Beethoven, Bach, and Billions of Bytes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Beethoven, Bach, and Billions of Bytes"

Transcription

1 Lecture Music Processing Beethoven, Bach, and Billions of Bytes New Alliances between Music and Computer Science Meinard Müller International Audio Laboratories Erlangen

2 Music

3 Music Processing Sheet Music (Image) CD / MP3 (Audio) MusicXML (Text) Dance / Motion (Mocap) Music MIDI Singing / Voice (Audio) Music Film (Video) Music Literature (Text)

4 Research Goals Music Information Retrieval (MIR) ISMIR Analysis of music signals (harmonic, melodic, rhythmic, motivic aspects) Design of musically relevant audio features Tools for multimodal search and interaction

5 Piano Roll Representation

6 Player Piano (1900)

7 Piano Roll Representation (MIDI) J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846) Time Pitch

8 Piano Roll Representation (MIDI) Query: Goal: Find all occurrences of the query

9 Piano Roll Representation (MIDI) Query: Goal: Find all occurrences of the query Matches:

10 Audio Data Various interpretations Beethoven s Fifth Bernstein Karajan Scherbakov (piano) MIDI (piano)

11 Audio Data (Memory Requirements) 1 Bit = 1: on 0: off 1 Byte = 8 Bits 1 Kilobyte (KB) = 1 Thousand Bytes 1 Megabyte (MB) = 1 Million Bytes 1 Gigabyte (GB) = 1 Billion Bytes 1 Terabyte (TB) = 1000 Billion Bytes

12 Audio Data (Memory Requirements) MIDI files < 350 MB One audio CD 650 MB Two audio CDs > 1 Billion Bytes 1000 audio CDs Billions of Bytes

13 Music Synchronization: Audio-Audio Beethoven s Fifth

14 Music Synchronization: Audio-Audio Beethoven s Fifth Orchester (Karajan) Piano (Scherbakov) Time (seconds)

15 Music Synchronization: Audio-Audio Beethoven s Fifth Orchester (Karajan) Piano (Scherbakov) Time (seconds)

16 Application: Interpretation Switcher

17 Music Synchronization: Image-Audio Audio Image

18 Music Synchronization: Image-Audio Audio Image

19 How to make the data comparable? Audio Image

20 How to make the data comparable? Image Processing: Optical Music Recognition Audio Image

21 How to make the data comparable? Image Processing: Optical Music Recognition Audio Image Audio Processing: Fourier Analyse

22 How to make the data comparable? Image Processing: Optical Music Recognition Audio Image Audio Processing: Fourier Analyse

23 Application: Score Viewer

24 Music Processing Coarse Level What do different versions have in common? Fine Level What are the characteristics of a specific version?

25 Music Processing Coarse Level What do different versions have in common? What makes up a piece of music? Fine Level What are the characteristics of a specific version? What makes music come alive?

26 Music Processing Coarse Level What do different versions have in common? What makes up a piece of music? Identify despite of differences Fine Level What are the characteristics of a specific version? What makes music come alive? Identify the differences

27 Music Processing Coarse Level What do different versions have in common? What makes up a piece of music? Identify despite of differences Example tasks: Audio Matching Cover Song Identification Fine Level What are the characteristics of a specific version? What makes music come alive? Identify the differences Example tasks: Tempo Estimation Performance Analysis

28 Performance Analysis Schumann: Träumerei Performance: Time (seconds)

29 Performance Analysis Schumann: Träumerei Score (reference): Performance: Time (seconds)

30 Performance Analysis Schumann: Träumerei Score (reference): Strategy: Compute score-audio synchronization and derive tempo curve Performance: Time (seconds)

31 Performance Analysis Schumann: Träumerei Score (reference): Tempo Curve: Musical tempo (BPM) Musical time (measures)

32 Performance Analysis Schumann: Träumerei Score (reference): Tempo Curves: Musical tempo (BPM) Musical time (measures)

33 Performance Analysis Schumann: Träumerei Score (reference): Tempo Curves: Musical tempo (BPM) Musical time (measures)

34 Performance Analysis Schumann: Träumerei Score (reference): Tempo Curves: Musical tempo (BPM)? Musical time (measures)

35 Performance Analysis Schumann: Träumerei What can be done if no reference is available? Tempo Curves: Musical tempo (BPM) Musical time (measures)

36 Music Processing Relative Given: Several versions Absolute Given: One version

37 Music Processing Relative Given: Several versions Comparison of extracted parameters Absolute Given: One version Direct interpretation of extracted parameters

38 Music Processing Relative Given: Several versions Comparison of extracted parameters Extraction errors have often no consequence on final result Absolute Given: One version Direct interpretation of extracted parameters Extraction errors immediately become evident

39 Music Processing Relative Given: Several versions Comparison of extracted parameters Extraction errors have often no consequence on final result Example tasks: Music Synchronization Genre Classification Absolute Given: One version Direct interpretation of extracted parameters Extraction errors immediately become evident Example tasks: Music Transcription Tempo Estimation

40 Tempo Estimation and Beat Tracking Basic task: Tapping the foot when listening to music

41 Tempo Estimation and Beat Tracking Basic task: Tapping the foot when listening to music Example: Queen Another One Bites The Dust Time (seconds)

42 Tempo Estimation and Beat Tracking Basic task: Tapping the foot when listening to music Example: Queen Another One Bites The Dust Time (seconds)

