Industry IoT Gateway for Cloud Connectivity

Similar documents
Laurent Romary. To cite this version: HAL Id: hal

Artefacts as a Cultural and Collaborative Probe in Interaction Design

IoT Strategy Roadmap

On viewing distance and visual quality assessment in the age of Ultra High Definition TV

Learning Geometry and Music through Computer-aided Music Analysis and Composition: A Pedagogical Approach

No title. Matthieu Arzel, Fabrice Seguin, Cyril Lahuec, Michel Jezequel. HAL Id: hal

On the Citation Advantage of linking to data

PaperTonnetz: Supporting Music Composition with Interactive Paper

ITU-T Y.4552/Y.2078 (02/2016) Application support models of the Internet of things

PROTOTYPE OF IOT ENABLED SMART FACTORY. HaeKyung Lee and Taioun Kim. Received September 2015; accepted November 2015

Primo. Michael Cotta-Schønberg. To cite this version: HAL Id: hprints

Interactive Collaborative Books

QUEUES IN CINEMAS. Mehri Houda, Djemal Taoufik. Mehri Houda, Djemal Taoufik. QUEUES IN CINEMAS. 47 pages <hal >

Internet of Things: Cross-cutting Integration Platforms Across Sectors

ITU-T Y Functional framework and capabilities of the Internet of things

Embedding Multilevel Image Encryption in the LAR Codec

Workshop on Narrative Empathy - When the first person becomes secondary : empathy and embedded narrative

Creating Memory: Reading a Patching Language

Compte-rendu : Patrick Dunleavy, Authoring a PhD. How to Plan, Draft, Write and Finish a Doctoral Thesis or Dissertation, 2007

Masking effects in vertical whole body vibrations

T : Internet Technologies for Mobile Computing

Reply to Romero and Soria

Sound quality in railstation : users perceptions and predictability

New Technologies: 4G/LTE, IOTs & OTTS WORKSHOP

Influence of lexical markers on the production of contextual factors inducing irony

IERC Standardization Challenges. Standards for an Internet of Things. 3 and 4 July 2014, ETSI HQ (Sophia Antipolis)

Dr. Tanja Rückert EVP Digital Assets and IoT, SAP SE. MSB Conference Oct 11, 2016 Frankfurt. International Electrotechnical Commission

A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective

Introduction to the Internet of Things

A new conservation treatment for strengthening and deacidification of paper using polysiloxane networks

Open access publishing and peer reviews : new models

ITU-T Y Specific requirements and capabilities of the Internet of things for big data

THE TRANSFER CENTER INTERNET OF THINGS (IOT) LAB

IoT-based Monitoring System using Tri-level Context Making for Smart Home Services

Internet of Things ( IoT) Luigi Battezzati PhD.

ITU-T Y Reference architecture for Internet of things network capability exposure

Motion blur estimation on LCDs

RECENT TRENDS AND ISSUES IN IOT

FOSS PLATFORM FOR CLOUD BASED IOT SOLUTIONS

Home Monitoring System Using RP Device

A joint source channel coding strategy for video transmission

Stories Animated: A Framework for Personalized Interactive Narratives using Filtering of Story Characteristics

PoE: Adding Power to (IoT)

Editing for man and machine

Scan. This is a sample of the first 15 pages of the Scan chapter.

Translating Cultural Values through the Aesthetics of the Fashion Film

V9A01 Solution Specification V0.1

Releasing Heritage through Documentary: Avatars and Issues of the Intangible Cultural Heritage Concept

La convergence des acteurs de l opposition égyptienne autour des notions de société civile et de démocratie

Internet of Things Conceptual Frameworks and Architecture

Chapter 2. Analysis of ICT Industrial Trends in the IoT Era. Part 1

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

What you need to know about IoT platforms. How platforms stack up in IoT

UPDATE ON IOT LANDSCAPING

AutoPRK - Automatic Drum Player

IoT Challenges in H2020. Mirko Presser, MSci, MSc, BSS/BTECH/MBIT Lab

Spectrum Management Aspects Enabling IoT Implementation

Natural and warm? A critical perspective on a feminine and ecological aesthetics in architecture

