Perceptual dimensions of short audio clips and corresponding timbre features

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Perceptual dimensions of short audio clips and corresponding timbre features"

Transcription

1 Perceptual dimensions of short audio clips and corresponding timbre features Jason Musil, Budr El-Nusairi, Daniel Müllensiefen Department of Psychology, Goldsmiths, University of London

2 Question How do listeners make similarity judgements when comparing very short music clips? Assumption: For really short clips sound is most important

3 Background Related real world behaviours: Scanning the radio dial Browsing large music collection Instant recognition of favourite songs Psychological studies on short audio clips: Genre identification (Gjerdingen & Perrot, 2008; Mace et al., 2012) Identification of artist and title (Krumhansl, 2010)

4 A New Test The Sound Similarity Test: Part of Goldsmiths Musical Sophistication test battery* Testing ability to extract and compare information from short and unfamiliar audio clips => Familiarity with breadth of musical styles No correlation with formal musical training No use of genre labels, no use of rating scales => nonverbal similarity classification task Clips chosen as representative (All Music Guide) pieces from 4 meta-styles (Rentfrow & Gosling, 2003) * Documentation and online implementation at:

5 Test Interface

6 Data Test variants: BBC implementation: 16 clips (400ms) from 4 genres, (n=138,469) Lab implementations (differ by clip length and excerpt, n ~ 130) A400 A800 B400 B800

7 Data for acoustic analysis B800 data set: 800ms from 4 genres n=131 Raw data: x16 similarity matrices Aggregate congruent with genre provenance

8 Data for acoustic analysis

9 Question How do listeners make similarity judgements when comparing very short music clips? Are there any acoustic features that explain listeners judgements?

10 Analysis Plan 1. Extract main perceptual dimensions from similarity data: Multi-dimensional Scaling 2. Describe music clips by acoustic features: The Echonest timbre descriptors 3. Predict perceptual coordinates by acoustic features: Statistical regression

11 1. Multi-dimensional Scaling non-metric MDS 3-dimensional solution stress: 6.52

12 2. Echonest Timbre Descriptors Based on short audio segments (2-5) 12 coefficients per segment, partially interpretable (1=loudness, 2=brightness, 3=flatness, 4=attack, etc.) 12 means and 12 variances per clip as acoustic features plus #segments

13 3. Predicting Perceptual Dimensions from Acoustic Features Problems: k > n : 16 objects, 25 features (Potentially) non-linear relationships Solution 1: Random Forest regression (non-linear, handles k>n, sensitive to small influences and complex interactions)

14 Random Forest Variable Importance according to random forest Predicting dim. 1 (R 2 =.058) Predicting dim. 2 (R 2 =.215) Predicting dim. 3 (R 2 =.263)

15 Problems Interpretation / documentation of Echonest timbre coefficients 5 and 9 unclear No simple model for perceptual dimension 3

16 Solution 2 Partial-Least Squares regression (handles k>n very well, linear, no interactions) Use well-documented features: Two variants of MFCCs plus stand-alone features (spectral centroid, spectral spread, flatness etc.) from Queen Mary s Vamp plug-in set

17 Partial Least Squares Regression Results: From CV: 27% of variance explained in Perceptual Dimension 1 Dimension 2, 3 not explained at all Both sets of MFCCs are most important features

18 Summary Perceptual dimension 1 and 2 are closely related to Echonest timbre coefficients 5 and 9. Perceptual dimension 1 is predicted by ensemble of MFCC features Model fits are moderate at best (R 2 ~.25)

19 Conclusions Human similarity judgements of short audio clips show some commonality with statistical model using acoustic features At least one dimension isn t explained at all by lowlevel features => higher order information (e.g. rhythm, harmony, instrumentation, style) or even valence and arousal? => There is a lot more in short music clips that low-level features can t capture

20 Next Steps Try alternatives for acoustic modelling Construct new test based on acoustic model: Select new pool of sound clips Design easy and difficult version of sorting task according to acoustic model distance (on dimension 1) Test participants with easy /difficult versions and in genres they are un/familiar with.

21 Perceptual dimensions of short audio clips and corresponding timbre features Jason Musil, Budr El-Nusairi, Daniel Müllensiefen Department of Psychology, Goldsmiths, University of London

22 Item-wise analysis

Release Year Prediction for Songs

Release Year Prediction for Songs Release Year Prediction for Songs [CSE 258 Assignment 2] Ruyu Tan University of California San Diego PID: A53099216 rut003@ucsd.edu Jiaying Liu University of California San Diego PID: A53107720 jil672@ucsd.edu

More information

WORKSHOP Approaches to Quantitative Data For Music Researchers

WORKSHOP Approaches to Quantitative Data For Music Researchers WORKSHOP Approaches to Quantitative Data For Music Researchers Daniel Müllensiefen GOLDSMITHS, UNIVERSITY OF LONDON 3 rd February 2015 Music, Mind & Brain @ Goldsmiths MMB Group: Senior academics (Lauren

More information

About Giovanni De Poli. What is Model. Introduction. di Poli: Methodologies for Expressive Modeling of/for Music Performance