43 Tempo Estimation and Beat Tracking Example: Happy Birthday to you Pulse level: Measure

44 Tempo Estimation and Beat Tracking Example: Happy Birthday to you Pulse level: Tactus (beat)

45 Tempo Estimation and Beat Tracking Example: Happy Birthday to you Pulse level: Tatum (temporal atom)

46 Tempo Estimation and Beat Tracking Example: Chopin Mazurka Op Pulse level: Quarter note Tempo:???

47 Tempo Estimation and Beat Tracking Example: Chopin Mazurka Op Pulse level: Quarter note Tempo: BPM Tempo curve Tempo (BPM) Time (beats)

48 Tempo Estimation and Beat Tracking Which temporal level? Local tempo deviations Sparse information (e.g., only note onsets available) Vague information (e.g., extracted note onsets corrupt)

49 Tempo Estimation and Beat Tracking Spectrogram Steps: 1. Spectrogram Frequency (Hz) Time (seconds)

50 Tempo Estimation and Beat Tracking Compressed Spectrogram Steps: 1. Spectrogram 2. Log Compression Frequency (Hz) Time (seconds)

51 Tempo Estimation and Beat Tracking Difference Spectrogram Steps: 1. Spectrogram 2. Log Compression 3. Differentiation Frequency (Hz) Time (seconds)

52 Tempo Estimation and Beat Tracking Steps: 1. Spectrogram 2. Log Compression 3. Differentiation 4. Accumulation Novelty Curve Time (seconds)

53 Tempo Estimation and Beat Tracking Steps: 1. Spectrogram 2. Log Compression 3. Differentiation 4. Accumulation Novelty Curve Local Average Time (seconds)

54 Tempo Estimation and Beat Tracking Steps: 1. Spectrogram 2. Log Compression 3. Differentiation 4. Accumulation 5. Normalization Novelty Curve Time (seconds)

55 Tempo Estimation and Beat Tracking Tempo (BPM) Intensity

56 Tempo Estimation and Beat Tracking Tempo (BPM) Intensity

57 Tempo Estimation and Beat Tracking Tempo (BPM) Intensity

58 Tempo Estimation and Beat Tracking Tempo (BPM) Intensity

59 Tempo Estimation and Beat Tracking Tempo (BPM) Intensity Time (seconds)

60 Tempo Estimation and Beat Tracking Novelty Curve Predominant Local Pulse (PLP) Time (seconds)

61 Tempo Estimation and Beat Tracking Light effects Music recommendation DJ Audio editing

62 Motivic Similarity Beethoven s Fifth (1st Mov.)

63 Motivic Similarity Beethoven s Fifth (1st Mov.) Beethoven s Fifth (3rd Mov.)

64 Motivic Similarity Beethoven s Fifth (1st Mov.) Beethoven s Fifth (3rd Mov.) Beethoven s Appassionata

65 Motivic Similarity

66 Motivic Similarity B A C H

67 Book Project A First Course on Music Processing Textbook (approx. 500 pages) 1. Music Representations 2. Fourier Analysis of Signals 3. Music Synchronization 4. Music Structure Analysis 5. Chord Recogntion 6. Temo and Beat Tracking 7. Content-based Audio Retrieval 8. Music Transcription To appear (plan): End of 2015

Tempo and Beat Tracking

Tempo and Beat Tracking Tutorial Automatisierte Methoden der Musikverarbeitung 47. Jahrestagung der Gesellschaft für Informatik Tempo and Beat Tracking Meinard Müller, Christof Weiss, Stefan Balke International Audio Laboratories

More information

Tempo and Beat Analysis

Tempo and Beat Analysis Advanced Course Computer Science Music Processing Summer Term 2010 Meinard Müller, Peter Grosche Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Tempo and Beat Analysis Musical Properties:

More information

Music Representations

Music Representations Advanced Course Computer Science Music Processing Summer Term 00 Music Representations Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Music Representations Music Representations

More information

Book: Fundamentals of Music Processing. Audio Features. Book: Fundamentals of Music Processing. Book: Fundamentals of Music Processing

Book: Fundamentals of Music Processing. Audio Features. Book: Fundamentals of Music Processing. Book: Fundamentals of Music Processing Book: Fundamentals of Music Processing Lecture Music Processing Audio Features Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Meinard Müller Fundamentals

More information

Outline. Why do we classify? Audio Classification

Outline. Why do we classify? Audio Classification Outline Introduction Music Information Retrieval Classification Process Steps Pitch Histograms Multiple Pitch Detection Algorithm Musical Genre Classification Implementation Future Work Why do we classify

More information

Music Information Retrieval. Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University

Music Information Retrieval. Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University Music Information Retrieval Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University 1 Juan Pablo Bello Office: Room 626, 6th floor, 35 W 4th Street (ext. 85736) Office Hours: Wednesdays

More information

Music Information Retrieval

Music Information Retrieval CTP 431 Music and Audio Computing Music Information Retrieval Graduate School of Culture Technology (GSCT) Juhan Nam 1 Introduction ü Instrument: Piano ü Composer: Chopin ü Key: E-minor ü Melody - ELO

More information

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval Data-Driven Solo Voice Enhancement for Jazz Music Retrieval Stefan Balke1, Christian Dittmar1, Jakob Abeßer2, Meinard Müller1 1International Audio Laboratories Erlangen 2Fraunhofer Institute for Digital

More information

AUDIO MATCHING VIA CHROMA-BASED STATISTICAL FEATURES

AUDIO MATCHING VIA CHROMA-BASED STATISTICAL FEATURES AUDIO MATCHING VIA CHROMA-BASED STATISTICAL FEATURES Meinard Müller Frank Kurth Michael Clausen Universität Bonn, Institut für Informatik III Römerstr. 64, D-537 Bonn, Germany {meinard, frank, clausen}@cs.uni-bonn.de

