A New High Intensity Proton Source. The SCRF Proton Driver. (and more!) at Fermilab. July 15, Bill Foster SRF2005

Similar documents
SMTF Beta <1 Front End Linac Infrastructure and Plans

Concept and R&D Plans for Project X

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project

INFN School on Electron Accelerators. RF Power Sources and Distribution

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics

PRESENT STATUS OF J-PARC

Detailed Design Report

The PEFP 20-MeV Proton Linear Accelerator

DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS*

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi)

XFEL High Power RF System Recent Developments

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

ESS: The Machine. Bucharest, 24 April Håkan Danared Deputy Head Accelerator Division. H. Danared Industry & Partner Days Bucharest Page 1

Proton Engineering Frontier Project

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN

Upgrading LHC Luminosity

Workshop on Accelerator Operations August 6-10, 2012 Glen D. Johns Accelerator Operations Manager

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC

Nick Walker DESY MAC

5 Project Costs and Schedule

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

WG2 Group Summary. Chris Adolphsen Terry Garvey Hitoshi Hayano

The TESLA RF System. S. Choroba. for the TESLA Collaboration. DESY Notkestr. 85, D Hamburg, Germany

!"!3

The SPL at CERN. slhc. 1. Introduction 2. Description. 3. Status of the SPL study. - Stage 1: Linac4 - Stage 2: LP-SPL - Potential further stages

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

DELIVERY RECORD. Location: Ibaraki, Japan

ILC-LNF TECHNICAL NOTE

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA

SUMMARY OF THE ILC R&D AND DESIGN

ILC RF System R&D. Chris Adolphsen, SLAC. Section of 1.3 GHz SC Linac. June 29, 2007 PAC07 Talk FRYC01

The Construction Status of CSNS Linac

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

4.4 Injector Linear Accelerator

TITLE PAGE. Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton. Author Affiliation: Jefferson Lab. Requested Proceedings:

PEP II Design Outline

RF considerations for SwissFEL

Introduction: CW SRF linac types, requirements and challenges High power RF system architecture

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

HIGH-INTENSITY PROTON BEAMS AT CERN AND THE SPL STUDY

Upgrade of CEBAF to 12 GeV

STATUS OF THE INTERNATIONAL LINEAR COLLIDER

OPERATIONAL EXPERIENCE AT J-PARC

Towards an X-Band Power Source at CERN and a European Structure Test Facility

Linac 4 Instrumentation K.Hanke CERN

Beam Loss Detection for MPS at FRIB

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract

SLAC ILC Accelerator R&D Program

Linac upgrade plan using a C-band system for SuperKEKB

The European Spallation Source

The Elettra Storage Ring and Top-Up Operation

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

30 GHz Power Production / Beam Line

SRS and ERLP developments. Andrew moss

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland

RF Upgrades & Experience At JLab. Rick Nelson

North Damping Ring RF

Karin Rathsman. Calculations on the RF Source and Distribution

III. Proton-therapytherapy. Rome SB - 3/5 1

DESIGN AND PERFORMANCE OF L-BAND AND S-BAND MULTI BEAM KLYSTRONS

SLAC X-band Technology R&D. Tor Raubenheimer DOE Briefing June 11 th, 2010

P. Adamson, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA. Abstract

CLIC Feasibility Demonstration at CTF3

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

Current status of XFEL/SPring-8 project and SCSS test accelerator

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs

A New 4MW LHCD System for EAST

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC*

Karin Rathsman, Håkan Danared and Rihua Zeng. Report from RF Power Source Workshop

ESS Linac WP8 Radio Frequency Systems and Test Facilities

The LEP Superconducting RF System

Modulator Overview System Design vs. Tunnel Topologies. Snowmass Workshop August 16, 2005 Ray Larsen for the SLAC ILC Group

RF Power Generation II

Status of Elettra, top-up and other upgrades

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer

Status of the SNS Linac: An Overview N. Holtkamp for the SNS Collaboration ORNL, Oak Ridge, TN 37830, USA

Electron linac photo-fission driver for rare isotope program at TRIUMF

Status of RF Power and Acceleration of the MAX IV - LINAC

RF Power Klystrons & 20 Year Look. R. Nelson 7/15/15

Linac strategies for the lower beam energies. U. Ratzinger

LHC Beam Instrumentation Further Discussion

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

LLRF at SSRF. Yubin Zhao

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

THE OPERATION EXPERIENCE AT KOMAC*

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011

Welcome and FRIB Project Status. FRIB Highlights and Plan Ahead

STATUS OF THE EUROPEAN XFEL CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Design of the linear accelerator for the MYRRHA project

