Lecture Outline

PICOSECOND TIMING USING FAST ANALOG SAMPLING

Technology Scaling Issues of an I DDQ Built-In Current Sensor

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Synthesized Clock Generator

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

ASNT8142-KMC Generator of DC-to-23Gbps PRBS with Selectable Polynomials

Computer Organization & Architecture Lecture #5

64CH SEGMENT DRIVER FOR DOT MATRIX LCD

CMOS DESIGN OF FLIP-FLOP ON 120nm

Large Area, High Speed Photo-detectors Readout

ASNT8140. ASNT8140-KMC DC-23Gbps PRBS Generator with the (x 7 + x + 1) Polynomial. vee. vcc qp. vcc. vcc qn. qxorp. qxorn. vee. vcc rstn_p.

S6B CH SEGMENT DRIVER FOR DOT MATRIX LCD

A 5-Gb/s Half-rate Clock Recovery Circuit in 0.25-μm CMOS Technology

ISSCC 2006 / SESSION 18 / CLOCK AND DATA RECOVERY / 18.6

psasic Timing Generator

DIGITAL ELECTRONICS MCQs

ELE2120 Digital Circuits and Systems. Tutorial Note 7

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Experiment 8 Introduction to Latches and Flip-Flops and registers

EE241 - Spring 2005 Advanced Digital Integrated Circuits

DIGITAL CIRCUIT COMBINATORIAL LOGIC

25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC

ALL-STANDARD-ALL-BAND POLAR MODULATOR FOR DIGITAL TELEVISION BROADCASTING

HMC-C064 HIGH SPEED LOGIC. 50 Gbps, XOR / XNOR Module. Features. Typical Applications. General Description. Functional Diagram

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

SHF Communication Technologies AG

GHz Sampling Design Challenge

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

Research Results in Mixed Signal IC Design

Datasheet SHF A

DESIGN OF A NEW MODIFIED CLOCK GATED SENSE-AMPLIFIER FLIP-FLOP

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient

P.Akila 1. P a g e 60

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall,

WINTER 15 EXAMINATION Model Answer

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

Low Power D Flip Flop Using Static Pass Transistor Logic

Chapter 7 Sequential Circuits

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

ECEN620: Network Theory Broadband Circuit Design Fall 2014

A Power Efficient Flip Flop by using 90nm Technology

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop

Digitally Assisted Analog Circuits. Boris Murmann Stanford University Department of Electrical Engineering

ADE Assembler Flow for Rapid Design of High-Speed Low-Power Circuits

Simultaneous Control of Subthreshold and Gate Leakage Current in Nanometer-Scale CMOS Circuits

11. Sequential Elements

64CH SEGMENT DRIVER FOR DOT MATRIX LCD INTRODUCTION FEATURES 100 QFP-1420C

SILICON GERMANIUM (SiGe) BiCMOS technologies

EKT 121/4 ELEKTRONIK DIGIT 1

Power Reduction and Glitch free MUX based Digitally Controlled Delay-Lines

Lecture 21: Sequential Circuits. Review: Timing Definitions

3/5/2017. A Register Stores a Set of Bits. ECE 120: Introduction to Computing. Add an Input to Control Changing a Register s Bits

Low-Noise Downconverters through Mixer-LNA Integration

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

RFI MITIGATING RECEIVER BACK-END FOR RADIOMETERS

Area-efficient high-throughput parallel scramblers using generalized algorithms

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics

INTERCONNECT technology has progressed at a very fast

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 2018 EXAMINATION MODEL ANSWER

Serial In/Serial Left/Serial Out Operation

High Performance TFT LCD Driver ICs for Large-Size Displays

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

Research Article Ultra Low Power, High Performance Negative Edge Triggered ECRL Energy Recovery Sequential Elements with Power Clock Gating

Adding Analog and Mixed Signal Concerns to a Digital VLSI Course

DIGIMIMIC Digital/Analog Parts Portfolio

Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm

Sequential Circuit Design: Part 1

COMP2611: Computer Organization. Introduction to Digital Logic

OC-48/STM-16 SFP Transceiver (SR) RSP25SS1

LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

A Design for Improved Very Low Power Static Flip Flop Using Two Inverters and Five NORs

