Scientific Notation and Significant Figures CH 2000: Introduction to General Chemistry, Plymouth State University SCIENTIFIC NOTATION

Similar documents
What Does Sticker Notation Mean For Math

Lesson 4 Scientific Notation Answer Key Holt

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

4-4 Scientific Notation

What Is Sticker Notation

Application Note 11 - Totalization

The Definition of 'db' and 'dbm'

Math: Fractions and Decimals 105

EXPONENTS EXPLORATION 12. Does folding a piece of paper in half multiple times explain everything there is to know about the powers of two?

MATHEMATICAL THINKING

BPS 7th Grade Pre-Algebra Revised summer 2014 Year at a Glance Unit Standards Practices Days

An Introduction To Scientific Research E Bright Wilson

MITOCW big_picture_integrals_512kb-mp4

SEVENTH GRADE. Revised June Billings Public Schools Correlation and Pacing Guide Math - McDougal Littell Middle School Math 2004

Chapt er 3 Data Representation

In the questions below you must rearrange the words so that each sentence makes sense.

Please fax your students rhythms from p.7 to us AT LEAST THREE DAYS BEFORE the video conference. Our fax number is

1-5 Square Roots and Real Numbers. Holt Algebra 1

Here s a question for you: What happens if we try to go the other way? For instance:

Rounding Foldable Download or Read Online ebook rounding foldable in PDF Format From The Best User Guide Database

Correlation to the Common Core State Standards

Vocabulary Foldable Download or Read Online ebook vocabulary foldable in PDF Format From The Best User Guide Database

1/ 19 2/17 3/23 4/23 5/18 Total/100. Please do not write in the spaces above.

The Lazy Man Explains the Irrational. E. L. Lady

Lesson 10. Here are the first two worked out.

Foldable Templates. Foldable Templates Download or Read Online ebook foldable templates in PDF Format From The Best User Guide Database

North Carolina Standard Course of Study - Mathematics

To calculate the estimated number of fish killed by shrimp trawlers every year in the Gulf of Mexico I will 9,400,000 by.

Display Dilemma. Display Dilemma. 1 of 12. Copyright 2008, Exemplars, Inc. All rights reserved.

DIFFERENTIATE SOMETHING AT THE VERY BEGINNING THE COURSE I'LL ADD YOU QUESTIONS USING THEM. BUT PARTICULAR QUESTIONS AS YOU'LL SEE

Warm-up: Thinking back to the chart from Friday, explain how you changed a number in scientific notation to standard form.

SEMESTER ONE EXAMINATIONS 2002

TcCalc. Drastic Time Code Calculator

Display Contest Submittals

2.2. Multiplying and Dividing Powers. INVESTIGATE the Math

Channel calculation with a Calculation Project

Jumpstarters for Math

Introduction to Digital Electronics

Fixed-Point Calculator

Mobile Math Teachers Circle The Return of the iclicker

Euler s Art of Reckoning 1

Finding Multiples and Prime Numbers 1

MODULE 3. Combinational & Sequential logic

Maths-Whizz Investigations Paper-Back Book

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 - Digital Logic & Design

An Introduction to Egyptian Mathematics

Education Math Tutor 1

Math and Music Developed by Megan Martinez and Alex Barnett in conjunction with Ilene Kanoff

Unit 7, Lesson 1: Exponent Review

Table of Contents. Introduction...v. About the CD-ROM...vi. Standards Correlations... vii. Ratios and Proportional Relationships...

Trimester 2 5 th Grade Name: Answer Key

Sequential Logic Notes

Digital Logic Design: An Overview & Number Systems

chosen as the minimum that would provide a usable single-address order, in this case five binary digits for instruction and 11 binary

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

History of Math for the Liberal Arts CHAPTER 3. Babylonian Mathematics. Lawrence Morales. Seattle Central Community College

The transition from understanding the operation of a simple adder, built during a sixth-form science session, to understanding how a full sized

BCN1043. By Dr. Mritha Ramalingam. Faculty of Computer Systems & Software Engineering

EIGHTH GRADE RELIGION

EEE130 Digital Electronics I Lecture #1_2. Dr. Shahrel A. Suandi

General description. The Pilot ACE is a serial machine using mercury delay line storage