About Giovanni De Poli. What is Model. Introduction. di Poli: Methodologies for Expressive Modeling of/for Music Performance Methodologies for Expressiveness Modeling of and for Music Performance by Giovanni De Poli Center of Computational Sonology, Department of Information Engineering, University of Padova, Padova, Italy About

More information

Modeling memory for melodies

Modeling memory for melodies Modeling memory for melodies Daniel Müllensiefen 1 and Christian Hennig 2 1 Musikwissenschaftliches Institut, Universität Hamburg, 20354 Hamburg, Germany 2 Department of Statistical Science, University

More information

A QUERY BY EXAMPLE MUSIC RETRIEVAL ALGORITHM

A QUERY BY EXAMPLE MUSIC RETRIEVAL ALGORITHM A QUER B EAMPLE MUSIC RETRIEVAL ALGORITHM H. HARB AND L. CHEN Maths-Info department, Ecole Centrale de Lyon. 36, av. Guy de Collongue, 69134, Ecully, France, EUROPE E-mail: {hadi.harb, liming.chen}@ec-lyon.fr

More information

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval DAY 1 Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval Jay LeBoeuf Imagine Research jay{at}imagine-research.com Rebecca

More information

Exploring Relationships between Audio Features and Emotion in Music

Exploring Relationships between Audio Features and Emotion in Music Exploring Relationships between Audio Features and Emotion in Music Cyril Laurier, *1 Olivier Lartillot, #2 Tuomas Eerola #3, Petri Toiviainen #4 * Music Technology Group, Universitat Pompeu Fabra, Barcelona,

More information

Topics in Computer Music Instrument Identification. Ioanna Karydi

Topics in Computer Music Instrument Identification. Ioanna Karydi Topics in Computer Music Instrument Identification Ioanna Karydi Presentation overview What is instrument identification? Sound attributes & Timbre Human performance The ideal algorithm Selected approaches

More information

Subjective Similarity of Music: Data Collection for Individuality Analysis

Subjective Similarity of Music: Data Collection for Individuality Analysis Subjective Similarity of Music: Data Collection for Individuality Analysis Shota Kawabuchi and Chiyomi Miyajima and Norihide Kitaoka and Kazuya Takeda Nagoya University, Nagoya, Japan E-mail: shota.kawabuchi@g.sp.m.is.nagoya-u.ac.jp

More information

PREDICTING THE PERCEIVED SPACIOUSNESS OF STEREOPHONIC MUSIC RECORDINGS

PREDICTING THE PERCEIVED SPACIOUSNESS OF STEREOPHONIC MUSIC RECORDINGS PREDICTING THE PERCEIVED SPACIOUSNESS OF STEREOPHONIC MUSIC RECORDINGS Andy M. Sarroff and Juan P. Bello New York University andy.sarroff@nyu.edu ABSTRACT In a stereophonic music production, music producers

More information

Singer Recognition and Modeling Singer Error

Singer Recognition and Modeling Singer Error Singer Recognition and Modeling Singer Error Johan Ismael Stanford University jismael@stanford.edu Nicholas McGee Stanford University ndmcgee@stanford.edu 1. Abstract We propose a system for recognizing

More information

Efficient Computer-Aided Pitch Track and Note Estimation for Scientific Applications. Matthias Mauch Chris Cannam György Fazekas

Efficient Computer-Aided Pitch Track and Note Estimation for Scientific Applications. Matthias Mauch Chris Cannam György Fazekas Efficient Computer-Aided Pitch Track and Note Estimation for Scientific Applications Matthias Mauch Chris Cannam György Fazekas! 1 Matthias Mauch, Chris Cannam, George Fazekas Problem Intonation in Unaccompanied

More information

Speech and Speaker Recognition for the Command of an Industrial Robot

Speech and Speaker Recognition for the Command of an Industrial Robot Speech and Speaker Recognition for the Command of an Industrial Robot CLAUDIA MOISA*, HELGA SILAGHI*, ANDREI SILAGHI** *Dept. of Electric Drives and Automation University of Oradea University Street, nr.

More information

HIT SONG SCIENCE IS NOT YET A SCIENCE

HIT SONG SCIENCE IS NOT YET A SCIENCE HIT SONG SCIENCE IS NOT YET A SCIENCE François Pachet Sony CSL pachet@csl.sony.fr Pierre Roy Sony CSL roy@csl.sony.fr ABSTRACT We describe a large-scale experiment aiming at validating the hypothesis that

More information

Mood Tracking of Radio Station Broadcasts

Mood Tracking of Radio Station Broadcasts Mood Tracking of Radio Station Broadcasts Jacek Grekow Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, Bialystok 15-351, Poland j.grekow@pb.edu.pl Abstract. This paper presents

More information

The Role of Time in Music Emotion Recognition: Modeling Musical Emotions from Time-Varying Music Features

The Role of Time in Music Emotion Recognition: Modeling Musical Emotions from Time-Varying Music Features The Role of Time in Music Emotion Recognition: Modeling Musical Emotions from Time-Varying Music Features Marcelo Caetano 1, Athanasios Mouchtaris 1,2, and Frans Wiering 3 1 Institute of Computer Science,

More information

Music Mood Classification - an SVM based approach. Sebastian Napiorkowski

Music Mood Classification - an SVM based approach. Sebastian Napiorkowski Music Mood Classification - an SVM based approach Sebastian Napiorkowski Topics on Computer Music (Seminar Report) HPAC - RWTH - SS2015 Contents 1. Motivation 2. Quantification and Definition of Mood 3.