More information

Music Radar: A Web-based Query by Humming System

Music Radar: A Web-based Query by Humming System Music Radar: A Web-based Query by Humming System Lianjie Cao, Peng Hao, Chunmeng Zhou Computer Science Department, Purdue University, 305 N. University Street West Lafayette, IN 47907-2107 {cao62, pengh,

More information

SHEET MUSIC-AUDIO IDENTIFICATION

SHEET MUSIC-AUDIO IDENTIFICATION SHEET MUSIC-AUDIO IDENTIFICATION Christian Fremerey, Michael Clausen, Sebastian Ewert Bonn University, Computer Science III Bonn, Germany {fremerey,clausen,ewerts}@cs.uni-bonn.de Meinard Müller Saarland

More information

Tool-based Identification of Melodic Patterns in MusicXML Documents

Tool-based Identification of Melodic Patterns in MusicXML Documents Tool-based Identification of Melodic Patterns in MusicXML Documents Manuel Burghardt (manuel.burghardt@ur.de), Lukas Lamm (lukas.lamm@stud.uni-regensburg.de), David Lechler (david.lechler@stud.uni-regensburg.de),

More information

TOWARDS AUTOMATED EXTRACTION OF TEMPO PARAMETERS FROM EXPRESSIVE MUSIC RECORDINGS

TOWARDS AUTOMATED EXTRACTION OF TEMPO PARAMETERS FROM EXPRESSIVE MUSIC RECORDINGS th International Society for Music Information Retrieval Conference (ISMIR 9) TOWARDS AUTOMATED EXTRACTION OF TEMPO PARAMETERS FROM EXPRESSIVE MUSIC RECORDINGS Meinard Müller, Verena Konz, Andi Scharfstein

More information

POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS

POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS Andrew N. Robertson, Mark D. Plumbley Centre for Digital Music

More information

CHAPTER 6. Music Retrieval by Melody Style

CHAPTER 6. Music Retrieval by Melody Style CHAPTER 6 Music Retrieval by Melody Style 6.1 Introduction Content-based music retrieval (CBMR) has become an increasingly important field of research in recent years. The CBMR system allows user to query

More information

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Eita Nakamura and Shinji Takaki National Institute of Informatics, Tokyo 101-8430, Japan eita.nakamura@gmail.com, takaki@nii.ac.jp

More information

Aspects of Music. Chord Recognition. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Piece of music. Rhythm.

Aspects of Music. Chord Recognition. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Piece of music. Rhythm. Aspects of Music Lecture Music Processing Piece of music hord Recognition Meinard Müller International Audio Laboratories rlangen meinard.mueller@audiolabs-erlangen.de Melody Rhythm Harmony Harmony: The

More information

Writing Assignment #1 Due Today. Lab#1 is tomorrow (8am) Analog vs. digital information. Digitization

Writing Assignment #1 Due Today. Lab#1 is tomorrow (8am) Analog vs. digital information. Digitization Overview of Computer Science CSC 101 Summer 2011 Analog, Binary and Digital Concepts Digitization iti Lecture 4 July 11, 2011 Announcements Writing Assignment #1 Due Today. Hand it to me after class if

More information

Music Information Retrieval. Juan P Bello

Music Information Retrieval. Juan P Bello Music Information Retrieval Juan P Bello What is MIR? Imagine a world where you walk up to a computer and sing the song fragment that has been plaguing you since breakfast. The computer accepts your off-key

More information

BRAIN BEATS: TEMPO EXTRACTION FROM EEG DATA

BRAIN BEATS: TEMPO EXTRACTION FROM EEG DATA BRAIN BEATS: TEMPO EXTRACTION FROM EEG DATA Sebastian Stober 1 Thomas Prätzlich 2 Meinard Müller 2 1 Research Focus Cognititive Sciences, University of Potsdam, Germany 2 International Audio Laboratories

More information

Analysing Musical Pieces Using harmony-analyser.org Tools

Analysing Musical Pieces Using harmony-analyser.org Tools Analysing Musical Pieces Using harmony-analyser.org Tools Ladislav Maršík Dept. of Software Engineering, Faculty of Mathematics and Physics Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech

More information

ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS

ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS Christof Weiß 1 Vlora Arifi-Müller 1 Thomas Prätzlich 1 Rainer Kleinertz 2 Meinard Müller 1 1 International Audio Laboratories Erlangen,

More information

Course Overview. Assessments What are the essential elements and. aptitude and aural acuity? meaning and expression in music?

