Empirical Research on the Occurrence Mechanism of Congested Regime in a Macroscopic Fundamental Diagram

Similar documents
MFD Seminar Jun 22 th, 2017, Ehime University. Pengfei Wang Hebei Normal University of Science & Technology, China

An Empirical Analysis of Macroscopic Fundamental Diagrams for Sendai Road Networks

This is the author s version of a work that was submitted/accepted for publication in the following source:

INCORPORATING SOCIO-ECONOMIC FACTORS IN TRAFFIC MANAGEMENT AND CONTROL RUBI HAN

Empirical Analysis of Bus Bunching Characteristics Based on Bus AVL/APC Data. Wei Feng* PhD. Researcher Portland State University

PURPOSE: The purpose of this document is to describe the electronic file storage and naming conventions for documentation and reports

Smart Traffic Control System Using Image Processing

Table 6.1: Level of Service Thresholds for Basic Freeway Segments. Density Range LOS (pc/mi/ln) A 0 11 B >11 18 C >18 26 D > E >35 45 F > 45

Processes for the Intersection

Guide to Interpretation of Traffic Signal Timing Reports Produced by the Miami-Dade County (MDC) Advanced Traffic Management System (ATMS)

Access Guide to SPring-8

VISSIM TUTORIALS This document includes tutorials that provide help in using VISSIM to accomplish the six tasks listed in the table below.

IMPLEMENTATION OF SIGNAL SPACING STANDARDS

Student resource files

Evaluation of a Computer-Vision Tracking System for Collecting Traffic Data

With Export all setting information (preferences, user setttings) can be exported into a text file.

Northeastern University

GRAPHICAL PERFORMANCE MEASURES FOR PRACTITIONERS TO IDENTIFY SPLIT FAILURES

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video

Los Angeles Smart Traveler Information Kiosks: A Preliminary Report

Research on Control Strategy of Complex Systems through VSC-HVDC Grid Parallel Device

Washington Metropolitan Area Transit Authority (WMATA) Ridership

VISSIM Tutorial. Starting VISSIM and Opening a File CE 474 8/31/06

SIDRA INTERSECTION 8.0 UPDATE HISTORY

SMART VEHICLE SCREENING SYSTEM USING ARTIFICIAL INTELLIGENCE METHODS

EVALUATION OF DATA COLLECTION TECHNIQUES & METHODS FOR ROADSIDE STATION ORIGIN-DESTINATION STUDIES

Sample Analysis Design. Element2 - Basic Software Concepts (cont d)

Video Consumer Mapping Study

How Young Children Are Watching TV: From the June 2012 Rating Survey on Young Children s TV Viewing

Hollywood Bowl Union Station Shuttle

English Term 3 EOY Examination Grade 11 General Sample 90 minutes

NPR Weekend Programs

Philips LightMaster. KNX Timeclock Installation and Operation Manual

1- Disconnect your Car battery by disconnecting the negative ground terminal from the battery, to prevent shock, or damage to you car.

Security Challenges in the Internet of Things. Dr. Sigrid Schefer-Wenzl

UniVision Engineering Limited Modpark Parking System Technical Description. Automatic Vehicle Access Control by Video Identification/

Exhibitions at Film Theaters

Placement Rent Exponent Calculation Methods, Temporal Behaviour, and FPGA Architecture Evaluation. Joachim Pistorius and Mike Hutton

DO WE GO BY TRAIN, OR BY BUS?

NUMBER 1 7 Question 1 20

Quality-Assured Traffic Signal Coordination. User's Manual. 1985, 1989, 1996, 2000, 2003, 2006, 2008, 2011, 2012 Gregory L.