THE NEXT GENERATION OF CITY MANAGEMENT INNOVATE TODAY TO MEET THE NEEDS OF TOMORROW

REBUILDING OF AN ORCHESTRA REHEARSAL ROOM: COMPARISON BETWEEN OBJECTIVE AND PERCEPTIVE MEASUREMENTS FOR ROOM ACOUSTIC PREDICTIONS

A Bird s Eye View on Internet of Things

The Diverse Environments Multi-channel Acoustic Noise Database (DEMAND): A database of multichannel environmental noise recordings

IoT Sensor Network Applications

Integrating Device Connectivity in IoT & Embedded devices

Microincrements IP67-related solutions

JTC 1/SC 41. François Coallier, PhD, Eng. Chair, ISO/IEC JTC 1/SC41 ITU-T RFG, ITU-T RFG

Philosophy of sound, Ch. 1 (English translation)

Speech Recognition and Signal Processing for Broadcast News Transcription

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

AMPHENOL RF ENABLES THE INTERNET OF THINGS

IJMIE Volume 2, Issue 3 ISSN:

Images for life. Nexxis for video integration in the operating room

Synchronization in Music Group Playing

The CIP Motion Peer Connection for Real-Time Machine to Machine Control

Introduction to the platforms of services for the Internet of Things Revision : 536

DESIGN OF A MEASUREMENT PLATFORM FOR COMMUNICATIONS SYSTEMS

The Art of Low-Cost IoT Solutions

A new HD and UHD video eye tracking dataset

3 rd International Conference on Smart and Sustainable Technologies SpliTech2018 June 26-29, 2018

Model- based design of energy- efficient applications for IoT systems

DELL: POWERFUL FLEXIBILITY FOR THE IOT EDGE

Alcatel-Lucent 5620 Service Aware Manager. Unified management of IP/MPLS and Carrier Ethernet networks and the services they deliver

Improvisation Planning and Jam Session Design using concepts of Sequence Variation and Flow Experience

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc.

DRIVING REVENUE FROM THE INTERNET OF THINGS

An Adaptive Cartography of DTV Programs

5620 SAM SERVICE AWARE MANAGER. SMM GNE Driver Version Guide

Detecting Bosch IVA Events with Milestone XProtect

Internet of Things (IoT)

A PRELIMINARY STUDY ON THE INFLUENCE OF ROOM ACOUSTICS ON PIANO PERFORMANCE

ENGINEER AND CONSULTANT IP VIDEO BRIEFING BOOK

Timing Error Detection and Correction by Time Dilation

IoT Egypt Forum A Catalyst for IoT Ecosystem in Egypt

Powerful Software Tools and Methods to Accelerate Test Program Development A Test Systems Strategies, Inc. (TSSI) White Paper.

Microincrements XFC. Application Note DK XFC technology microincrements. Technical background CHA CHB. 2fold.

IoT: Rethinking the reliability

HAL Series. Versatile range of production line testers.

CLEVER LIGHTING An Emerging New Market

Touch Interactive Matrix LED Display for the Collective Awareness Ecosystem

Kolding June 12, 2018

Transcription:

Industry IoT Gateway for Cloud Connectivity Iveta Zolotová, Marek Bundzel, Tomáš Lojka To cite this version: Iveta Zolotová, Marek Bundzel, Tomáš Lojka. Industry IoT Gateway for Cloud Connectivity. Shigeki Umeda; Masaru Nakano; Hajime Mizuyama; Hironori Hibino; Dimitris Kiritsis; Gregor von Cieminski. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2015, Tokyo, Japan. IFIP Advances in Information and Communication Technology, AICT-460 (Part II), pp.59-66, 2015, Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth. <10.1007/978-3-319-22759-7_7>. <hal-01431176> HAL Id: hal-01431176 https://hal.inria.fr/hal-01431176 Submitted on 10 Jan 2017 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Distributed under a Creative Commons Attribution 4.0 International License