Course Overview. Assessments What are the essential elements and. aptitude and aural acuity? meaning and expression in music? BEGINNING PIANO / KEYBOARD CLASS This class is open to all students in grades 9-12 who wish to acquire basic piano skills. It is appropriate for students in band, orchestra, and chorus as well as the non-performing

More information

APPLICATIONS OF A SEMI-AUTOMATIC MELODY EXTRACTION INTERFACE FOR INDIAN MUSIC

APPLICATIONS OF A SEMI-AUTOMATIC MELODY EXTRACTION INTERFACE FOR INDIAN MUSIC APPLICATIONS OF A SEMI-AUTOMATIC MELODY EXTRACTION INTERFACE FOR INDIAN MUSIC Vishweshwara Rao, Sachin Pant, Madhumita Bhaskar and Preeti Rao Department of Electrical Engineering, IIT Bombay {vishu, sachinp,

More information

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval DAY 1 Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval Jay LeBoeuf Imagine Research jay{at}imagine-research.com Rebecca

More information

Searching for Similar Phrases in Music Audio

Searching for Similar Phrases in Music Audio Searching for Similar Phrases in Music udio an Ellis Laboratory for Recognition and Organization of Speech and udio ept. Electrical Engineering, olumbia University, NY US http://labrosa.ee.columbia.edu/

More information

Statistical Modeling and Retrieval of Polyphonic Music

Statistical Modeling and Retrieval of Polyphonic Music Statistical Modeling and Retrieval of Polyphonic Music Erdem Unal Panayiotis G. Georgiou and Shrikanth S. Narayanan Speech Analysis and Interpretation Laboratory University of Southern California Los Angeles,

More information

DISCOVERING MORPHOLOGICAL SIMILARITY IN TRADITIONAL FORMS OF MUSIC. Andre Holzapfel

DISCOVERING MORPHOLOGICAL SIMILARITY IN TRADITIONAL FORMS OF MUSIC. Andre Holzapfel DISCOVERING MORPHOLOGICAL SIMILARITY IN TRADITIONAL FORMS OF MUSIC Andre Holzapfel Institute of Computer Science, FORTH, Greece, and Multimedia Informatics Lab, Computer Science Department, University

More information

Algorithms for melody search and transcription. Antti Laaksonen

Algorithms for melody search and transcription. Antti Laaksonen Department of Computer Science Series of Publications A Report A-2015-5 Algorithms for melody search and transcription Antti Laaksonen To be presented, with the permission of the Faculty of Science of

More information

Computer Coordination With Popular Music: A New Research Agenda 1

Computer Coordination With Popular Music: A New Research Agenda 1 Computer Coordination With Popular Music: A New Research Agenda 1 Roger B. Dannenberg roger.dannenberg@cs.cmu.edu http://www.cs.cmu.edu/~rbd School of Computer Science Carnegie Mellon University Pittsburgh,

More information

MATCHING MUSICAL THEMES BASED ON NOISY OCR AND OMR INPUT. Stefan Balke, Sanu Pulimootil Achankunju, Meinard Müller

MATCHING MUSICAL THEMES BASED ON NOISY OCR AND OMR INPUT. Stefan Balke, Sanu Pulimootil Achankunju, Meinard Müller MATCHING MUSICAL THEMES BASED ON NOISY OCR AND OMR INPUT Stefan Balke, Sanu Pulimootil Achankunju, Meinard Müller International Audio Laboratories Erlangen, Friedrich-Alexander-Universität (FAU), Germany

More information

Example 1 (W.A. Mozart, Piano Trio, K. 542/iii, mm ):

Example 1 (W.A. Mozart, Piano Trio, K. 542/iii, mm ): Lesson MMM: The Neapolitan Chord Introduction: In the lesson on mixture (Lesson LLL) we introduced the Neapolitan chord: a type of chromatic chord that is notated as a major triad built on the lowered

More information

Music Information Retrieval Community

Music Information Retrieval Community Music Information Retrieval Community What: Developing systems that retrieve music When: Late 1990 s to Present Where: ISMIR - conference started in 2000 Why: lots of digital music, lots of music lovers,

More information

Singer Traits Identification using Deep Neural Network

Singer Traits Identification using Deep Neural Network Singer Traits Identification using Deep Neural Network Zhengshan Shi Center for Computer Research in Music and Acoustics Stanford University kittyshi@stanford.edu Abstract The author investigates automatic

More information

FULL-AUTOMATIC DJ MIXING SYSTEM WITH OPTIMAL TEMPO ADJUSTMENT BASED ON MEASUREMENT FUNCTION OF USER DISCOMFORT

FULL-AUTOMATIC DJ MIXING SYSTEM WITH OPTIMAL TEMPO ADJUSTMENT BASED ON MEASUREMENT FUNCTION OF USER DISCOMFORT 10th International Society for Music Information Retrieval Conference (ISMIR 2009) FULL-AUTOMATIC DJ MIXING SYSTEM WITH OPTIMAL TEMPO ADJUSTMENT BASED ON MEASUREMENT FUNCTION OF USER DISCOMFORT Hiromi

More information

DECODING TEMPO AND TIMING VARIATIONS IN MUSIC RECORDINGS FROM BEAT ANNOTATIONS

DECODING TEMPO AND TIMING VARIATIONS IN MUSIC RECORDINGS FROM BEAT ANNOTATIONS DECODING TEMPO AND TIMING VARIATIONS IN MUSIC RECORDINGS FROM BEAT ANNOTATIONS Andrew Robertson School of Electronic Engineering and Computer Science andrew.robertson@eecs.qmul.ac.uk ABSTRACT This paper

More information

AUTOMASHUPPER: AN AUTOMATIC MULTI-SONG MASHUP SYSTEM

AUTOMASHUPPER: AN AUTOMATIC MULTI-SONG MASHUP SYSTEM AUTOMASHUPPER: AN AUTOMATIC MULTI-SONG MASHUP SYSTEM Matthew E. P. Davies, Philippe Hamel, Kazuyoshi Yoshii and Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Japan

More information

The MAMI Query-By-Voice Experiment Collecting and annotating vocal queries for music information retrieval

The MAMI Query-By-Voice Experiment Collecting and annotating vocal queries for music information retrieval The MAMI Query-By-Voice Experiment Collecting and annotating vocal queries for music information retrieval IPEM, Dept. of musicology, Ghent University, Belgium Outline About the MAMI project Aim of the