Agilent DSO5014A Oscilloscope Tutorial

Senior Math Studies Lesson Planning Date Lesson Events

Chapter 4. Logic Design

Overview. Teacher s Manual and reproductions of student worksheets to support the following lesson objective:

3.1 Decimal Place Value

CALIBRATION OF SOLUTION SECONDARY CURRENT FOR 9180 controls with SC software PAGE 1 OF 5

Main Design Project. The Counter. Introduction. Macros. Procedure

Import and quantification of a micro titer plate image

TT AFM LongBeach Procedures and Protocols V2.1

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

Revision 1.2d

PHONO LOCO Q AND A

MultiSpec Tutorial: Visualizing Growing Degree Day (GDD) Images. In this tutorial, the MultiSpec image processing software will be used to:

US_Math 4 1. Operations and Algebraic Thinking 4.OA 2. Number and Operations in Base Ten 4.NBT 3. Number and Operations - Fractions 4.

Contents Circuits... 1

MestReNova Manual for Chem 201/202. October, 2015.

CBL Lab MAPPING A MAGNETIC FIELD MATHEMATICS CURRICULUM. High School. Florida Sunshine State Mathematics Standards

THANK YOU FOR PURCHASING HANYOUNG PRODUCT. PLEASE READ THIS MANUAL CAREFULLY.

c. 2.4 M min -1 d. Not enough information to determine.

International Journal of Engineering Research-Online A Peer Reviewed International Journal

Mathematics in India: From Vedic Period To Modern Times Prof. K. Ramasubramanian Indian Institute of Technology-Bombay

Preschool Book Lists K-2 K-3 K-4

Alternative: purchase a laptop 3) The design of the case does not allow for maximum airflow. Alternative: purchase a cooling pad

Algebra I Module 2 Lessons 1 19

YEAR A UKS2 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6

WJEC MATHEMATICS INTERMEDIATE ALGEBRA. SEQUENCES & Nth TERM

Key Maths Facts to Memorise Question and Answer

Max Score / Max # Possible - New ABI Gradebook Feature

Global Water Instrumentation, Inc.

Blueline, Linefree, Accuracy Ratio, & Moving Absolute Mean Ratio Charts

How To Demonstrate Improved ACLR Dynamic Range With FSU and Noise Correction

Lab 2 Part 1 assigned for lab sessions this week

CHILD SUPPORT GUIDELINES CHART

Units Standards Practices Days

MODULE 4: Building with Numbers

This document last edited May 2015 for version Some commands may not be available in previous versions of firmware.

J.J. Thomson, Cathode Rays and the Electron

Transcription:

Scientific Notation and Significant Figures CH 2000: Introduction to General Chemistry, Plymouth State University SCIENTIFIC NOTATION I. INTRODUCTION In science, especially in chemistry, it is common to run into numbers that are extremely large or extremely small. For example: Mass of the Earth: 5973600000000000000000000 kg Mass of a single hydrogen atom: 0.00000000000000000000000000167353 kg Obviously it is inconvenient to write such numbers and nearly impossible to communicate them, which is why scientific notation was created. Every number written in scientific notation takes the form: X.YYY... 10 z where "X" is a single digit number 1-9 (note: X cannot be zero!), "Y" is any number, containing as many digits as necessary, and "Z" is any whole number, including negatives and zero. : Mass of the Earth: 5.9736 10 24 kg Mass of a single hydrogen atom: 1.67353 10-27 kg II. CONVERTING SCIENTIFIC NOTATION TO REGULAR NOTATION Notice that a number written in scientific notation is in fact a mathematical expression, wherein two numbers are multiplied together while the second number is a ten with an exponent. To convert a scientific notation number into a regular decimal number, you just do the math. Conveniently, when 10 is raised to an exponent, the resulting number is found by starting with "1" and then shifting the decimal to the right (if the exponent is positive) or to the left (if the exponent is negative) by the indicated number of places. : 1) 10 2 = 100 2) 10-2 = 0.01 3) 10 0 = 1 Looking back at the scientific notation, we can now multiply the first (left) number by the "10" number to convert to a regular decimal. Notice that this really has the affect of just moving the decimal in the first (left) number by the number indicated in the exponent of the "10" number. 1) 4.8 10 2 = 480 2) 8 10-2 = 0.08 3) 3.14 10 0 = 3.14 Of course there is no need to use scientific notation for the number in 3 above (3.14), but that is how to do it, if circumstances require scientific notation. Copyright Plymouth State University and Jeremiah Duncan. May be distributed freely for education purposes only. 1