Industry IoT Gateway for cloud connectivity Iveta Zolotová, Marek Bundzel, Tomáš Lojka Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic {iveta.zolotova, marek.bundzel, tomas.lojka}@tuke.sk Abstract. New approaches and technologies like Internet of Things (IoT), cloud computing and Big Data are giving rise to another industrial revolution. We propose here an implementation of an industrial gateway architecture adopting the idea of IoT, intelligent methods, Machine-to-Machine and Cyber- Physical Systems. The proposed gateway creates a virtual representation of the physical world scanning the technological layer s devices in real time. It creates a uniform communication interface for the heterogeneous technological layer, enables self-management of devices, diagnostics and self-reconfiguration to improve Quality of Service aided with cloud SCADA and MES services. We have tested the proposed gateway in an experimental setup with a programmable logic controller. Keywords: Cyber-Physical System, Gateway, Internet of Things. 1 Introduction Industry is a heterogeneous system consisting of various heterogeneous subsystems [1]. The subsystems must be interconnected to reach the complexity needed for an optimal performance of a plant [2,3]. This need for interconnection leads to the next industrial evolution step defined as the Industry 4.0. The term "Industrie 4.0" (German for industry ) refers to the fourth industrial revolution. It originates from a project in the high-tech strategy of the German government, which promotes the computerization of manufacturing. [4,5]. The first industrial revolution increased production and decreased difficulty of manual work by using steam power. The second revolution did the same with the help of electric power and the third revolution brought electronics and IT to further automate production. The idea of the latest industrial revolution was presented at the Hanover Fair in 2011 [2]. Prof. Dr. Ing. Detlef Zühlke (Scientific Director of Innovative Factory Systems at the German Research Center for Artificial Intelligence) is sometimes called the "Father of Industry 4.0". The goal is to create more successful companies quickly capable to endure in the global competition [5]. Improvement of the interconnection of the industrial subsystems is related to the concept of the Internet of Things (IoT) [5], especially because of IoT aims to improve the interconnection of the digital and the physical world. Industry 4.0 in the contrary to the typical industry architecture significantly improves management of processes. IoT improves the processes of collecting, analyzing and processing the valuable and adfa, p. 1, 2011. Springer-Verlag Berlin Heidelberg 2011

now easily accessible information originated in every part of the plant. The industrial IoT changes the machine-machine and machine-human interactions, comprehensive interoperability and intelligence aids to improve analytical description of the environment and better decisions can be taken. [4], [6]. Fig. 1. Chronology of the industrial revolutions Plants are comprised of different subsystems, modules, devices, machines operating with various communication protocols and interfaces. The problem is that the subsystems do not provide a unified connection to the technological layer and to the higher layer of the industrial hierarchical model. We propose implementation of the IoT in the Supervisory Control and Data Acquisition layer (SCADA). Typically the sensors of the technological layer produce large amounts of data; the SCADA layer collects it and provides the data to the Manufacturing Execution System (MES). This decreases interoperability between the technological layer and MES. The plants typically use strictly defined fixed interfaces for the communication within each layer between the layers of the hierarchy. This constraint does not allow ad-hoc behavior of the plant. Our goal is to create ad-hoc environment connecting technological layer with higher layers. The connections will be not constrained by fixed interfaces between the layers but automatically ad-hoc included and ad-hoc accessible for every layer. 2 Industry 4.0 and IoT. Industry 4.0 brings greater flexibility, adaptability, self-organization, selfoptimization, self-diagnostics and leverages interaction between business and customer relationship, increases safety, reliability, autonomy and efficiency. The technological part is represented by a cyber-physical system [6]. Every product is individually described by the connection to business and customer layers. Integration of intelligent autonomy and monitoring with increasing automation into industry was important. It is represented by Cyber-Physical Systems (CPS) and IoT. [3]. Modern factories exceed the boundaries of the traditional ones. The factories are able to react to unpredicted situations autonomously and to select the optimal responses with regard to the plant or the market. The interconnection of the processes and plants is improved and the network security is better. The boundaries of the new industry are exceeded between the regions and between the different plants.