More information

Week 14 Query-by-Humming and Music Fingerprinting. Roger B. Dannenberg Professor of Computer Science, Art and Music Carnegie Mellon University

Week 14 Query-by-Humming and Music Fingerprinting. Roger B. Dannenberg Professor of Computer Science, Art and Music Carnegie Mellon University Week 14 Query-by-Humming and Music Fingerprinting Roger B. Dannenberg Professor of Computer Science, Art and Music Overview n Melody-Based Retrieval n Audio-Score Alignment n Music Fingerprinting 2 Metadata-based

More information

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models Kyogu Lee Center for Computer Research in Music and Acoustics Stanford University, Stanford CA 94305, USA

More information

Tools for music information retrieval and playing.

Tools for music information retrieval and playing. Tools for music information retrieval and playing. Antonello D Aguanno, Goffredo Haus, Alberto Pinto, Giancarlo Vercellesi Dipartimento di Informatica e Comunicazione Università degli Studi di Milano,

More information

CCCS Music Mastery Skills and Knowledge for Progression

CCCS Music Mastery Skills and Knowledge for Progression Foundation (G-E/1-2) Candidates sing and/or play music with some fluency the resources used. They compose music which shows some ability to organise musical ideas and use resources in response to a brief.

More information

Proc. of NCC 2010, Chennai, India A Melody Detection User Interface for Polyphonic Music

Proc. of NCC 2010, Chennai, India A Melody Detection User Interface for Polyphonic Music A Melody Detection User Interface for Polyphonic Music Sachin Pant, Vishweshwara Rao, and Preeti Rao Department of Electrical Engineering Indian Institute of Technology Bombay, Mumbai 400076, India Email:

More information

FREISCHÜTZ DIGITAL: A CASE STUDY FOR REFERENCE-BASED AUDIO SEGMENTATION OF OPERAS

FREISCHÜTZ DIGITAL: A CASE STUDY FOR REFERENCE-BASED AUDIO SEGMENTATION OF OPERAS FREISCHÜTZ DIGITAL: A CASE STUDY FOR REFERENCE-BASED AUDIO SEGMENTATION OF OPERAS Thomas Prätzlich International Audio Laboratories Erlangen thomas.praetzlich@audiolabs-erlangen.de Meinard Müller International

More information

RUMBATOR: A FLAMENCO RUMBA COVER VERSION GENERATOR BASED ON AUDIO PROCESSING AT NOTE-LEVEL

RUMBATOR: A FLAMENCO RUMBA COVER VERSION GENERATOR BASED ON AUDIO PROCESSING AT NOTE-LEVEL RUMBATOR: A FLAMENCO RUMBA COVER VERSION GENERATOR BASED ON AUDIO PROCESSING AT NOTE-LEVEL Carles Roig, Isabel Barbancho, Emilio Molina, Lorenzo J. Tardón and Ana María Barbancho Dept. Ingeniería de Comunicaciones,

More information

Mark schemes should be applied positively. Students must be rewarded for what they have shown they can do rather than penalized for omissions.

Mark schemes should be applied positively. Students must be rewarded for what they have shown they can do rather than penalized for omissions. Marking Guidance General Guidance The mark scheme specifies the number of marks available for each question, and teachers should be prepared equally to offer zero marks or full marks as appropriate. In

More information

A wavelet-based approach to the discovery of themes and sections in monophonic melodies Velarde, Gissel; Meredith, David

A wavelet-based approach to the discovery of themes and sections in monophonic melodies Velarde, Gissel; Meredith, David Aalborg Universitet A wavelet-based approach to the discovery of themes and sections in monophonic melodies Velarde, Gissel; Meredith, David Publication date: 2014 Document Version Accepted author manuscript,

More information

Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng

Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng Introduction In this project we were interested in extracting the melody from generic audio files. Due to the

More information

An Empirical Comparison of Tempo Trackers

An Empirical Comparison of Tempo Trackers An Empirical Comparison of Tempo Trackers Simon Dixon Austrian Research Institute for Artificial Intelligence Schottengasse 3, A-1010 Vienna, Austria simon@oefai.at An Empirical Comparison of Tempo Trackers

More information

Automatic characterization of ornamentation from bassoon recordings for expressive synthesis

Automatic characterization of ornamentation from bassoon recordings for expressive synthesis Automatic characterization of ornamentation from bassoon recordings for expressive synthesis Montserrat Puiggròs, Emilia Gómez, Rafael Ramírez, Xavier Serra Music technology Group Universitat Pompeu Fabra

More information

HS Music Theory Music

HS Music Theory Music Course theory is the field of study that deals with how music works. It examines the language and notation of music. It identifies patterns that govern composers' techniques. theory analyzes the elements

More information

Analyzer Documentation

Analyzer Documentation Analyzer Documentation Prepared by: Tristan Jehan, CSO David DesRoches, Lead Audio Engineer September 2, 2011 Analyzer Version: 3.08 The Echo Nest Corporation 48 Grove St. Suite 206, Somerville, MA 02144

More information

WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG?

WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG? WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG? NICHOLAS BORG AND GEORGE HOKKANEN Abstract. The possibility of a hit song prediction algorithm is both academically interesting and industry motivated.