More information

Music Complexity Descriptors. Matt Stabile June 6 th, 2008

Music Complexity Descriptors. Matt Stabile June 6 th, 2008 Music Complexity Descriptors Matt Stabile June 6 th, 2008 Musical Complexity as a Semantic Descriptor Modern digital audio collections need new criteria for categorization and searching. Applicable to:

More information

A Survey of Audio-Based Music Classification and Annotation

A Survey of Audio-Based Music Classification and Annotation A Survey of Audio-Based Music Classification and Annotation Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang IEEE Trans. on Multimedia, vol. 13, no. 2, April 2011 presenter: Yin-Tzu Lin ( 阿孜孜 ^.^)

More information

GOOD-SOUNDS.ORG: A FRAMEWORK TO EXPLORE GOODNESS IN INSTRUMENTAL SOUNDS

GOOD-SOUNDS.ORG: A FRAMEWORK TO EXPLORE GOODNESS IN INSTRUMENTAL SOUNDS GOOD-SOUNDS.ORG: A FRAMEWORK TO EXPLORE GOODNESS IN INSTRUMENTAL SOUNDS Giuseppe Bandiera 1 Oriol Romani Picas 1 Hiroshi Tokuda 2 Wataru Hariya 2 Koji Oishi 2 Xavier Serra 1 1 Music Technology Group, Universitat

More information

Modeling sound quality from psychoacoustic measures

Modeling sound quality from psychoacoustic measures Modeling sound quality from psychoacoustic measures Lena SCHELL-MAJOOR 1 ; Jan RENNIES 2 ; Stephan D. EWERT 3 ; Birger KOLLMEIER 4 1,2,4 Fraunhofer IDMT, Hör-, Sprach- und Audiotechnologie & Cluster of

More information

STRUCTURAL CHANGE ON MULTIPLE TIME SCALES AS A CORRELATE OF MUSICAL COMPLEXITY

STRUCTURAL CHANGE ON MULTIPLE TIME SCALES AS A CORRELATE OF MUSICAL COMPLEXITY STRUCTURAL CHANGE ON MULTIPLE TIME SCALES AS A CORRELATE OF MUSICAL COMPLEXITY Matthias Mauch Mark Levy Last.fm, Karen House, 1 11 Bache s Street, London, N1 6DL. United Kingdom. matthias@last.fm mark@last.fm

More information

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e)

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e) STAT 113: Statistics and Society Ellen Gundlach, Purdue University (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e) Learning Objectives for Exam 1: Unit 1, Part 1: Population

More information

MPEG-7 AUDIO SPECTRUM BASIS AS A SIGNATURE OF VIOLIN SOUND

MPEG-7 AUDIO SPECTRUM BASIS AS A SIGNATURE OF VIOLIN SOUND MPEG-7 AUDIO SPECTRUM BASIS AS A SIGNATURE OF VIOLIN SOUND Aleksander Kaminiarz, Ewa Łukasik Institute of Computing Science, Poznań University of Technology. Piotrowo 2, 60-965 Poznań, Poland e-mail: Ewa.Lukasik@cs.put.poznan.pl

More information

MINING THE CORRELATION BETWEEN LYRICAL AND AUDIO FEATURES AND THE EMERGENCE OF MOOD

MINING THE CORRELATION BETWEEN LYRICAL AND AUDIO FEATURES AND THE EMERGENCE OF MOOD AROUSAL 12th International Society for Music Information Retrieval Conference (ISMIR 2011) MINING THE CORRELATION BETWEEN LYRICAL AND AUDIO FEATURES AND THE EMERGENCE OF MOOD Matt McVicar Intelligent Systems

More information

Tempo and Beat Analysis

Tempo and Beat Analysis Advanced Course Computer Science Music Processing Summer Term 2010 Meinard Müller, Peter Grosche Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Tempo and Beat Analysis Musical Properties:

More information

in the Howard County Public School System and Rocketship Education

in the Howard County Public School System and Rocketship Education Technical Appendix May 2016 DREAMBOX LEARNING ACHIEVEMENT GROWTH in the Howard County Public School System and Rocketship Education Abstract In this technical appendix, we present analyses of the relationship

More information

Capturing the Temporal Domain in Echonest Features for Improved Classification Effectiveness

Capturing the Temporal Domain in Echonest Features for Improved Classification Effectiveness Capturing the Temporal Domain in Echonest Features for Improved Classification Effectiveness Alexander Schindler 1,2 and Andreas Rauber 1 1 Department of Software Technology and Interactive Systems Vienna