Vision Call Statistics User Guide

Investigation of Two Bidirectional C + L Band Fiber Amplifiers with Pumping Sharing and Wavelength Reused Mechanisms

SIGNAL CONTROLLER PEER-TO-PEER COMMUNICATIONS

VBOX II SX 5 / 10 / 20 Hz GPS Data Logger

LOW-COMPLEXITY BIG VIDEO DATA RECORDING ALGORITHMS FOR URBAN SURVEILLANCE SYSTEMS

Traffic Signal Timing Maintenance. Division of Traffic Control Services. Organization. Division of Traffic Control Systems

CALIBRATION PROCEDURE FOR GIPPS CAR-FOLLOWING MODEL

Why t? TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson

Internet of Things (IoT)

Adaptive Distance Filter-based Traffic Reduction for Mobile Grid

Installation Instructions

ICA - Interaction and Communication Assistant

TRAFFIC SURVEILLANCE VIDEO MANAGEMENT SYSTEM

Town of Salem, NH Planning Board 33 Geremonty Drive Salem, NH December 22, 2015

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Audio Feature Extraction for Corpus Analysis

Six. Unit. What does he do? Target Language. What does he do?

Soundscape mapping in urban contexts using GIS techniques

Lesson 79: Land Transport (20-25 minutes)

TC-1 Timeclock. Operating and Programming Instructions Thursday, 25 March Lighting Controls for the World we live in

Audio-Based Video Editing with Two-Channel Microphone

Attendee Need To Know Information

Expressways Book 3 By Steven J. Molinsky, Bill Bliss READ ONLINE

In Chapter 4 on deflection measurement Wöhler's scratch gage measured the bending deflections of a railway wagon axle.

A Study of Headway Maintenance for Bus Routes: Causes and Effects of Bus Bunching in Extensive and Congested Service Areas

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education. Paper 1 May/June hours 30 minutes

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e)

Deep Inlet Schedule 2016

You must have: Pen, HB pencil, eraser, calculator, ruler, protractor.

TranSync-Mobile is the first mobile tool for real-time diagnosis and evaluation of coordinated traffic signal timing plans (U.S. Patent Application

Appendix 3. TV Viewing Data

DOCSIS 3.1 roll Out First Lessons Learned DOCSIS 3.1 roll Out First Lessons Learned

Softwired Clock. Total Lighting Control. Catalog Number: RCLK8SWS DESCRIPTION FEATURES. Installation Instructions IMRCLK8SWS 1

JAMAR TRAX RD Detector Package Power Requirements Installation Setting Up The Unit

2014 TAC Annual Conference Technical Paper Looking Out for You City of Toronto s Deployment Plan for Arterial Traffic Cameras

Lifestyle. Dual Channel Programmer. for heating AND hot water. Installation and User Instructions DUAL CHANNEL ISSA

ECM and E 2 CM performance under bursty traffic. Cyriel Minkenberg & Mitch Gusat IBM Research GmbH, Zurich April 26, 2007

The Cognitive Nature of Metonymy and Its Implications for English Vocabulary Teaching

RIDERSHIP SURVEY 2016 Conducted for the San Francisco Municipal Transportation Agency

How to Manage Video Frame- Processing Time Deviations in ASIC and SOC Video Processors

Tech Paper. HMI Display Readability During Sinusoidal Vibration

Faculty of Electrical & Electronics Engineering BEE3233 Electronics System Design. Laboratory 3: Finite State Machine (FSM)

RIDERSHIP SURVEY 2017 Conducted for the San Francisco Municipal Transportation Agency

A Framework for Segmentation of Interview Videos

STRAND ALDWYCH PROPOSALS

GRADIENT-BASED MUSICAL FEATURE EXTRACTION BASED ON SCALE-INVARIANT FEATURE TRANSFORM

Speech Recognition and Signal Processing for Broadcast News Transcription

Connected Industry and Enterprise Role of AI, IoT and Geospatial Technology. Vijay Kumar, CTO ESRI India

Sound sensing using smartphones as a crowdsourcing approach

Special edition paper

PAM4 Transmitter Analysis

QUICK REPORT TECHNOLOGY TREND ANALYSIS

Risk Risk Title Severity (1-10) Probability (0-100%) I FPGA Area II Timing III Input Distortion IV Synchronization 9 60