More information

UNIVERSITY OF DUBLIN TRINITY COLLEGE

UNIVERSITY OF DUBLIN TRINITY COLLEGE UNIVERSITY OF DUBLIN TRINITY COLLEGE FACULTY OF ENGINEERING & SYSTEMS SCIENCES School of Engineering and SCHOOL OF MUSIC Postgraduate Diploma in Music and Media Technologies Hilary Term 31 st January 2005

More information

Subjective Similarity of Music: Data Collection for Individuality Analysis

Subjective Similarity of Music: Data Collection for Individuality Analysis Subjective Similarity of Music: Data Collection for Individuality Analysis Shota Kawabuchi and Chiyomi Miyajima and Norihide Kitaoka and Kazuya Takeda Nagoya University, Nagoya, Japan E-mail: shota.kawabuchi@g.sp.m.is.nagoya-u.ac.jp

More information

Supervised Learning in Genre Classification

Supervised Learning in Genre Classification Supervised Learning in Genre Classification Introduction & Motivation Mohit Rajani and Luke Ekkizogloy {i.mohit,luke.ekkizogloy}@gmail.com Stanford University, CS229: Machine Learning, 2009 Now that music

More information

Extracting Significant Patterns from Musical Strings: Some Interesting Problems.

Extracting Significant Patterns from Musical Strings: Some Interesting Problems. Extracting Significant Patterns from Musical Strings: Some Interesting Problems. Emilios Cambouropoulos Austrian Research Institute for Artificial Intelligence Vienna, Austria emilios@ai.univie.ac.at Abstract

More information

Using Deep Learning to Annotate Karaoke Songs

Using Deep Learning to Annotate Karaoke Songs Distributed Computing Using Deep Learning to Annotate Karaoke Songs Semester Thesis Juliette Faille faillej@student.ethz.ch Distributed Computing Group Computer Engineering and Networks Laboratory ETH

More information

About Giovanni De Poli. What is Model. Introduction. di Poli: Methodologies for Expressive Modeling of/for Music Performance

About Giovanni De Poli. What is Model. Introduction. di Poli: Methodologies for Expressive Modeling of/for Music Performance Methodologies for Expressiveness Modeling of and for Music Performance by Giovanni De Poli Center of Computational Sonology, Department of Information Engineering, University of Padova, Padova, Italy About

More information

Improvised Duet Interaction: Learning Improvisation Techniques for Automatic Accompaniment

Improvised Duet Interaction: Learning Improvisation Techniques for Automatic Accompaniment Improvised Duet Interaction: Learning Improvisation Techniques for Automatic Accompaniment Gus G. Xia Dartmouth College Neukom Institute Hanover, NH, USA gxia@dartmouth.edu Roger B. Dannenberg Carnegie

More information

Content-based music retrieval

Content-based music retrieval Music retrieval 1 Music retrieval 2 Content-based music retrieval Music information retrieval (MIR) is currently an active research area See proceedings of ISMIR conference and annual MIREX evaluations

More information

HUMMING METHOD FOR CONTENT-BASED MUSIC INFORMATION RETRIEVAL

HUMMING METHOD FOR CONTENT-BASED MUSIC INFORMATION RETRIEVAL 12th International Society for Music Information Retrieval Conference (ISMIR 211) HUMMING METHOD FOR CONTENT-BASED MUSIC INFORMATION RETRIEVAL Cristina de la Bandera, Ana M. Barbancho, Lorenzo J. Tardón,

More information

Music Complexity Descriptors. Matt Stabile June 6 th, 2008

Music Complexity Descriptors. Matt Stabile June 6 th, 2008 Music Complexity Descriptors Matt Stabile June 6 th, 2008 Musical Complexity as a Semantic Descriptor Modern digital audio collections need new criteria for categorization and searching. Applicable to:

More information

BETTER BEAT TRACKING THROUGH ROBUST ONSET AGGREGATION

BETTER BEAT TRACKING THROUGH ROBUST ONSET AGGREGATION BETTER BEAT TRACKING THROUGH ROBUST ONSET AGGREGATION Brian McFee Center for Jazz Studies Columbia University brm2132@columbia.edu Daniel P.W. Ellis LabROSA, Department of Electrical Engineering Columbia

More information

Quarterly Progress and Status Report. Is the musical retard an allusion to physical motion?

Quarterly Progress and Status Report. Is the musical retard an allusion to physical motion? Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Is the musical retard an allusion to physical motion? Kronman, U. and Sundberg, J. journal: STLQPSR volume: 25 number: 23 year:

More information

DOWNBEAT TRACKING WITH MULTIPLE FEATURES AND DEEP NEURAL NETWORKS

DOWNBEAT TRACKING WITH MULTIPLE FEATURES AND DEEP NEURAL NETWORKS DOWNBEAT TRACKING WITH MULTIPLE FEATURES AND DEEP NEURAL NETWORKS Simon Durand*, Juan P. Bello, Bertrand David*, Gaël Richard* * Institut Mines-Telecom, Telecom ParisTech, CNRS-LTCI, 37/39, rue Dareau,

More information

Popular Music Theory Syllabus Guide

Popular Music Theory Syllabus Guide Popular Music Theory Syllabus Guide 2015-2018 www.rockschool.co.uk v1.0 Table of Contents 3 Introduction 6 Debut 9 Grade 1 12 Grade 2 15 Grade 3 18 Grade 4 21 Grade 5 24 Grade 6 27 Grade 7 30 Grade 8 33

More information

6.5 Percussion scalograms and musical rhythm

6.5 Percussion scalograms and musical rhythm 6.5 Percussion scalograms and musical rhythm 237 1600 566 (a) (b) 200 FIGURE 6.8 Time-frequency analysis of a passage from the song Buenos Aires. (a) Spectrogram. (b) Zooming in on three octaves of the