More information

Scoregram: Displaying Gross Timbre Information from a Score

Scoregram: Displaying Gross Timbre Information from a Score Scoregram: Displaying Gross Timbre Information from a Score Rodrigo Segnini and Craig Sapp Center for Computer Research in Music and Acoustics (CCRMA), Center for Computer Assisted Research in the Humanities

More information

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models Kyogu Lee Center for Computer Research in Music and Acoustics Stanford University, Stanford CA 94305, USA

More information

Perception and Sound Design

Perception and Sound Design Centrale Nantes Perception and Sound Design ENGINEERING PROGRAMME PROFESSIONAL OPTION EXPERIMENTAL METHODOLOGY IN PSYCHOLOGY To present the experimental method for the study of human auditory perception

More information

Content-based music retrieval

Content-based music retrieval Music retrieval 1 Music retrieval 2 Content-based music retrieval Music information retrieval (MIR) is currently an active research area See proceedings of ISMIR conference and annual MIREX evaluations

More information

Real-time Granular Sampling Using the IRCAM Signal Processing Workstation. Cort Lippe IRCAM, 31 rue St-Merri, Paris, 75004, France

Real-time Granular Sampling Using the IRCAM Signal Processing Workstation. Cort Lippe IRCAM, 31 rue St-Merri, Paris, 75004, France Cort Lippe 1 Real-time Granular Sampling Using the IRCAM Signal Processing Workstation Cort Lippe IRCAM, 31 rue St-Merri, Paris, 75004, France Running Title: Real-time Granular Sampling [This copy of this

More information

Toward Multi-Modal Music Emotion Classification

Toward Multi-Modal Music Emotion Classification Toward Multi-Modal Music Emotion Classification Yi-Hsuan Yang 1, Yu-Ching Lin 1, Heng-Tze Cheng 1, I-Bin Liao 2, Yeh-Chin Ho 2, and Homer H. Chen 1 1 National Taiwan University 2 Telecommunication Laboratories,

More information

Labelling. Friday 18th May. Goldsmiths, University of London. Bayesian Model Selection for Harmonic. Labelling. Christophe Rhodes.

Labelling. Friday 18th May. Goldsmiths, University of London. Bayesian Model Selection for Harmonic. Labelling. Christophe Rhodes. Selection Bayesian Goldsmiths, University of London Friday 18th May Selection 1 Selection 2 3 4 Selection The task: identifying chords and assigning harmonic labels in popular music. currently to MIDI

More information

Perceptual and physical evaluation of differences among a large panel of loudspeakers

Perceptual and physical evaluation of differences among a large panel of loudspeakers Perceptual and physical evaluation of differences among a large panel of loudspeakers Mathieu Lavandier, Sabine Meunier, Philippe Herzog Laboratoire de Mécanique et d Acoustique, C.N.R.S., 31 Chemin Joseph

More information

Perceiving Differences and Similarities in Music: Melodic Categorization During the First Years of Life

Perceiving Differences and Similarities in Music: Melodic Categorization During the First Years of Life Perceiving Differences and Similarities in Music: Melodic Categorization During the First Years of Life Author Eugenia Costa-Giomi Volume 8: Number 2 - Spring 2013 View This Issue Eugenia Costa-Giomi University

More information

Bootstrap Methods in Regression Questions Have you had a chance to try any of this? Any of the review questions?

Bootstrap Methods in Regression Questions Have you had a chance to try any of this? Any of the review questions? ICPSR Blalock Lectures, 2003 Bootstrap Resampling Robert Stine Lecture 3 Bootstrap Methods in Regression Questions Have you had a chance to try any of this? Any of the review questions? Getting class notes

More information

Hong Kong University of Science and Technology 2 The Information Systems Technology and Design Pillar,

Hong Kong University of Science and Technology 2 The Information Systems Technology and Design Pillar, Musical Timbre and Emotion: The Identification of Salient Timbral Features in Sustained Musical Instrument Tones Equalized in Attack Time and Spectral Centroid Bin Wu 1, Andrew Horner 1, Chung Lee 2 1

More information

The Role of Time in Music Emotion Recognition

The Role of Time in Music Emotion Recognition The Role of Time in Music Emotion Recognition Marcelo Caetano 1 and Frans Wiering 2 1 Institute of Computer Science, Foundation for Research and Technology - Hellas FORTH-ICS, Heraklion, Crete, Greece

More information

Classification of Different Indian Songs Based on Fractal Analysis

Classification of Different Indian Songs Based on Fractal Analysis Classification of Different Indian Songs Based on Fractal Analysis Atin Das Naktala High School, Kolkata 700047, India Pritha Das Department of Mathematics, Bengal Engineering and Science University, Shibpur,

More information

Experiments on musical instrument separation using multiplecause

Experiments on musical instrument separation using multiplecause Experiments on musical instrument separation using multiplecause models J Klingseisen and M D Plumbley* Department of Electronic Engineering King's College London * - Corresponding Author - mark.plumbley@kcl.ac.uk

More information

Automatic Extraction of Popular Music Ringtones Based on Music Structure Analysis