(answers are at the end of the worksheet) Convert each of the numbers from scientific notation to regular notation: 1. 2.28 10 2 2. 1.043 10 4 3. -6.634 10 5 4. 4 10-4 5. 8.12 10-3 6. 1.0 10-1 7. 4.030 10-5 8. -7.854 10-2 9. 3.333 10 12 10. 7.234 10-12 Notes: For numbers written in regular notation that are smaller than one (1), you MUST start the number with a zero in the one's place, e.g., 0.1 For numbers written in regular notation that are smaller than one (1), the number of zeros between the decimal and the first non-zero digit is equal to one less than the 10's exponent. Any trailing zeros in the scientific notation number must also appear in the regular notation. III. CONVERTING REGULAR NOTATION TO SCIENTIFIC NOTATION It is probably more common that you will need to convert a regular digit number into scientific notation. To do so, you need to: 1. Count the number of places you will need to move the decimal (either right or left) so the resulting number has only one digit to the left of the decimal. 2. Write the number in scientific notation, with one non-zero digit left of the decimal and the exponent of the "10" as found in step 1 (negative is original number is less than one, positive if it is greater than one). : 1) 2011 = 2.011 10 3 2) 0.00405 = 4.05 10-3 : Convert each of the following numbers from regular notation to scientific notation: 11. 5280 12. 1776 13. -182.8 14. 8564000000 15. 0.0034 16. 0.2134 17. -0.000005 18. 0.30006 IV. USING A CALCULATOR WITH SCIENTIFIC NOTATION Except for the most basic ones, most calculators have functions for using scientific notation built in. However, there are several different ways calculators may do this, so you should become familiar with your own (and you are required to have one for General Chemistry!). You need to learn to do two things: 1. Switch your calculator between displaying scientific and regular notation 2. Enter numbers in scientific notation Copyright Plymouth State University and Jeremiah Duncan. May be distributed freely for education purposes only. 2

Switching your calculator between displaying scientific and regular notation Take a moment to figure out how to switch your calculator between the two notations. One common way calculators do this is through the use of a "Mode" button or menu. Note that "regular notation" mode may be called "normal" or "floating." Entering numbers in scientific notation Typically numbers are entered in scientific notation by entering the left number followed by an "exponent" key, which may look like "E," "EE," "Exp," or "10^". Some calculators may require you to enter literally " 10^Z", but you should NOT do this if you have an exponent key, as it may cause you to get a number that is off by a factor of 10! With your calculator in regular mode, enter the following numbers, hit the "Enter" or "=" key and ensure your calculator displays the correct number: 19. 2.14 10-3 20. 5.1 10 6 21. 6.701 10-6 22. -9.555 10 5 SIGNIFICANT FIGURES I. INTRODUCTION The use of significant figures is necessary and important when reporting numbers in science, because it communicates the precision to which you are certain about your answer. Believe it or not, significant figures are not a new concept to you, and they do have application in real life! For example, let's say you are buying something at a store, and you ask a clerk "how much is this?" You might receive one of the following answers: "About $100" "$98 and change" "$98.76" All of these answers may be correct, and depending on the circumstance, any of them may be appropriate. For example, if the clerk is guessing based on experience but does not know for sure, the first answer is the best. On the other hand, if the clerk does not know but gives the third answer, he is lying. Furthermore, you will be very annoyed when you get to the counter and discover it costs $105.25! In chemistry, significant figures are particularly important, because every instrument is limited in how precisely it can measure, and more precise instruments are more expensive. If a chemist reports a number with more significant figures than his instrument can measure, he is lying about how good his instrument is. On the other hand, if a chemist reports fewer numbers than her instrument can do, she has wasted her money! Copyright Plymouth State University and Jeremiah Duncan. May be distributed freely for education purposes only. 3