3 The Concept of Industrial Connection with IoT. Industry 4.0 connects machines, workers, and factory systems into a network. New technological approaches of IoT, cloud computing, M2M (machine-to-machine), CPS and Big data are implemented into the network. Each of the technologies increases productivity. [7, 8]. We focus on IoT facilitating the interconnection of heterogeneous factory environments. The communication within the factory and the digital model of the real factory states are improved. The proposed interconnection enables better analysis and decision making. The position of IoT in the hierarchical model is depicted in Fig. 2. Fig. 2. Industrial connection with IoT, CPS, cloud, and Big data IoT creates a virtual (digital) representation of the physical world. The software applications access the virtual representations of the devices only. This solution is more suited for the world representation management when using various physical devices [9,10]. This layer must implement ad-hoc behavior and it must be manageable by central or distributed nodes [11,12]. The IoT layer runs a software surveyor for detection and identification of new devices. It enables adaptation of any physical layer and its integration into the factory architecture. Data/information is accessible to every application inside the plant or inside/outside the plant respectively. The devices detected for the first time are looked up in a devices database and included into the device ontology. [4]. Measurement frequency, measurement range, device position etc. describe the device. The connection to the technological layer is crucial and it influences the plant s Quality of Service (QoS) significantly. The technological layer of a heterogeneous system will not feature composite communication interfaces in Industry 4.0. The technological layer consists of CPS and smart products. These enable easier but not uniform connection to the technological layer. We propose a solution for the IoT connection to the technological layer here. We have designed a concept of IoT gateway that is described below. The proposed gateway supports communication with a cloud. SCADA and MES services may be implemented in the cloud as we have described in [13].

4 Concept Definition of the IoT Gateway The important part of SCADA is the connection to the technological layer. This connection is crucial for data forwarding to the higher layers of the factory architecture. Therefore, we propose an IoT gateway connecting the physical devices and the higher layers of the Information and Control System (ICS). Regular and stochastic changes occur in a real word environment and the IoT gateway must adapt to the changes. The gateway s main role is the development of a virtual representation of the physical world enabling data collection and forwarding. The gateway s functionality must be robust to fulfill the requirements of all layers in the factory architecture. Fig. 3. Concept definition of IoT in the industry. The IoT gateway distinguishes between the physical device and its virtual representation. That enables implementation of device management in the cases of failure or for saving energy when redundant measurements are taken. Additionally the virtual representation of the devices simplifies the connection between the cloud application and the physical devices (sensors/actuators). The gateway offers a unified connection to the virtual representations of the devices so that any application may use it. The virtual representation of a device does not simply mirror the state of the device. Functionality for enhanced description of the device, its properties and measurements is added. [9, 10]. The IoT gateway provides a complex representation of the instances. We have defined the main tasks the IoT gateway will perform to reach the best QoS: Data forwarding the gateway is responsible for data forwarding from the technological layer to the higher layers of the factory architecture. [11]. Gateway management the gateway is a key integration element in the entire factory architecture. A fixed and no-manageable gateway will cause fewer problems with adaptivity and implementation. [11].