Automatic Extraction of Popular Music Ringtones Based on Music Structure Analysis Automatic Extraction of Popular Music Ringtones Based on Music Structure Analysis Fengyan Wu fengyanyy@163.com Shutao Sun stsun@cuc.edu.cn Weiyao Xue Wyxue_std@163.com Abstract Automatic extraction of

More information

PLACEMENT OF SOUND SOURCES IN THE STEREO FIELD USING MEASURED ROOM IMPULSE RESPONSES 1

PLACEMENT OF SOUND SOURCES IN THE STEREO FIELD USING MEASURED ROOM IMPULSE RESPONSES 1 PLACEMENT OF SOUND SOURCES IN THE STEREO FIELD USING MEASURED ROOM IMPULSE RESPONSES 1 William D. Haines Jesse R. Vernon Roger B. Dannenberg Peter F. Driessen Carnegie Mellon University, School of Computer

More information

The Musicality of Non-Musicians: An Index for Assessing Musical Sophistication in the General Population

The Musicality of Non-Musicians: An Index for Assessing Musical Sophistication in the General Population : An Index for Assessing Musical Sophistication in the General Population Daniel Müllensiefen 1 *, Bruno Gingras 2, Jason Musil 1, Lauren Stewart 1 1 Department of Psychology, Goldsmiths, University of

More information

Automatic Identification of Instrument Type in Music Signal using Wavelet and MFCC

Automatic Identification of Instrument Type in Music Signal using Wavelet and MFCC Automatic Identification of Instrument Type in Music Signal using Wavelet and MFCC Arijit Ghosal, Rudrasis Chakraborty, Bibhas Chandra Dhara +, and Sanjoy Kumar Saha! * CSE Dept., Institute of Technology

More information

Predicting Agreement and Disagreement in the Perception of Tempo

Predicting Agreement and Disagreement in the Perception of Tempo Predicting Agreement and Disagreement in the Perception of Tempo Geoffroy Peeters, Ugo Marchand To cite this version: Geoffroy Peeters, Ugo Marchand. Predicting Agreement and Disagreement in the Perception

More information

MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC

MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC MODELING RHYTHM SIMILARITY FOR ELECTRONIC DANCE MUSIC Maria Panteli University of Amsterdam, Amsterdam, Netherlands m.x.panteli@gmail.com Niels Bogaards Elephantcandy, Amsterdam, Netherlands niels@elephantcandy.com

More information

Searching for Similar Phrases in Music Audio

Searching for Similar Phrases in Music Audio Searching for Similar Phrases in Music udio an Ellis Laboratory for Recognition and Organization of Speech and udio ept. Electrical Engineering, olumbia University, NY US http://labrosa.ee.columbia.edu/

More information

Multidimensional analysis of interdependence in a string quartet

Multidimensional analysis of interdependence in a string quartet International Symposium on Performance Science The Author 2013 ISBN tbc All rights reserved Multidimensional analysis of interdependence in a string quartet Panos Papiotis 1, Marco Marchini 1, and Esteban

More information

MOST PREVIOUS WORK ON PERCEPTIONS OF MODELING PERCEPTIONS OF VALENCE IN DIVERSE MUSIC: ROLES OF ACOUSTIC FEATURES, AGENCY, AND INDIVIDUAL VARIATION

MOST PREVIOUS WORK ON PERCEPTIONS OF MODELING PERCEPTIONS OF VALENCE IN DIVERSE MUSIC: ROLES OF ACOUSTIC FEATURES, AGENCY, AND INDIVIDUAL VARIATION 104 Roger T. Dean & Freya Bailes MODELING PERCEPTIONS OF VALENCE IN DIVERSE MUSIC: ROLES OF ACOUSTIC FEATURES, AGENCY, AND INDIVIDUAL VARIATION ROGER T. DEAN MARCS Institute, Western Sydney University,

More information

Modeling and Control of Expressiveness in Music Performance

Modeling and Control of Expressiveness in Music Performance Modeling and Control of Expressiveness in Music Performance SERGIO CANAZZA, GIOVANNI DE POLI, MEMBER, IEEE, CARLO DRIOLI, MEMBER, IEEE, ANTONIO RODÀ, AND ALVISE VIDOLIN Invited Paper Expression is an important

More information

Comparison Parameters and Speaker Similarity Coincidence Criteria:

Comparison Parameters and Speaker Similarity Coincidence Criteria: Comparison Parameters and Speaker Similarity Coincidence Criteria: The Easy Voice system uses two interrelating parameters of comparison (first and second error types). False Rejection, FR is a probability

More information

Computational Rhythm Similarity Development and Verification Through Deep Networks and Musically Motivated Analysis

Computational Rhythm Similarity Development and Verification Through Deep Networks and Musically Motivated Analysis NEW YORK UNIVERSITY Computational Rhythm Similarity Development and Verification Through Deep Networks and Musically Motivated Analysis by Tlacael Esparza Submitted in partial fulfillment of the requirements

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Hartmann, Martin; Lartillot, Oliver; Toiviainen, Petri