More information

MUSIC: WESTERN ART MUSIC

MUSIC: WESTERN ART MUSIC ATAR course examination, 2017 Question/Answer booklet MUSIC: WESTERN ART MUSIC Please place your student identification label in this box Student number: In figures In words Time allowed for this paper

More information

Music out of Digital Data

Music out of Digital Data 1 Teasing the Music out of Digital Data Matthias Mauch November, 2012 Me come from Unna Diplom in maths at Uni Rostock (2005) PhD at Queen Mary: Automatic Chord Transcription from Audio Using Computational

More information

Refined Spectral Template Models for Score Following

Refined Spectral Template Models for Score Following Refined Spectral Template Models for Score Following Filip Korzeniowski, Gerhard Widmer Department of Computational Perception, Johannes Kepler University Linz {filip.korzeniowski, gerhard.widmer}@jku.at

More information

Music Information Retrieval for Jazz

Music Information Retrieval for Jazz Music Information Retrieval for Jazz Dan Ellis Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA {dpwe,thierry}@ee.columbia.edu http://labrosa.ee.columbia.edu/

More information

CSC475 Music Information Retrieval

CSC475 Music Information Retrieval CSC475 Music Information Retrieval Monophonic pitch extraction George Tzanetakis University of Victoria 2014 G. Tzanetakis 1 / 32 Table of Contents I 1 Motivation and Terminology 2 Psychacoustics 3 F0

More information

MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC

MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC Maria Panteli University of Amsterdam, Amsterdam, Netherlands m.x.panteli@gmail.com Niels Bogaards Elephantcandy, Amsterdam, Netherlands niels@elephantcandy.com

More information

TREE MODEL OF SYMBOLIC MUSIC FOR TONALITY GUESSING

TREE MODEL OF SYMBOLIC MUSIC FOR TONALITY GUESSING ( Φ ( Ψ ( Φ ( TREE MODEL OF SYMBOLIC MUSIC FOR TONALITY GUESSING David Rizo, JoséM.Iñesta, Pedro J. Ponce de León Dept. Lenguajes y Sistemas Informáticos Universidad de Alicante, E-31 Alicante, Spain drizo,inesta,pierre@dlsi.ua.es

More information

Suggested Materials Tuning fork Metronome Metronome can be found online at metronomeonline.com

Suggested Materials Tuning fork Metronome Metronome can be found online at metronomeonline.com Music 101: Fundamentals of Music Section 0124; MTWTh 10:30 am-12:25 pm Instructor Dr. Tobin Sparfeld Office CSB 103 (door next to the elevator) Office Phone 818.364.7890 Drop-In Hours 30 minutes before

More information

PHY 103: Scales and Musical Temperament. Segev BenZvi Department of Physics and Astronomy University of Rochester

PHY 103: Scales and Musical Temperament. Segev BenZvi Department of Physics and Astronomy University of Rochester PHY 103: Scales and Musical Temperament Segev BenZvi Department of Physics and Astronomy University of Rochester Musical Structure We ve talked a lot about the physics of producing sounds in instruments

More information

Machine Learning Term Project Write-up Creating Models of Performers of Chopin Mazurkas

Machine Learning Term Project Write-up Creating Models of Performers of Chopin Mazurkas Machine Learning Term Project Write-up Creating Models of Performers of Chopin Mazurkas Marcello Herreshoff In collaboration with Craig Sapp (craig@ccrma.stanford.edu) 1 Motivation We want to generative

More information

Descending- and ascending- 5 6 sequences (sequences based on thirds and seconds):

Descending- and ascending- 5 6 sequences (sequences based on thirds and seconds): Lesson TTT Other Diatonic Sequences Introduction: In Lesson SSS we discussed the fundamentals of diatonic sequences and examined the most common type: those in which the harmonies descend by root motion

More information

Lecture 12: Alignment and Matching

Lecture 12: Alignment and Matching ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 12: Alignment and Matching 1. Music Alignment 2. Cover Song Detection 3. Echo Nest Analyze Dan Ellis Dept. Electrical Engineering, Columbia University dpwe@ee.columbia.edu

More information

Classification of Dance Music by Periodicity Patterns

Classification of Dance Music by Periodicity Patterns Classification of Dance Music by Periodicity Patterns Simon Dixon Austrian Research Institute for AI Freyung 6/6, Vienna 1010, Austria simon@oefai.at Elias Pampalk Austrian Research Institute for AI Freyung

More information

Texas State Solo & Ensemble Contest. May 26 & May 28, Theory Test Cover Sheet

Texas State Solo & Ensemble Contest. May 26 & May 28, Theory Test Cover Sheet Texas State Solo & Ensemble Contest May 26 & May 28, 2012 Theory Test Cover Sheet Please PRINT and complete the following information: Student Name: Grade (2011-2012) Mailing Address: City: Zip Code: School:

More information

NEW QUERY-BY-HUMMING MUSIC RETRIEVAL SYSTEM CONCEPTION AND EVALUATION BASED ON A QUERY NATURE STUDY

NEW QUERY-BY-HUMMING MUSIC RETRIEVAL SYSTEM CONCEPTION AND EVALUATION BASED ON A QUERY NATURE STUDY Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-), Limerick, Ireland, December 6-8,2 NEW QUERY-BY-HUMMING MUSIC RETRIEVAL SYSTEM CONCEPTION AND EVALUATION BASED ON A QUERY NATURE

More information

Assignment #3: Piezo Cake

Assignment #3: Piezo Cake Assignment #3: Piezo Cake Computer Science: 7 th Grade 7-CS: Introduction to Computer Science I Background In this assignment, we will learn how to make sounds by pulsing current through a piezo circuit.