Device management enables runtime configuration of devices, setting the statuses, functionality modes, errors acknowledgements and other. [11]. Data analysis the IoT gateway monitors and analyses data in real time using statistics and artificial intelligence. This module cooperates with the device management to maintain QoS, reliability and fault tolerant operation. The faults are detected and the faulty devices are substituted by the available redundant devices. Data analysis with the device management enable self-configuration, adaptive and robust behavior with regard to the technological layer connected to the IoT gateway. The goal is to achieve autonomous management of devices without the need of human intervention aided by M2M communication. Diagnostics the IoT gateway detects errors and faults in the entire technological layer and in the IoT gateway itself. The operation of the proposed IoT gateway is divided into the management and runtime parts. 4.1 Management Part of the IoT Gateway Management part of the IoT gateway detects, identifies and networks new devices in real-time. The IoT gateway creates a virtual instance of a device after having detected it. A definition of the device is needed to create the virtual instance. The definition may contain measurement ranges, device s location and power management information, lists of fault states, error states and error messages. If the definition of the virtual instance is inferred from the physical device it is uploaded to the device database [10]. The device manager will then create the virtual instance and forward it to the runtime. The virtual instance communicates with the device in the runtime. The data exchanges are based on events to reduce the communication load. However, the devices in Industry 4.0 should be manageable; at least the device s status must be settable. This industrial solution enables to contact new devices. The contacted devices must provide metadata describing themselves to be correctly recognized. The IoT gateway creates the virtual instances based on the metadata. The virtual instances are frequently refreshed based on the corresponding events. The inactive physical devices are set to idle state by the device manager. Additional functionality is the management of the running virtual devices. This implies additional ability to update the physical and virtual instances in real time. The management part provides additional information to the data access point of the IoT gateway and the access point provides it to the higher layers (to MES, for example). The access point also collects information on configuration of virtual and physical instances from SCADA layer. The diagnostics module enables management of the physical devices, the virtual instances and of the IoT gateway to ensure reliable control of the devices and data transfers from and to the technological layer. The diagnostics module also enables problem identification and invokes events describing the critical or the alarm states.

Fig. 4. Management and runtime parts of the IoT gateway 4.2 The Runtime Part of the IoT Gateway Runtime part operates with the virtual instances created for the physical devices by the management part. Runtime part is responsible for finding new devices and updating the virtual instances. The virtual instances are easily accessible via the unified connection interface of the IoT gateway. In the case of a fault occurring on the physical device the virtual instance may link itself to another redundant physical device or self-reconfigure. The functionality of the faulty device is substituted by functionality of another device. The runtime part runs an event manager that keeps the physical devices and the virtual instances synchronized. 5 The Implemented Solution We have not implemented the full functionality of the above described concept so far. We are try to identify and to use progressive approaches to improve the interconnection of the heterogeneous technological level and the cloud SCADA and MES services. We have designed a clustering method for grouping redundant devices. Substitutes for the faulty devices are easy to find and robustness is increased. We have developed the management and the runtime parts of the IoT gateway. We have implemented the software agent scanning the defined subnets and identifies all the connected devices. The implemented management part selects the devices with the known communication interfaces and stores them in the device database. After

that virtual instances for the devices are created and a synchronization interval is set up. We have used PLC CompactLogix L23E from Rockwell Automation in our experiment. The PLC has been detected and identified by IoT gateway. An industrial IoT gateway must communicate via various communication protocols. The proposed IoT gateway uses a wide scale of industrial communication protocols; CIP (Common Industrial Protocol) was used for communication with the PLC in our experiment. We have developed a GUI showing the IoT gateway processes using WPF and MS Visual Studio 2013. A list of the available devices found by the IoT gateway is shown in Fig. 5. The IP address of the PLC is shown in the Device register tab. Its virtual instance properties are displayed in the Instance properties tab. The virtual instance was automatically created upon reception of the metadata downloaded from the PLC. Fig. 5. Graphic representation IoT gateway processes 6 Conclusions and Future Work New industrial revolution based on CPS, IoT, cloud computing, and Big Data is on the way. [4, 12]. We have focused CPS and IoT for increased industrial autonomy, flexibility, efficiency, self-configuration, self-adaptiveness and robustness. Important part is communication in industry. Heterogeneity of the technological layer makes communication problematic. We have designed and implemented an IoT gateway creating a unified connection to the technological layer aided by IoT. This proposed gateway allows management of devices, identification of new devices, reading context data of the devices, self-reconfiguration, diagnostics and fault tolerance by creating virtual representations of the physical devices. The future work includes implementation of artificial intelligence methods for classification of devices and their communication interfaces, for analysis of their behaviors and implementation of M2M to achieve self-managing behavior of the IoT gateways and their cooperation. Acknowledgements. This publication is the result of the Project implementation: University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 26220220182, supported by the Research & Devel-