More information

Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng

Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng Melody Extraction from Generic Audio Clips Thaminda Edirisooriya, Hansohl Kim, Connie Zeng Introduction In this project we were interested in extracting the melody from generic audio files. Due to the

More information

Music, Timbre and Time

Music, Timbre and Time Music, Timbre and Time Júlio dos Reis UNICAMP - julio.dreis@gmail.com José Fornari UNICAMP tutifornari@gmail.com Abstract: The influence of time in music is undeniable. As for our cognition, time influences

More information

ACOUSTIC FEATURES FOR DETERMINING GOODNESS OF TABLA STROKES

ACOUSTIC FEATURES FOR DETERMINING GOODNESS OF TABLA STROKES ACOUSTIC FEATURES FOR DETERMINING GOODNESS OF TABLA STROKES Krish Narang Preeti Rao Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India. krishn@google.com, prao@ee.iitb.ac.in

More information

The Beat Alignment Test (BAT): Surveying beat processing abilities in the general population

The Beat Alignment Test (BAT): Surveying beat processing abilities in the general population The Beat Alignment Test (BAT): Surveying beat processing abilities in the general population John R. Iversen Aniruddh D. Patel The Neurosciences Institute, San Diego, CA, USA 1 Abstract The ability to

More information

A PERCEPTION-CENTRIC FRAMEWORK FOR DIGITAL TIMBRE MANIPULATION IN MUSIC COMPOSITION

A PERCEPTION-CENTRIC FRAMEWORK FOR DIGITAL TIMBRE MANIPULATION IN MUSIC COMPOSITION A PERCEPTION-CENTRIC FRAMEWORK FOR DIGITAL TIMBRE MANIPULATION IN MUSIC COMPOSITION By BRANDON SMOCK A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Music Mood Classication Using The Million Song Dataset

Music Mood Classication Using The Million Song Dataset Music Mood Classication Using The Million Song Dataset Bhavika Tekwani December 12, 2016 Abstract In this paper, music mood classication is tackled from an audio signal analysis perspective. There's an

More information

Discovering GEMS in Music: Armonique Digs for Music You Like

Discovering GEMS in Music: Armonique Digs for Music You Like Proceedings of The National Conference on Undergraduate Research (NCUR) 2011 Ithaca College, New York March 31 April 2, 2011 Discovering GEMS in Music: Armonique Digs for Music You Like Amber Anderson

More information

MODELING OF GESTURE-SOUND RELATIONSHIP IN RECORDER

MODELING OF GESTURE-SOUND RELATIONSHIP IN RECORDER MODELING OF GESTURE-SOUND RELATIONSHIP IN RECORDER PLAYING: A STUDY OF BLOWING PRESSURE LENY VINCESLAS MASTER THESIS UPF / 2010 Master in Sound and Music Computing Master thesis supervisor: Esteban Maestre

More information

Quantify. The Subjective. PQM: A New Quantitative Tool for Evaluating Display Design Options

Quantify. The Subjective. PQM: A New Quantitative Tool for Evaluating Display Design Options PQM: A New Quantitative Tool for Evaluating Display Design Options Software, Electronics, and Mechanical Systems Laboratory 3M Optical Systems Division Jennifer F. Schumacher, John Van Derlofske, Brian

More information

Audio spectrogram representations for processing with Convolutional Neural Networks

Audio spectrogram representations for processing with Convolutional Neural Networks Audio spectrogram representations for processing with Convolutional Neural Networks Lonce Wyse 1 1 National University of Singapore arxiv:1706.09559v1 [cs.sd] 29 Jun 2017 One of the decisions that arise

More information

A TEXT RETRIEVAL APPROACH TO CONTENT-BASED AUDIO RETRIEVAL

A TEXT RETRIEVAL APPROACH TO CONTENT-BASED AUDIO RETRIEVAL A TEXT RETRIEVAL APPROACH TO CONTENT-BASED AUDIO RETRIEVAL Matthew Riley University of Texas at Austin mriley@gmail.com Eric Heinen University of Texas at Austin eheinen@mail.utexas.edu Joydeep Ghosh University

More information

A New Method for Calculating Music Similarity

A New Method for Calculating Music Similarity A New Method for Calculating Music Similarity Eric Battenberg and Vijay Ullal December 12, 2006 Abstract We introduce a new technique for calculating the perceived similarity of two songs based on their

More information

ISMIR 2008 Session 2a Music Recommendation and Organization

ISMIR 2008 Session 2a Music Recommendation and Organization A COMPARISON OF SIGNAL-BASED MUSIC RECOMMENDATION TO GENRE LABELS, COLLABORATIVE FILTERING, MUSICOLOGICAL ANALYSIS, HUMAN RECOMMENDATION, AND RANDOM BASELINE Terence Magno Cooper Union magno.nyc@gmail.com

More information

UNDERSTANDING the timbre of musical instruments has

UNDERSTANDING the timbre of musical instruments has 68 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2006 Instrument Recognition in Polyphonic Music Based on Automatic Taxonomies Slim Essid, Gaël Richard, Member, IEEE,