For public transport information phone Bus 524. Easy access on all buses. Bury Radcliffe Little Lever Moses Gate Bolton

Recent Situation around Film Exhibition

1. MORTALITY AT ADVANCED AGES IN SPAIN MARIA DELS ÀNGELS FELIPE CHECA 1 COL LEGI D ACTUARIS DE CATALUNYA

1 Boxer Billy Input File: BoxerBillyIn.txt

Just a T.A.D. (Traffic Analysis Drone)

Research on Color Reproduction Characteristics of Mobile Terminals

Transcription:

Empirical Research on the Occurrence Mechanism of Congested Regime in a Macroscopic Fundamental Diagram 20 th Hongkong Society for Transportation Studies Dec.12 th ~ 14 th, 201, Hongkong 1) P. Wang, 1) T. Akamatsu, 2) K. Wada 1) Tohoku Univ., 2) Univ. of Tokyo 1

Background (1) Limitations of current traffic forecasting models Require too many inputs (e.g., dynamic OD matrices) Driver navigation is an unpredictable gaming activity Congested networks behave chaotically It is difficult to put these forecasting models into practice Daganzo (2007) [Theoretical study] Proposed a macroscopic observation-based model called Macroscopic Fundamental Diagram (MFD) The MFD relates the number of vehicles (accumulation) in an area to the area s traffic production 2

Background (2) Geroliminis and Daganzo (2008) [Empirical study] Demonstrated that the well-defined MFD exists with a field experiment in downtown Yokohama, Japan It is reproducible and invariant when the traffic demand changes both within-day and day-to-day Average occupancy Area of Analysis Average flow Uncongested Regime Critical density Congested Regime Average density [Geroliminis and Daganzo (2008)] 3

Background (3) Analysis on MFD features (e.g., hysteresis loops) Analyzed the relationship between the MFD features and the spatial distribution of link density MFDs Spatial distribution of link density Average flow Average occupancy [Geroliminis and Sun (2011b)] It is still difficult to understand the mechanism of the MFD features, especially the occurrence of the congested regime in an MFD 4

Previous empirical studies on MFD Urban road networks Geroliminis and Daganzo (2008): Yokohama Tsubota et al. (2014): Brisbane He et al. (2014): Beijing Saeedmanesh and Geroliminis (201): Sydney Wang et al. (201): Sendai Expressway networks Buisson and Ladier (2009): Toulouse Geroliminis and Sun (2011a, b): Minnesota Saberi and Mahmassani (2012), (2013): Portland, Chicago Knoop and Hoogendoom (2013): Amsterdam It is much less than the number of theoretical and simulation studies

Purpose of this study Limitations of previous empirical studies on MFD Use data for only several days at most, which may be insufficient to investigate the robust features of the MFD Do not explore the mechanism of the MFD features (e.g., relationship between MFD features and congestion pattern) This study Use a long-term detector data to analyze the robust features of the MFD for an urban road networks Explore the mechanism by investigating the relationship between the MFD features and the congestion pattern 6

Contents Basic information of the detector data Data record MFD definition Characterization of MFDs Different demand condition (weekday/weekend) Different supply condition (sunny/rainy) Mechanism analysis MFD features v.s congestion pattern Evolution process of congestion pattern 7

Contents Basic information of the detector data Data record MFD definition Characterization of MFDs Different demand condition (weekday/weekend) Different supply condition (sunny/rainy) Mechanism analysis MFD features v.s congestion pattern Evolution process of congestion pattern 8

Basic information of detector data (1) Analysis area CBD road networks in Naha (Okinawa Pref., Japan) Number of detectors: 122 Analysis area Spatial distribution of detectors in analysis area [Origin:Google Earth] Road network structure in analysis area 9