II. DETERMINING SIGNIFICANT FIGURES OF A NUMBER There are a few rules to follow when determining how many significant figures a number contains: 1. All non-zero digits are significant 2. All zero's between any significant digits are significant 3. All zero's on the left of non-zero digits are not significant 4. All zero's on the right of non-zero digits are significant if they are also right of the decimal 5. In scientific notation, all the digits of the first (left) number are significant Number Significant Figures Number Significant Figures 54 2 0.0345 3 123.4 4 0.405 3 101 3 13.20 4 303.03 5 3.0000 5 0.005 1 10.0 3 50 1 0.00305600 6 24000 2 8.70 10-9 3 How many significant figures are in each of the following numbers? 23. 2002 26. 25.300 24. 8723094 27. 0.34 25. 0.000945 28. 0.04980 29. 990099.00 30. 3.887 10-3 III. USING SCIENTIFIC NOTATION TO COMMUNICATE SIGNIFICANT FIGURES As indicated by Rule 5 above, one good use of scientific notation is in the communication of significant digits. That is, one always knows the significant figures of a number in scientific notation, even if the same number in regular notation would have an ambiguous number of them. In regular notation, the number 500 would technically have one significant figure. However, it may be that it was measures on an instrument that can go to two or three significant figures. Or you may want to write it in such a way that there is no ambiguity about it only having one significant figure. Here is where scientific notation can help: One significant figure: 5 10 2 Two significant figures: 5.0 10 2 Three significant figures: 5.00 10 2 Write the following numbers in scientific notation, so they have the number of significant figures indicated: 31. 0.563 (3 sig figs) 32. 747 (3 sig figs) 33. 6400 (4 sig figs) 34. 12000 (3 sig figs) 35. 28890 (4 sig figs) 36. 0.004 (2 sig figs) Copyright Plymouth State University and Jeremiah Duncan. May be distributed freely for education purposes only. 4

IV. MATH WITH SIGNIFICANT FIGURES In the process of doing mathematical operations, you will often be combining two or more numbers together that have different significant figures. There are a few rules you need to know in order to ensure your answer has the correct number of significant figures: 1. When adding or subtracting, line up the decimals of the number. The significant figures in the final answer by the number where the significant figures on the right side end first. 2. When multiplying or dividing, the significant figures in the final answer are equal to the least number of significant figures in any of the numbers. 1. 53.3 + 2.43 55.7 2. 210-33.3 180 (1.8 10 2 ) 3. 36.7 1.2 6342 = 270000 (2.7 10 5 ) 4. 9.83 23.56 = 0.417 Do the arithmetic below and report your answers to the proper number of significant figures. Use scientific notation if your answer would be ambiguous without it: 37. 45 + 100.5 38. 945000-65345 39. 0.098 + 12.3456 40. 26.7 + 78.98 41. 24.89 + 25.111 42. (9.109 10-6 ) + (1.6726 10-2 ) 43. 96.78 1.2 44. 0.0224 345.3 45. (5.00 10 2 ) 5.544 46. 654000 1111 ANSWERS TO PRACTICE QUESTIONS 1. 228 17. -5 10-6 2. 10430 18. 3.0006 10-1 3. -663400 19. 0.00214 4. 0.0004 20. 5100000 5. 0.00812 21. 0.000006701 6. 0.10 22. -955500 7. 0.00004030 23. 4 8. -0.07854 24. 7 9. 333000000000 25. 3 10. 0.000000000007234 26. 5 11. 5.280 10 3 27. 2 12. 1.776 10 3 28. 4 13. -1.828 10 2 29. 8 14. 8.564 10 9 30. 4 15. 3.4 10-3 31. 5.63 10-1 16. 2.134 10-1 32. 7.47 10 2 33. 6.400 10 3 34. 1.20 10 4 35. 2.889 10 4 36. 4.0 10-3 37. 145 38. 8.80 10 5 39. 12.444 40. 105.7 41. 50.00 42. 0.016735 or 1.6735 10-2 43. 1200 or 1.2 10 3 44. 7.73 45. 2770 or 2.77 10 3 46. 589 Copyright Plymouth State University and Jeremiah Duncan. May be distributed freely for education purposes only. 5