opment Operational Programme funded by the ERDF (50%) and by grant KEGA - 001TUKE-4/2015 (50%). References 1. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. In: Computer Networks, Vol. 54, No. 15, pp. 2787-2805 (2010) 2. Li, J., Biennier, F., Ghedira Ch.: An Agile Governance Method for Multi-tier Industrial. In: Advances in Production Management Systems. Value Networks: Innovation, Technologies, and Management, pp.506-513, Springer Berlin Heidelberg (2012) 3. Breiner, K., Görlich, D., Maschino, O., Meixner, G., Zühlke, D: Run-time adaptation of a universal user interface for ambient intelligent production environments. In: Human- Computer Interaction. Interacting in Various Application Domains, pp. 663-672, Springer Berlin Heidelberg (2009) 4. Zuehlke, D.: SmartFactory Towards a factory-of-things. In: Annual Reviews in Control, 34(1), pp. 129-138 (2010) 5. Bill Lydon: The 4th Industrial Revolution, Industry 4.0, Unfolding at Hannover Messe 2014, Automation.com (2014), http://www.automation.com/automation-news/article/the- 4th-industrial-revolution-industry-40-unfolding-at-hannover-messe-2014 6. Brizzi, P., Conzon, D., Khaleel, H., Tomasi, R., Pastrone, C., Spirito, A.M., Knechtel, M., Pramudianto, F., Cultrona, P.: Bringing the Internet of Things along the manufacturing line: A case study in controlling industrial robot and monitoring energy consumption remotely. In: Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference, pp.1-8 (2013) 7. Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L. M. S. D., Trifa, V.: SOA-based integration of the internet of things in enterprise services. In: Web Services, 2009. ICWS 2009. IEEE International Conference, pp. 968-975, IEEE (2009) 8. Broy, M.: Cyber-physical systems: Innovation durch softwareintensive eingebettete Systeme. Springer, Berlin (2010) 9. Schuh, G., Potente, T., Thomas, C., & Hauptvogel, A.: Cyber-Physical Production Management. In: Advances in Production Management Systems. Sustainable Production and Service Supply Chains, pp. 477-484, Springer Berlin Heidelberg (2013) 10. Jammes, F.; Smit, H.: Service-oriented paradigms in industrial automation. In: Industrial Informatics, IEEE Transactions, vol.1, no.1, pp.62-70 (2005) 11. Xiong, N., Svensson, P.: Multi-sensor management for information fusion: issues and approaches. Information fusion, 3(2), pp. 163-186 (2002) 12. Copie, A., Fortis, T., Munteanu, V.I., Negru, V.: From Cloud Governance to IoT Governance. In: Advanced Information Networking and Applications Workshops (WAINA), 2013 27th International Conference, pp.1229-1234 (2013) 13. Lojka,T., Zolotová, I.: Improvement of Human-Plant Interactivity via Industrial Cloud- Based Supervisory Control and Data Acquisition System. In: Advances in Production Management Systems (APMS) 2014. Vol. 440, no. Part 3 (2014), pp. 83-90. 14. Peniak,P.: Cloud Computing and integration of manufacturing information systems with process control, University of Žilina, FEE, DCIS - PIPA 5.2.14 Automation. 2014