Basic information of detector data (2) Analysis period /1/2012 ~ 4/30/2013 (One year) -min period during each 24-h day (T=288) Data records of detector i during t (-min period) Traffic flow: Vehicle speed: i q t i v t Traffic density: k q i t i t v i t 10

MFD definition The calculation of coordinates for each plot Accumulation: Traffic production: N P t t I i 1 I i 1 k q i t i t l l i i i l I i 1 q i t v i t l :length of link i i Production (veh km/ :0:00~6:00 :6:00~13:00 +:13:00~20:00 :20:00~24:00 Accumulation (veh) 11

Contents Basic information of the detector data Data record MFD definition Characterization of MFDs Different demand condition (weekday/weekend) Different supply condition (sunny/rainy) Mechanism analysis MFD features v.s congestion pattern Evolution process of congestion pattern 12

MFDs for the entire year Maximum production Production (veh km/ Uncongested Regime Critical accumulation Congested Regime Weekdays Saturdays Sundays/Holidays Accumulation (veh) The congested regime occurs in an MFD for Naha CBD road networks on some weekdays and only several Saturdays 13

MFDs for different demand condition MFDs on sunny weekdays and weekends 12/21/2012 (Fri) 11/3/2012 (Sat) Production (veh km/ Maximum production Critical accumulation Congested Regime Accumulation (veh) Production (veh km/ Accumulation (veh) The congested regime occurs on 12.0% of sunny weekdays and do not occur on sunny weekends (including Saturdays, Sundays, and holidays) 14

Production (veh km/ MFDs for different supply condition MFDs on rainy weekday and weekend 10/17/2012 (Wed) Production (veh km/ Accumulation (veh) Accumulation (veh) 12/1/2012 (Sat) The congested regime occurs on 31.1% of rainy weekdays and 4.2% of rainy weekends 1

MFDs with congested regime (Example 1) On sunny weekdays Production (veh km/ 6/26/2012 (Tue) Accumulation (veh) Production (veh km/ 12/6/2012 (Thu) Accumulation (veh) Production (veh km/ 12/2/2012 (Tue) Accumulation (veh) 16

MFDs with congested regime (Example 2) On rainy weekdays Production (veh km/ 8/8/2012 (Wed) The evening peak hours Accumulation (veh) Production (veh km/ 12//2012 (Wed) Accumulation (veh) Production (veh km/ 2/12/2013 (Tue) Accumulation (veh) Summary Congested regime occurs in an MFD is not a rare phenomenon The occurrence times are always during the evening peak hours on sunny or rainy weekdays (16:30~19:30) 17

Analysis on the congested regime (1) Clustering classification based on the MFD shapes Demand Supply Height Demand (sunny) (Demand + Supply) Supply (rainy) Date The MFDs with congested regime which is due to the demand increase or supply decrease can be clearly classified into two groups 18

Analysis on the congested regime (2) Comparison of MFD shapes Production (veh km/ Maximum production Critical accumulation Demand increase group Supply decrease group Accumulation (veh) The MFDs with congested regime which is due to the demand increase exhibits higher critical accumulation and maximum traffic production 19

Contents Basic information of the detector data Data record MFD definition Characterization of MFDs Different demand condition (weekday/weekend) Different supply condition (sunny/rainy) Mechanism analysis MFD features v.s congestion pattern Evolution process of congestion pattern 20

Aggregated analysis on congested pattern Hypothesis If the number of queue-spillbacks become large to a high value, the congested regime may occur in an MFD Definition of queue-spillbacks during time period t Case-1 Case-2 Case-3 S 0 S 1 3 t : Congested link ( v i t 20[ km / h] ) : Uncongested link t S t 21

Comparison of queue-spillbacks Time series of the number of queue-spillbacks Evening peak hours Evening peak hours Number of queue-spillbacks Number of queue-spillbacks Time (h) Time (h) Congested days for one year Uncongested days for one year Congested regime occurs in an MFD when the number of queuespillbacks become large to a high value during the evening peak hours 22

