Homework 6: Printed Circuit Board Layout Design Narrative

Similar documents
REV CHANGE DESCRIPTION NAME DATE. A Release

High Performance TFT LCD Driver ICs for Large-Size Displays

Component Placement Tutorial Part One

MAX2660/MAX2661/MAX2663/MAX2671 Evaluation Kits

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model

Layout Analysis Analog Block

L, LTC, LTM, LT are registered trademarks of Linear Technology Corporation. Other product

Optimizing BNC PCB Footprint Designs for Digital Video Equipment

REV CHANGE DESCRIPTION NAME DATE. A Release

Part (A) Controlling 7-Segment Displays with Pushbuttons. Part (B) Controlling 7-Segment Displays with the PIC

AltiumLive 2017: The Benefits of Grid Systems in Board Design

Troubleshooting EMI in Embedded Designs White Paper

Self-Playing Xylophone

Digital Effects Pedal Description Ross Jongeward 10 December 2014

Application Note for PI3EQX4951 SATA ReDriver TM Family By Qun Song, Lingsan Quan. Table of Contents # Introduction

Why Use the Cypress PSoC?

SUBSYSTEMS FOR DATA ACQUISITION #39. Analog-to-Digital Converter (ADC) Function Card

System Requirements SA0314 Spectrum analyzer:

The Extron MGP 464 is a powerful, highly effective tool for advanced A/V communications and presentations. It has the

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

Comparing Ethernet and SerDes in ADAS Applications

S Fully Assembled and Tested S Software Control Through USB Port. S SMA Connectors for High-Speed Inputs and Output. Maxim Integrated Products 1

Facedown Low-Inductance Solder Pad and Via Schemes Revision 0 - Aug 8, Low ESL / 7343 Package

Beethoven Bot. Oliver Chang. University of Florida. Department of Electrical and Computer Engineering. EEL 4665-IMDL-Final Report

Minimising the tuning drift effects due to external temperature variations in the Titanium Satellite C1W-PLL Wideband LNBF

EA63-7D. Generator Automatic Voltage Regulator Operation Manual. Self Excited Automatic Voltage Regulator

Laboratory 8. Digital Circuits - Counter and LED Display

Spring 2011 Microprocessors B Course Project (30% of your course Grade)

Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li

SHUTTLE WITH INFRA-RED DETECTION SAS2-IR

SparkFun Camera Manual. P/N: Sense-CCAM

January 24, Dr. Lakshman One School of Engineering Science Simon Fraser University Burnaby, BC, V5A 1S6

INTRODUCTION (EE2499_Introduction.doc revised 1/1/18)

MB5 Multibeam Activity Monitor

Room Recommendations for the Cisco TelePresence System 3210

TARGET 3001! Crash-course

Room Recommendations for the Cisco TelePresence System 3010

PCB Board Layout Is Critical When The Power Supply And MCU Live On The Same Board

OEM Basics. Introduction to LED types, Installation methods and computer management systems.

IC Mask Design. Christopher Saint Judy Saint

Christmas LED Snowflake Project

Challenges in the design of a RGB LED display for indoor applications

ECG Demonstration Board

Alice EduPad Board. User s Guide Version /11/2017

MTI-2100 FOTONIC SENSOR. High resolution, non-contact. measurement of vibration. and displacement

Using the MAX3656 Laser Driver to Transmit Serial Digital Video with Pathological Patterns

A 400MHz Direct Digital Synthesizer with the AD9912

Bookcheck Model 966. Site Planning Guide

Saving time & money with JTAG

ECE Design Team 3 Madi Kassymbekov How to use MSP 430 Peripheral Sensors and use of LEDs as sensors

Author: Seth Reed Lakritz

USER MANUAL. VP-501N UXGA Scan Converter MODEL: P/N: Rev 5

N3ZI Digital Dial Manual For kit with Backlit LCD Rev 4.00 Jan 2013 PCB

Monolithic CMOS Power Supply for OLED Display Driver / Controller IC

N3ZI Digital Dial Manual For kit with Serial LCD Rev 3.04 Aug 2012

This document is intended to provide information to allow the researcher to build their own device.