More information

IPTV (and Digital Cable TV) Performance Management. Alan Clark Telchemy Incorporated

IPTV (and Digital Cable TV) Performance Management. Alan Clark Telchemy Incorporated IPTV (and Digital Cable TV) Performance Management Alan Clark Telchemy Incorporated IIT VoIP Conference 2008 Outline IPTV/ Digital Cable service architectures What do service providers need to know? The

More information

Temporal coordination in string quartet performance

Temporal coordination in string quartet performance International Symposium on Performance Science ISBN 978-2-9601378-0-4 The Author 2013, Published by the AEC All rights reserved Temporal coordination in string quartet performance Renee Timmers 1, Satoshi

More information

POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS

POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS POST-PROCESSING FIDDLE : A REAL-TIME MULTI-PITCH TRACKING TECHNIQUE USING HARMONIC PARTIAL SUBTRACTION FOR USE WITHIN LIVE PERFORMANCE SYSTEMS Andrew N. Robertson, Mark D. Plumbley Centre for Digital Music

More information

E X P E R I M E N T 1

E X P E R I M E N T 1 E X P E R I M E N T 1 Getting to Know Data Studio Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 1: Getting to

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards COMP 9 Advanced Distributed Systems Multimedia Networking Video Compression Standards Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu September,

More information

Expectancy Effects in Memory for Melodies

Expectancy Effects in Memory for Melodies Expectancy Effects in Memory for Melodies MARK A. SCHMUCKLER University of Toronto at Scarborough Abstract Two experiments explored the relation between melodic expectancy and melodic memory. In Experiment

More information

EFFECT OF TIMBRE ON MELODY RECOGNITION IN THREE-VOICE COUNTERPOINT MUSIC

EFFECT OF TIMBRE ON MELODY RECOGNITION IN THREE-VOICE COUNTERPOINT MUSIC EFFECT OF TIMBRE ON MELODY RECOGNITION IN THREE-VOICE COUNTERPOINT MUSIC Song Hui Chon, Kevin Schwartzbach, Bennett Smith, Stephen McAdams CIRMMT (Centre for Interdisciplinary Research in Music Media and

More information

NewsComm: A Hand-Held Device for Interactive Access to Structured Audio

NewsComm: A Hand-Held Device for Interactive Access to Structured Audio NewsComm: A Hand-Held Device for Interactive Access to Structured Audio Deb Kumar Roy B.A.Sc. Computer Engineering, University of Waterloo, 1992 Submitted to the Program in Media Arts and Sciences, School

More information

ESG Engineering Services Group

ESG Engineering Services Group ESG Engineering Services Group PESQ Limitations for EVRC Family of Narrowband and Wideband Speech Codecs January 2008 80-W1253-1 Rev D 80-W1253-1 Rev D QUALCOMM Incorporated 5775 Morehouse Drive San Diego,

More information

A perceptual study on face design for Moe characters in Cool Japan contents

A perceptual study on face design for Moe characters in Cool Japan contents KEER2014, LINKÖPING JUNE 11-13 2014 INTERNATIONAL CONFERENCE ON KANSEI ENGINEERING AND EMOTION RESEARCH A perceptual study on face design for Moe characters in Cool Japan contents Yuki Wada 1, Ryo Yoneda

More information

Music Information Retrieval. Juan P Bello

Music Information Retrieval. Juan P Bello Music Information Retrieval Juan P Bello What is MIR? Imagine a world where you walk up to a computer and sing the song fragment that has been plaguing you since breakfast. The computer accepts your off-key

More information

Predicting the Importance of Current Papers

Predicting the Importance of Current Papers Predicting the Importance of Current Papers Kevin W. Boyack * and Richard Klavans ** kboyack@sandia.gov * Sandia National Laboratories, P.O. Box 5800, MS-0310, Albuquerque, NM 87185, USA rklavans@mapofscience.com

More information

Musical Examination to Bridge Audio Data and Sheet Music

Musical Examination to Bridge Audio Data and Sheet Music Musical Examination to Bridge Audio Data and Sheet Music Xunyu Pan, Timothy J. Cross, Liangliang Xiao, and Xiali Hei Department of Computer Science and Information Technologies Frostburg State University

More information

A Computational Model for Discriminating Music Performers

A Computational Model for Discriminating Music Performers A Computational Model for Discriminating Music Performers Efstathios Stamatatos Austrian Research Institute for Artificial Intelligence Schottengasse 3, A-1010 Vienna stathis@ai.univie.ac.at Abstract In

More information

Image Steganalysis: Challenges

Image Steganalysis: Challenges Image Steganalysis: Challenges Jiwu Huang,China BUCHAREST 2017 Acknowledgement Members in my team Dr. Weiqi Luo and Dr. Fangjun Huang Sun Yat-sen Univ., China Dr. Bin Li and Dr. Shunquan Tan, Mr. Jishen

More information

OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS

OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS OBSERVED DIFFERENCES IN RHYTHM BETWEEN PERFORMANCES OF CLASSICAL AND JAZZ VIOLIN STUDENTS Enric Guaus, Oriol Saña Escola Superior de Música de Catalunya {enric.guaus,oriol.sana}@esmuc.cat Quim Llimona