Performance Driven Reliable Link Design for Network on Chips

Chapter 2. Digital Circuits

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate

Synchronizing Multiple ADC08xxxx Giga-Sample ADCs

Sequential Logic Basics

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Flip-Flops and Sequential Circuit Design

Digital Electronics II 2016 Imperial College London Page 1 of 8

ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5

A 90 Gb/s 2:1 Multiplexer with 1 Tap FFE in SiGe Technology

D Latch (Transparent Latch)

Transcription:

High-Speed ADC Building Blocks in 90 nm CMOS Markus Grözing, Manfred Berroth, INT Erwin Gerhardt, Bernd Franz, Wolfgang Templ, ALCATEL Institute of Electrical and Optical Communications Engineering Institute of Electrical Prof. and Dr.-Ing. Optical Communications Manfred Berroth Engineering ALCATEL and Innovation Stuttgart SODC 2006, 05.09.2006 Markus Grözing / INT 1

Outline Motivation ADC concept Sample & hold circuit Comparator circuit Decision flip-flop Conclusion SODC 2006, 05.09.2006 Markus Grözing / INT 2

Motivation CMOS Chip Digital Equalizer Data N A SER LD TIA EQ + DES D N Data Clock LD Fiber PD CR Clock Electronic dispersion compensation for long-haul optical links: Digital maximum likelihood sequence estimation (MLSE) High-speed low-resolution ADC required Digital equalization for other serial links: backplanes multi-chip-modules DRAM memory bus etc. SODC 2006, 05.09.2006 Markus Grözing / INT 3

Interleaved ADC Concept input termin. 1 sample & hold circuit quantizer block decision block D D thermometer to binary logic 1 1 7 7 3 D & & & 10 GHz Delay 20 GHz clock 2 divider with 4-phase clock output Input: 40 Gbaud 4x Interleaving: Sample & Hold Quantization: Comparator Decision: Flip-Flop Output: 4x3x10 Gbit/s SODC 2006, 05.09.2006 Markus Grözing / INT 4

Sample & Hold Circuit: Schematics V in,d A=1 A=1 A=1 V out,d S&H Block diagram: CLK _CLK two cascaded track & hold circuits operating in master-slave mode Track & hold circuit schematic: differential NMOS transfer gate compensated by dummy FETs at input and output V in,d CLK _CLK V hold,d V DD V out,d W/2 W W/2 I 0 V SS SODC 2006, 05.09.2006 Markus Grözing / INT 5

Sample & Hold Circuit: Layout V in,d A=1 A=1 A=1 V out,d _V CLK I Bias V SS CLK _CLK _V in V out V in _V out V SS V CLK V SS SODC 2006, 05.09.2006 Markus Grözing / INT 6

Sample & Hold Circuit: Measured Output Eyes 40 Gbit/s, 10 GHz, PRBS 2 7-1 40 Gbit/s, 10 GHz, PRBS 2 31-1 50 Gbit/s, 12.5 GHz, PRBS 2 7-1 50 Gbit/s, 12.5 GHz, PRBS 2 31-1 SODC 2006, 05.09.2006 Markus Grözing / INT 7

Sample & Hold Circuit: Reconstruction Hold Voltage 0 ps 10 ps 15 ps 20 ps 30 ps T S SODC 2006, 05.09.2006 Markus Grözing / INT 8

Comparator Circuit: Schematics Comparator block diagram: V in,d A=1 V out,d input stage 5 gain stages output buffer V comp,d V DD V DD V out,d V out,d V in,d V in,d V comp,d I 0 I 0 V SS I 0 1 / 2 I 1 1 / 2 I 1 Comparator input stage schematic: two parallel differential pairs V peak V SS Comparator gain stage schematic: diff. pair + diff. pair capacitively degenerated SODC 2006, 05.09.2006 Markus Grözing / INT 9

Comparator Circuit: Layout I Bias V comp V Peak V in,d A=1 V out,d V comp,d _V in V out V in _V out _V comp V SS SODC 2006, 05.09.2006 Markus Grözing / INT 10