TR-Plus T/R Switch Assembly and Operation Manual. Introduction

( stored on ) also accessible from

COHERENCE ONE PREAMPLIFIER

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

GT Dual-Row Nano Vertical SMT High Speed Characterization Report For Differential Data Applications

C200H-AD002/DA002 Analog I/O Units Operation Guide

Manual Version Ver 1.0

MAKE AN RGB CONTROL KNOB.

Interaction of Infrared Controls And Fluorescent Lamp/Ballast Systems In Educational Facilities

ESU LokSound Select Direct Micro "Keep-Alive"

R&S FSW-K54 EMI Measurement Application Detecting and eliminating electromagnetic

Belden IBDN System 10GX Enabling Technologies

AltiumLive 2017: Effective Methods for Advanced Routing

Design Project: Designing a Viterbi Decoder (PART I)

Data Conversion and Lab (17.368) Fall Lecture Outline

Meeting Embedded Design Challenges with Mixed Signal Oscilloscopes

Published in A R DIGITECH

Advanced Techniques for Spurious Measurements with R&S FSW-K50 White Paper

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Design Brief - I35 and I35 DAC Stereo Integrated Amplifier

UNIT V 8051 Microcontroller based Systems Design

Small Projector Array Display System

BGA2022, RX mixer 880, 1950 and 2450 MHz

Combo Board.

Application Note DT-AN DTU-315 Verification of Specifications

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

MODIFYING A SMALL 12V OPEN FRAME INDUSTRIAL VIDEO MONITOR TO BECOME A 525/625 & 405 LINE MULTI - STANDARD MAINS POWERED UNIT. H. Holden. (Dec.

BCCU Brightness and Color Control Unit. XMC microcontrollers September 2016

1) As a sensor on a shop window. The LCD is mounted behind the touch foil.

Features. = +25 C, IF = 1 GHz, LO = +13 dbm*

Tip: Faller Mittelstadt Apartments with Controlled LED Lighting Date: , Addition

Callisto DISEqC Antenna Tracker

2.6 Reset Design Strategy

Cascadable 4-Bit Comparator

MODEL PA II-R (1995-MSRP $549.00)

Build A Video Switcher

Building the BX24-AHT

Why FPGAs? FPGA Overview. Why FPGAs?

OPERATING GUIDE. HIGHlite 660 series. High Brightness Digital Video Projector 16:9 widescreen display. Rev A June A

Avoiding False Pass or False Fail

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C

Circuit Playground Express (& other ATSAMD21 Boards) DAC Hacks

Axle Assembly Poke-Yoke

Small Projector Array System

Transcription:

Homework 6: Printed Circuit Board Layout Design Narrative Team Code Name: The Hex Me Baby Team Group No. 3 Team Member Completing This Homework: Robert Harris E-mail Address of Team Member: harris89 @ purdue.edu Evaluation: SEC DESCRIPTION MAX SCORE 1.0 Introduction 5 2.0 PCB Layout Design Considerations - Overall 20 3.0 PCB Layout Design Considerations - Microcontroller 10 4.0 PCB Layout Design Considerations - Power Supply 10 5.0 Summary 5 6.0 List of References 10 App A PCB Layout Top & Bottom Copper Screenshot 20 App B PCB Layout To-Scale Component Side Layout 20 TOTAL 100 Comments:

1.0 Introduction Hackers of Catron is an electronically enhanced version of the popular Settlers of Catan board game. Game setup will be automated, placement of physical pieces on the board will be tracked, and resource trading will be handled through handheld devices. These enhancements to the game will make the game easier to set up and play, resulting in a much improved game play experience. While the economy is handled via a web server, most of the game takes place on a physical game board. Catan is composed of nineteen hexagons which fit together to make up the board. Rather than making the players setup the board themselves, simply turning on the game can randomize the playing surface. To accomplish this, each hexagon will use LEDs to designate its resource type. The LEDs are mounted to the surface of the PCB, and a sheet of frosted acrylic is placed above to disperse the light. Dividers will be used to represent the borders and separate the light between the hexagons. Hall Effect sensors will be mounted to the surface of the PCB for the purpose of detecting the magnetic game pieces. It is important that the distance between the PCB and frosted acrylic be optimized such that the pieces detected without interfering with adjacent sensors. The PCB will be approximately 15 x17 in size to accommodate the overwhelming number of sensors and LEDs. This large size brings along with it a large price tag, so a second board run in the case of errors is not a viable option. This report will discuss the design considerations we will make so that our circuit will work correctly and Electromagnetic interference (EMI) will not be a problem. The next section (Section 2.0) is about the overall layout design considerations; it will discuss the overall layout including component placement and signal routing. Section 3.0 is about layout considerations involving the microcontroller. Section 4.0 is about the layout considerations revolving around the power supply circuitry. 2.0 PCB Layout Design Considerations - Overall There are many special considerations that need to be taken into account for the PCB layout of the project. First, due to the massive number of Hall Effect sensors, 7-segment LEDs, and RGB LEDs on the board (145, 38, and 38, respectively) careful planning before routing signals will be critical. Through hole components (headers and 7-segment displays) add to the routing complexity. Also, due to the fact that two different power rails (5V and 3.3V) are needed for -1-

components on the PCB, routing signals through and around the PCB will be very complex. To avoid routing problems, the layout of the RGB drivers, 7-Segment drivers, and multiplexers will be planned before any component placement is done. Appendix C shows the placement of the RGB drivers, 7-Segment drivers, and Hall Effect sensors. Every hexagon has one multiplexer for its 8 Hall Effect sensors. The drivers and multiplexers were placed so that signals are routed as short a distance from their destination and the components are placed as evenly throughout the board as possible. The power and ground rail placement was also decided early in the layout planning process. Traces must be sized according to the amount of current they will be required to handle. The power and ground rails will be the widest rails. The 5V rail will provide approximately 2.4A at max draw (1.7A to the RGB LEDs and 1.0A to the Raspberry Pi) [1] [2] [3]. To handle this current, a trace with a minimum width of 30 mils will be needed [4]. However, due the length of the traces, wider traces will be used. The trace that runs the 5V rail all the way around the board will be much larger (60 mils); another option is to make use of a large fly wire to route the unregulated 5V rail around the board instead of using a large trace. If there is room in the final PCB layout for the large trace it will be used instead of a fly wire to make the board population process a little simpler. The 3.3V rail will provide approximately 1.1A at max draw. Thus, a trace with a minimum width of 15 mils should be used [4]. As with the 5V traces, the 3.3V traces will also be made wider (40 mils) due to their length. All of the smaller power/ground traces that run the width of the board will be 24 mils wide. 3.0 PCB Layout Design Considerations - Microcontroller The Atmel AVR32 will draw approximately 19 ma of current at peak draw [5]. Thus, no special considerations are needed for the size of the power traces running to the microcontroller. The oscillator circuit and decoupling capacitors will need to be located near the microcontroller. The microcontroller requires a total of four decoupling capacitors, thus their placement and routing will need to be planned carefully [5]. The microcontroller will be placed where there is adequate space to position all of the necessary components (oscillator circuit, decoupling capacitors) and where all of the multiplexers and LED drivers can route easily. Routing of signals from all 19 hexagons to the microcontroller will be very difficult, so effective placement of the microcontroller is crucial to a -2-

successful layout. The microcontroller is currently in the center of the board; however, after routing many of the long traces on the board it looks like moving the micro to the outside of the board will help with the routing process. Another benefit of moving the micro to the outside is that there will be more room for the decoupling capacitors and the oscillator circuit. The EMI of the oscillator circuit can be handled better with the extra space also. As the PCB layout is finalized, the choice of microcontroller placement will be very important. The microcontroller reset will be placed in close proximity of the micro to prevent noise from inadvertently resetting the micro. As you can see, component placement for the microcontroller is a vital step to a successful layout of our PCB due to the number of components and signals present. 4.0 PCB Layout Design Considerations - Power Supply A 5V unregulated signal is input to the power supply; the input comes from an external switch mode power supply that is connected to the PCB via a barrel jack. The barrel jack is located on the edge of the board for easy accessibility. The external supply is capable of providing up to 4A of current; our entire board (including the Raspberry Pi) can theoretically draw about 3.5A at max draw [6]. Thus, traces at least 100 mils wide will be used in the power supply circuit [4]. The traces will be made as wide as possible to help reduce EMI produced. Also, a copper pour will be placed throughout the power supply area to help decrease noise in the circuit. Power will be routed through the board with power and ground rails running across the board. The ground rails will made wide to decrease noise. All of our board components are digital, so EMI should not be a huge issue. Also, because of this only the power supply circuitry has to be separated from the rest of the board. A micro USB adapter will route the 5V unregulated input from the board to the Raspberry Pi [3]. Because 3.3V and 5V are needed throughout the board, a large 5V rail will be run around the board where it can then be run throughout the board to eliminate the need to cross the different power rails. -3-