More information

A Comparison of Peak Callers Used for DNase-Seq Data

A Comparison of Peak Callers Used for DNase-Seq Data A Comparison of Peak Callers Used for DNase-Seq Data Hashem Koohy, Thomas Down, Mikhail Spivakov and Tim Hubbard Spivakov s and Fraser s Lab September 16, 2014 Hashem Koohy, Thomas Down, Mikhail Spivakov

More information

Population codes representing musical timbre for high-level fmri categorization of music genres

Population codes representing musical timbre for high-level fmri categorization of music genres Population codes representing musical timbre for high-level fmri categorization of music genres Michael Casey 1, Jessica Thompson 1, Olivia Kang 2, Rajeev Raizada 3, and Thalia Wheatley 2 1 Bregman Music

More information

Acoustic and musical foundations of the speech/song illusion

Acoustic and musical foundations of the speech/song illusion Acoustic and musical foundations of the speech/song illusion Adam Tierney, *1 Aniruddh Patel #2, Mara Breen^3 * Department of Psychological Sciences, Birkbeck, University of London, United Kingdom # Department

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 27 H.264 standard Lesson Objectives At the end of this lesson, the students should be able to: 1. State the broad objectives of the H.264 standard. 2. List the improved

More information

TOWARDS CHARACTERISATION OF MUSIC VIA RHYTHMIC PATTERNS

TOWARDS CHARACTERISATION OF MUSIC VIA RHYTHMIC PATTERNS TOWARDS CHARACTERISATION OF MUSIC VIA RHYTHMIC PATTERNS Simon Dixon Austrian Research Institute for AI Vienna, Austria Fabien Gouyon Universitat Pompeu Fabra Barcelona, Spain Gerhard Widmer Medical University

More information

Retrieval of textual song lyrics from sung inputs

Retrieval of textual song lyrics from sung inputs INTERSPEECH 2016 September 8 12, 2016, San Francisco, USA Retrieval of textual song lyrics from sung inputs Anna M. Kruspe Fraunhofer IDMT, Ilmenau, Germany kpe@idmt.fraunhofer.de Abstract Retrieving the

More information

Structured training for large-vocabulary chord recognition. Brian McFee* & Juan Pablo Bello

Structured training for large-vocabulary chord recognition. Brian McFee* & Juan Pablo Bello Structured training for large-vocabulary chord recognition Brian McFee* & Juan Pablo Bello Small chord vocabularies Typically a supervised learning problem N C:maj C:min C#:maj C#:min D:maj D:min......

More information

hprints , version 1-1 Oct 2008

hprints , version 1-1 Oct 2008 Author manuscript, published in "Scientometrics 74, 3 (2008) 439-451" 1 On the ratio of citable versus non-citable items in economics journals Tove Faber Frandsen 1 tff@db.dk Royal School of Library and

More information

Emotion-based music retrieval and recommendation

Emotion-based music retrieval and recommendation Hong Kong Baptist University HKBU Institutional Repository Open Access Theses and Dissertations Electronic Theses and Dissertations 1-1-2014 Emotion-based music retrieval and recommendation Jie Deng Hong

More information

Feature-Based Analysis of Haydn String Quartets

Feature-Based Analysis of Haydn String Quartets Feature-Based Analysis of Haydn String Quartets Lawson Wong 5/5/2 Introduction When listening to multi-movement works, amateur listeners have almost certainly asked the following situation : Am I still

More information

Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences

Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences Michael Smith and John Villasenor For the past several decades,

More information

The Standard, Power, and Color Model of Instrument Combination in Romantic-Era Symphonic Works

The Standard, Power, and Color Model of Instrument Combination in Romantic-Era Symphonic Works The Standard, Power, and Color Model of Instrument Combination in Romantic-Era Symphonic Works RANDOLPH JOHNSON School of Music, The Ohio State University ABSTRACT: The Standard, Power, and Color (SPC)

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Information EE123 Digital Signal Processing Class webpage: http://inst.eecs.berkeley.edu/~ee123/sp14/ Miki Lustig Electrical Engineering and Computer Science, UC Berkeley, CA 1 2 My Research Me - Exposed

More information

TIMBRE JUDGMENTS OF JAVANESE GAMELAN INSTRUMENTS BY TRAINED AND UNTRAINED ADULTS

TIMBRE JUDGMENTS OF JAVANESE GAMELAN INSTRUMENTS BY TRAINED AND UNTRAINED ADULTS Psychomusicology, 14,137-153 1995 Psychomusicology TIMBRE JUDGMENTS OF JAVANESE GAMELAN INSTRUMENTS BY TRAINED AND UNTRAINED ADULTS Sandra Serafini University of British Columbia, Canada Timbre similarity

More information

MOVIES constitute a large sector of the entertainment

MOVIES constitute a large sector of the entertainment 1618 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008 Audio-Assisted Movie Dialogue Detection Margarita Kotti, Dimitrios Ververidis, Georgios Evangelopoulos,

More information