Congestion pattern during the entire year Congested days Uncongested days No. No.1 No.1 Latitude No.2 No.3 Latitude No.2 No.3 No.6 No.4 No.4 Longitude Longitude No.1-No.4: congested frequencies for each link and the spatial distribution of congested links are extremely different between the two kinds of days For the Naha CBD road networks, if the congestion spreads in Nos.1-4, the congested regime occurs in an MFD 23

MFD v.s Congestion pattern (Example 1) 6/26/2012 (Congested day, sunny) Congestion pattern MFD Latitude Congested link Longitude Production (veh km/ 16:40 Accumulation (veh) Uncongested regime 24

MFD v.s Congestion pattern (Example 1) 6/26/2012 (Congested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 17:3 Accumulation (veh) Maximum production 2

MFD v.s Congestion pattern (Example 1) 6/26/2012 (Congested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 17: Accumulation (veh) Congested regime 26

MFD v.s Congestion pattern (Example 1) 6/26/2012 (Congested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 18:3 Accumulation (veh) Maximum accumulation 27

MFD v.s Congestion pattern (Example 1) 6/26/2012 (Congested day, sunny) No.1 Latitude Production (veh km/ The congested regime occurs gradually as the congestion spreads in cluster Nos.1-4 No.2 Longitude Longitude Longitude Longitude 16:40 Uncongested regime Maximum production No.4 17:3 17: 18:3 Congested regime Maximum accumulation Accumulation (veh) Accumulation (veh) Accumulation (veh) Accumulation (veh) No.3 28

MFD v.s Congestion pattern (Example 2) /8/2012 (Uncongested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 16:30 Accumulation (veh) Uncongested regime 29

MFD v.s Congestion pattern (Example 2) /8/2012 (Uncongested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 17:0 Accumulation (veh) Uncongested regime 30

MFD v.s Congestion pattern (Example 2) /8/2012 (Uncongested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 18:20 Accumulation (veh) Maximum production 31

MFD v.s Congestion pattern (Example 2) /8/2012 (Uncongested day, sunny) Congestion pattern MFD Latitude Longitude Production (veh km/ 18:3 Accumulation (veh) Maximum accumulation 32

MFD v.s Congestion pattern (Example 2) /8/2012 (Uncongested day, sunny) Latitude Production (veh km/ No.1 No.2 Longitude Longitude Longitude Longitude Maximum production No.4 16:30 17:0 18:20 18:3 Uncongested regime Uncongested regime Maximum accumulation Accumulation (veh) Accumulation (veh) Accumulation (veh) Accumulation (veh) We do not observe the congestion spreading in cluster Nos.1-4 during the entire traffic evolution, even if at the maximum accumulation! No.3 33

Summary and future plans Throughout the observation during the entire year, Congested regime occurs in an MFD (Sunny & Rainy) weekdays:20.3% (Rainy) weekends:4.2% The MFDs with congested regime on sunny weekdays exhibits higher critical accumulation and higher production Relationship between MFD and congestion pattern The number of queue-spillbacks is large Congestion spreading in cluster Nos.1-4 of the network Future plans Establish a model to explore the occurrence mechanism of the congested regime in an MFD 34

Thank you very much for your attention! 3

Reference (1) Buisson, C. and Ladier, C. (2009): Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transportation Research Record: Journal of the Transportation Research Board 2124(12), pp.127-136. Daganzo, C.F. (2007): Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B 41(1), pp.49-62. Geroliminis, N. and Daganzo, C. (2008): Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B 42(9), pp.79-770. Geroliminis, N. and Sun, J. (2011a): Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transportation Research Part B 4(3), pp.60-617. Geroliminis, N. and Sun, J.(2011b): Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks. Transportation Research Part A 4(9), pp.966-979. 36