More information

Musical Examination to Bridge Audio Data and Sheet Music

Musical Examination to Bridge Audio Data and Sheet Music Musical Examination to Bridge Audio Data and Sheet Music Xunyu Pan, Timothy J. Cross, Liangliang Xiao, and Xiali Hei Department of Computer Science and Information Technologies Frostburg State University

More information

Improving Beat Tracking in the presence of highly predominant vocals using source separation techniques: Preliminary study

Improving Beat Tracking in the presence of highly predominant vocals using source separation techniques: Preliminary study Improving Beat Tracking in the presence of highly predominant vocals using source separation techniques: Preliminary study José R. Zapata and Emilia Gómez Music Technology Group Universitat Pompeu Fabra

More information

OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS

OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS Enric Guaus, Oriol Saña Escola Superior de Música de Catalunya {enric.guaus,oriol.sana}@esmuc.cat Quim Llimona

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H. & Klapuri, A. (2013). Automatic music transcription: challenges

More information

A Logical Approach for Melodic Variations

A Logical Approach for Melodic Variations A Logical Approach for Melodic Variations Flavio Omar Everardo Pérez Departamento de Computación, Electrónica y Mecantrónica Universidad de las Américas Puebla Sta Catarina Mártir Cholula, Puebla, México

More information

TOWARD UNDERSTANDING EXPRESSIVE PERCUSSION THROUGH CONTENT BASED ANALYSIS

TOWARD UNDERSTANDING EXPRESSIVE PERCUSSION THROUGH CONTENT BASED ANALYSIS TOWARD UNDERSTANDING EXPRESSIVE PERCUSSION THROUGH CONTENT BASED ANALYSIS Matthew Prockup, Erik M. Schmidt, Jeffrey Scott, and Youngmoo E. Kim Music and Entertainment Technology Laboratory (MET-lab) Electrical

More information

ON FINDING MELODIC LINES IN AUDIO RECORDINGS. Matija Marolt

ON FINDING MELODIC LINES IN AUDIO RECORDINGS. Matija Marolt ON FINDING MELODIC LINES IN AUDIO RECORDINGS Matija Marolt Faculty of Computer and Information Science University of Ljubljana, Slovenia matija.marolt@fri.uni-lj.si ABSTRACT The paper presents our approach

More information

Music Self Assessment Tracker

Music Self Assessment Tracker Music Self Assessment Tracker Purpose of study Music is a universal language that embodies one of the highest forms of creativity. A high-quality music education should engage and inspire pupils to develop

More information

Experiments on musical instrument separation using multiplecause

Experiments on musical instrument separation using multiplecause Experiments on musical instrument separation using multiplecause models J Klingseisen and M D Plumbley* Department of Electronic Engineering King's College London * - Corresponding Author - mark.plumbley@kcl.ac.uk

More information

RHYTHM EXTRACTION FROM POLYPHONIC SYMBOLIC MUSIC

RHYTHM EXTRACTION FROM POLYPHONIC SYMBOLIC MUSIC 12th International Society for Music Information Retrieval Conference (ISMIR 2011) RHYTHM EXTRACTION FROM POLYPHONIC SYMBOLIC MUSIC Florence Levé, Richard Groult, Guillaume Arnaud, Cyril Séguin MIS, Université

More information

Guide to Analysing Full Spectrum/Frequency Division Bat Calls with Audacity (v.2.0.5) by Thomas Foxley

Guide to Analysing Full Spectrum/Frequency Division Bat Calls with Audacity (v.2.0.5) by Thomas Foxley Guide to Analysing Full Spectrum/Frequency Division Bat Calls with Audacity (v.2.0.5) by Thomas Foxley Contents Getting Started Setting Up the Sound File Noise Removal Finding All the Bat Calls Call Analysis

More information

Chords not required: Incorporating horizontal and vertical aspects independently in a computer improvisation algorithm

Chords not required: Incorporating horizontal and vertical aspects independently in a computer improvisation algorithm Georgia State University ScholarWorks @ Georgia State University Music Faculty Publications School of Music 2013 Chords not required: Incorporating horizontal and vertical aspects independently in a computer

More information

SCORE-INFORMED VOICE SEPARATION FOR PIANO RECORDINGS

SCORE-INFORMED VOICE SEPARATION FOR PIANO RECORDINGS th International Society for Music Information Retrieval Conference (ISMIR ) SCORE-INFORMED VOICE SEPARATION FOR PIANO RECORDINGS Sebastian Ewert Computer Science III, University of Bonn ewerts@iai.uni-bonn.de

More information

Music Information Retrieval

Music Information Retrieval Music Information Retrieval Automatic genre classification from acoustic features DANIEL RÖNNOW and THEODOR TWETMAN Bachelor of Science Thesis Stockholm, Sweden 2012 Music Information Retrieval Automatic

More information

Basic note reading review. 1.1 The keyboard

Basic note reading review. 1.1 The keyboard Thomas Green LHS Music Instrumental Music Teacher 860-464-9600*145 Fax: 860-464-1990 www.ledyardmusic.wordpress.com LHS Music Theory Basic note reading review Name/Date 1.1 The keyboard Harmony is the

More information