5.0 Summary In this report the major design criteria for the PCB layout of the project have been outlined. These criteria will be followed closely to help ensure a successful result. Proper planning of how to place components and route their signals is toughest part of this design. The PCB layout will be done very carefully and thoroughly to yield the best possible result. The layout is not 100 percent done at this point; but the power and ground rails have been laid out, the long signals have been routed, and some hexagons have hand routing. The images included in the appendices of this report are the result of both hand and auto routing. More hand routing will be done for the final version of the layout. The power supply circuitry has not been completed totally and will be reworked prior to the design review on Monday. Carefully analyzing the design as it progresses will ensure a successful design. If needed, auto route will be used for some of the connections; but most of the connections will be done by hand so that the design will meet all of the necessary constraints. The appendix of this report includes images of the layout and the layout planning process. Appendix A includes images of the top and bottom copper PCB layout. Appendix B includes a to-scale illustration of the component side PCB layout. Appendix C includes images showing a high level view of the placement of the 7-segment drivers, RGB LED drivers, and Hall Effect sensors. The placement of these parts was a crucial part of the PCB layout planning. -4-

6.0 List of References [1] Cree, Cree PLCC4 3 in 1 SMD LED CLV1L-FKB, [Online]. Available: http://www.cree.com/~/media/files/cree/led%20components%20and%20modules/hb/d ata%20sheets/clv1l%20fkb%201238.pdf. [Accessed 21 2 2013] [2] Omron, LED Control IC W2RF004RM, 8 2012. [Online]. Available: http://components.omron.com/components/web/pdflib.nsf/0/a59093552c8ed1c186257a 5D0077B1D2/$file/W2RV004RM_0812.pdf. [Accessed 21 2 2013]. [3] Broadcom Corporation, BCM2835 ARM Peripherals, 2 2012. [Online]. Available: http://www.raspberrypi.org/wp-content/uploads/2012/02/bcm2835-arm-peripherals.pdf. [Accessed 21 2 2013]. [4] Purdue ECE 477 Staff, PCB Design Specifications, 18 7 2011. [Online]. Available: https://engineering.purdue.edu/ece477/homework/commonrefs/tutorials/pcb/pcb%20d esign%20specifications.pdf. [Accessed 21 2 2013]. [5] Atmel, 32-bit ATMEL AVR Microcontroller, 3 2012 [Online]. Available: http://www.atmel.com/images/doc32059.pdf. [Accessed 13 2 2013]. [6] Triad Magnetics, External Switchmode Power Supplies - WSU Series, 3 2012. [Online]. Available: http://triadmagnetics.com/pdf/wsu-series%20datasheet%20(2012).pdf. [Accessed 21 2 2013]. -5-

Appendix A: PCB Layout Top & Bottom Copper Figure 1. PCB Layout Top and Bottom Copper. Note: High Resolution Image zoom to see details. -6-

Figure 2. PCB Layout Top Copper. Note: High Resolution Image zoom to see details. -7-

Figure 3. PCB Layout Bottom Copper. Note: High Resolution Image zoom to see details. -8-

Appendix B: PCB Layout To-Scale Component Side Layout Figure 4. Component Layout Not to scale. Note: High Resolution Image zoom to see details. -9-

Figure 5. To Scale Component Layout View 1. -10-

Figure 6. To Scale Layout with Microcontroller.. -11-

Figure 7. To Scale Layout with Power Supply. -12-

Appendix C: Driver and Sensor Placement Figure 8. RGB LED Driver Placement. -13-

Figure 9. Seven Segment Display Driver Placement. -14-

Figure 10. Hall Effect Sensor Placement. -15-