Reference (2) Geroliminis, N. and Skabardonis, A. (2011): Identification and analysis of queue spillovers in city street networks. IEEE Transactions on Intelligent Transportation System 12(4), pp.1107-111. He, Z., Guan, W., Fan, L. and Guan, J. (2014): Characteristics of macroscopic fundamental diagram for Beijing urban ring freeways. Journal of Transportation Systems Engineering and Information Technology 14(2), pp.199-20. Ji, Y.X.. Geroliminisn, N. and Luo, J. (2014): Empirical observation of congestion propagation and dynamic partitioning with probe data for large scale systems. Transportation Research Record: Journal of the Transportation Research Board 2422(14), pp.1-11. Knoop, V.L. and Hoogendoorn, S.P. (2013): Empirics of a generalized macroscopic fundamental diagram for urban freeways. Transportation Research Record: Journal of the Transportation Research Board 2391(13), pp.133-141. 37

Reference (3) Lu, S., Wang, J., Liu, G. and Shao, W. (2014): Macroscopic fundamental diagram of urban road network based on traffic volume and taxi GPS data. Journal of Highway and transportation Research and Development 31(9), pp.138-144. Sabri, M. and Mahmassani, H.S. (2012): Exploring properties of network wide flow-density relations in a freeway network. Transportation Research Record: Journal of the Transportation Research Board 231(16), pp.13-163. Sabri, M. and Mahmassani, H.S. (2013): Hysteresis and capacity drop phenomena freeway networks: Empirical characterization and interpretation. Transportation Research Record: Journal of the Transportation Research Board 2391(), pp.44-. Saeedmanesh, M. and Geroliminis, N. (201): Empirical observation of MFDs and hysteresis loops for multi-region urban networks with stop-line detectors. Transportation Research Record: Journal of the Transportation Research Board, In press. 38

Reference (4) Wang, P., Wada, K., Akamatsu, T. and Hara, Y. (201): An empirical analysis of macroscopic fundamental diagrams for Sendai road networks. Interdisciplinary Information Sciences 21(1), pp.49-61. Wang, P., Wada, K., Akamatsu, T., Sugita, M., Nagoya, T. and Sumi, H.: Characterization of macroscopic fundamental diagrams based on longterm detectors data: Case studies of Sendai and Kyoto cities. JSTE Journal of Traffic Engineering, Submitted. Zhu, L., Yu, L. and Song, G. (2012): MFD-Based investigation into macroscopic traffic status of urban networks and its influencing factors. Journal of South China University of Technology (Natural Science Edition) 40(11), pp.138-146. 39

Appendix (1) The condition of the existence of well-defined MFD The statistical distribution of link density is the same for two different time intervals with the same average density { sd( t1) ~ sd( t2) and O( t1) O( t2)} Q( t1) Q( t2) Average occupancy 1% Average occupancy 2% Probability 7:00 21:4 Probability 12:00 7:0 Occupancy group [Geroliminis and Sun (2011a)] Occupancy group 40

Appendix (2) Geroliminis and Skabardonis (2011) Sanfrancisco CBD road networks Investigated the relationship between the number of vehicles in spillovers and the output using simulation Mean speed Output Number of vehicles in spillovers Number of vehicles in spillovers If the number of vehicles in spillovers become larger than the critical value, the output of an area decrease 41

Production (veh km/ Appendix (3) MFDs on rainy weekdays (evening peak hours) 10/17/2012 (Wed) Time series of Rainfall Accumulation (veh) Rainfall (mm) Morning Morning Afternoon Time (h) The variation of MFD (the range of traffic production observed for each accumulation) is larger than that on sunny weekdays 42

Appendix (4) MFDs on rainy weekdays (morning peak hours) Production (veh km/ 7/9/2012 (Mon) Time series of Rainfall Accumulation (veh) Because of the large rainfall (27mm/h), the congested regime occurs during the morning peak hours Rainfall (mm) Time (h) Morning 43