Comparator Circuit: Measured Slicing Characteristic 0.4 differential output voltage V out,d [V] 0.3 0.2 0.1 0-0.1-0.2-0.3-0,3 V -0,2 V -0,1 V 0,0 V 0,1 V 0,2 V 0,3 V V comp,d as parameter -0.4-0.4-0.2 0 0.2 0.4 differential input voltage V in,d [V] SODC 2006, 05.09.2006 Markus Grözing / INT 11

Comparator Circuit: Measured Output Transient differential output voltage [V] 0.1 0.0-0.1-0.2-0.3 with peaking without peaking Input voltage step (V in,d ): from -500 mv to 0 mv at V comp,d = 0 mv Settling time: (5% - 95%) -0.4 0 50 100 150 200 time [ps] w/o peak: 111 ps with peak: 43 ps SODC 2006, 05.09.2006 Markus Grözing / INT 12

Decision Flip-Flop: Schematics V D Q D Q in,d A=1 V out,d Flip-flop block diagram: CLK _CLK two preamp stages two D-latches two postamp stages output buffer D-latch schematic: V DD current source omitted individual dimensioning of master & slave latch V in,d CLK _CLK V out,d V SS SODC 2006, 05.09.2006 Markus Grözing / INT 13

Decision Flip-Flop: Layout _V CLK I Bias V D Q D Q in,d A=1 V out,d CLK _CLK _V in V out V in _V out V CLK V SS SODC 2006, 05.09.2006 Markus Grözing / INT 14

Decision Flip-Flop: Measured Phase Margin phase margin [degrees] 360 270 180 90 25 mv 200 mv 50 mv 100 mv 35 mv 400 mv 300 mv Single-ended input voltage swing as parameter f Toggle = f bit @ 5, 10 Gbit/s. f Toggle = ¼ f bit @ 20, 30, 40 Gbit/s 0 0 10 20 30 40 50 input bit rate [Gbit/s] Phase margin 10 GHz: 324 @ 200 mv 274 @ 50 mv SODC 2006, 05.09.2006 Markus Grözing / INT 15

Decision Flip-Flop: Output Eye @ 10 Gbit/s / 10 GHz SODC 2006, 05.09.2006 Markus Grözing / INT 16

Decision Flip-Flop: Output Eye @ 40 Gbit/s / 10 GHz SODC 2006, 05.09.2006 Markus Grözing / INT 17

Conclusion Scalable ADC building blocks in 90 nm CMOS without any spiral inductors: Sample & hold circuit with compensated transfer gate - input bandwidth > 30 GHz - 12,5 GHz operation with 50 Gbaud input signal Comparator circuit with active peaking - >10 Gbaud operation - 43 ps settling time (5%-to-95%) (w/o peaking: 111 ps) Decision flip-flop with pre- and post-amplifier - 10 GHz phase margin: 324 @ 200 mv / 274 @ 50 mv - 40 Gbaud / 10 GHz phase margin: 143 @ 400 mv 3 bit 40 Gs/s 90 nm CMOS ADC seems feasible SODC 2006, 05.09.2006 Markus Grözing / INT 18

References 1. J. Lee et al., A 5-b 10-Gsamples/s A/D converter for 10-Gb/s Optical Receivers, IEEE JSSC, vol. 39, no. 10, pp 1671-1679, October 2004. 2. H. Tagami et al., A 3-bit soft-decision IC for powerful forward error correction in 10-Gb/s optical communication Systems, IEEE JSSC, vol. 40, no. 8, pp. 1695-1705, April 2005. 3. W. Cheng et al., A 3b 40GS/s ADC-DAC in 0.12µm SiGe, ISSCC 2004, pp. 262-263, February 2004. 4. Ken Poulton et al., A 20GS/s ADC with a 1MB memory in 0.18µm CMOS, ISSCC 2003, pp. 318-319, February 2003. 5. J. C. Jensen, L. E. Larson, A 16-GHz ultra-high-speed Si-SiGe HBT comparator, IEEE JSSC, vol. 38, no. 9, pp 1584-1589, Sept. 2003. SODC 2006, 05.09.2006 Markus Grözing / INT 19