Appendix () Occurrence frequency and time of congested reimage Sunny weekday Rainy weekday Sunny weekend Rainy weekend Total Days 16 32 0 2 0 Total days 133 103 69 48 33 Rate 12.0% 31.1% 0% 4.2% 14.2% Congested regime occurs in an MFD is not a rare phenomenon A.M/Sunny P.M/Sunny A.M/Rainy P.M/Rainy Total Days 0 16 1 31 48 Total days 133 133 103 103 236 Rate 0% 12.0% 0.97% 30.1% 20.3% The occurrence times are always during the evening peak hours (16:30~19:30) 44

Upstream Appendix (6) Example of demand increase Flow (veh/ Downstream Flow (veh/ Time (h) Flow (veh/ Time (h) 4 Flow (veh/ Time (h) Flow for each link 3 Time (h) 2 1 Inflow is 1.3 times larger than that of uncongested days 4

Upstream Appendix (7) Example of supply decrease Flow (veh/ Flow (veh/ Downstream Flow (veh/ Time (h) Flow (veh/ Time (h) Time (h) Flow (veh/ Time (h) Flow for each link 4 3 Time (h) 2 1 Outflow is 0% lower than that of uncongested days The flow decrease by about a factor of 0% 46

Appendix (8) Analysis on the rainfall during evening peak hours The number of congested days: 47 days The number of rainy days in congested days: 16 days Rainfall [mm/3h] Date Rate (*/47) 0-10 ****** (13) 27.7% 11-20 2012/10/17 (1) 2.1% 21-30 2012/12/ (1) 2.1% 31-40 2013/2/22 (1) 2.1% Summary The rainfall (during the evening peak hours) is not an essential reason for the occurrence of the congested regime in an MFD, but the congested regime occurs more easily when the rain falls 47

Appendix (9) Bus transit lane/link during 17:30-19:00 Summary Bus transit lane is not an essential reason for the occurrence of the congested regime in an MFD :Bus transit lane :bus transit link 48

Appendix (10) Distribution of the intersections with accidents Summary Traffic accidents may be an important reason for the occurrence of the congested regime, but it is not an essential reason :worst-1, Tomari :worst-2, Matsushima :worst-3, Uenoya 49

Appendix (11) Congested days No.1 No. Red:0%~ Purple:40%~0% Blue:30%~40% Uncongested days No.1 Latitude No.2 No.3 Latitude No.2 No.3 No.6 No.4 No.4 Longitude Longitude No.1-No.4: congested frequencies for each link and the spatial distribution of congested links are extremely different between the two kinds of days For the Naha CBD road networks, if the congestion spreads in Nos.1-4, the congested regime occurs in an MFD 0

Appendix (12) The basic information of Naha road networks (1) Famous tourist/largest city in Okinawa prefecture, Japan The public transport system is not developed Population: 316 thousand Links: have 1-3 lanes in each direction Average length of links: 30[m] Speed limit: 60[km/h] Summary The number of visitors is larger than the number of local commuters Most visitors rent cars to travel, due to the undeveloped public transport 1

Appendix (13) The basic information of Naha road networks (2) Tokyo Analysis area Naha Summary The spatial distribution of the sight-seeing spots (the destinations of the most users) is dispersed. This is a very important reason for the users do not center in Naha CBD area during the morning peak hours 2

Appendix (14) The basic information of Naha road networks (3) Latitude Longitude Summary The users can not select a new route to avoid the congested links, especially in Route 8 and Route 330. For this reason, if the congestion occurs in any link, it can spread to the upstream quickly 3

Appendix (1) Clustering classification method (1) Represent the MFD shape of each day by a 0-1 matrix M P ij : the number of plots in the mesh Example of meshed MFD Production (veh km/ Accumulation (veh) Production (veh km/ Accumulation (veh) 4

Appendix (16) Clustering classification method (2) The effective mesh number of day a, b and the common effective mesh: Calculate the distance between day a and day b