Working Group 2 Introductory presentation. Convenors C. Adolphsen, T. Garvey, H. Hayano

Transcription:

The SCRF Proton Driver A New High Intensity Proton Source (and more!) at Fermilab Bill Foster SRF2005 July 15, 2005

Outline The Concept Fermilab Strategic Context Proton Driver SRF Linac Design Ferrite Vector R&D Hardware in Progress Fermilab G. W. Foster SRF 2005

8 GeV SCRF Proton Driver New idea incorporating concepts from TESLA, SNS, RIA, TRASCO, APT Copy SNS, RIA, and JPARC Linac designs up to 1.3 GeV Use TESLA Cryomodules from 1.3-8 GeV Direct 8 GeV H- Injection into Fermilab Main Injector Super-Beams in Fermilab Main Injector 2+ MW Beam power at BOTH 8 GeV and 120 GeV Small linac emittances Small losses in Main Injector Very simple operation of the accelerator complex Minimum (1.5 sec) cycle time (eventually faster) MI Beam Power Independent of Beam Energy (flexible neutrino program)

Fermilab s Existing Proton Source FNAL Accelerator Complex 7 major accelerators!) 35 yrs old 35 yrs old Cockroft-Walton H - ions (750 KeV) Drift Tube LINAC 750 KeV 116 MeV 8 GeV Booster Rapid-Cycling Synchrotron Proton Source = Linac, Booster, Main Injector 35 yrs old

Q: WHAT IS THE SIGNIFICANCE OF THIS NUMBER? 451 A: this is the number of vacuum tubes required to accelerate beams to 8 GeV in Fermilab s current Proton Source.

Advantages of the 8 GeV Linac Replacing a Rapid-Cycling Synchrotron with a SCRF Injector Linac results in an accelerator complex that is: Simpler Many fewer components to design and maintain Simpler Beam Dynamics Lower Beam Losses Lower Wall Power 5 MW AC Power vs. ~20 MW for RCS More Flexible Broader Physics Program (direct uses of 8 GeV linac beam) More Upgrade Potential to >> 2 MW beam power

8 GeV Superconducting Linac With X-Ray FEL, 8 GeV Neutrino & Spallation Sources, LC and Neutrino Factory Neutrino Super- Beams 8 GeV neutrino Neutrinos to Homestake Off- Axis Main Injector @2 MW Short Baseline Detector Array NUMI Anti- Proton SY-120 Fixed- Target X-RAY FEL LAB Bunching Ring Damping Rings for TESLA @ FNAL With 8 GeV e+ Preacc. Neutrino Target & Long-Pulse Spallation Source 8 GeV Linac ~ 700m Active Length 1% LC Systems Test Target and Muon Cooling Channel Recirculating Linac for Neutrino Factory VLHC at Fermilab

The Baseline Missions: Super Beams in the Main Injector & ILC Test Bed Neutrino Super- Beams 8 GeV neutrino Off- Axis NUMI SY-120 Fixed- Target 8 GeV Linac ~ 700m Active Length 1.5 % ILC Test Bed Main Injector @2 MW

8 GeV SC Linac Proton Driver A Bridge Program to the Linear Collider Near Term Physics Program (neutrinos+) Multiple HEP Destinations & Off-Ramps A seed project for Industrial Participation 50 cryomodules, 12 RF stations, ~1.5% of LC

Fermilab s Fork in the Road IF ( ILC 2006 CDR looks affordable) THEN Push for ILC ~2010 construction start at Fermilab Proceed with 120 GeV Neutrino Program at >1 MW ELSE Superconducting 8 GeV Proton Driver starting 2008 30-120 GeV and 8 GeV Beams at 2-4 MW Stepping-Stone to delayed ILC construction start ~2012 ENDIF

Pier Oddone s presentation to EPP 2010: Proton Driver Project Planning Currently Supports a FY2008 Construction Start

The Building Block of the 8 GeV Linac is the TESLA RF Station: 1 Klystron 1 ~ 4 Cryomodules 36 SCRF CAVITIES ~1 GeV of Beam Energy Understanding the production cost of the TESLA RF station is the most important question in (US) HEP. Proton Driver: 8 RF Stations Linear Collider: 500 RF Stations

0.5 MW Initial 8 GeV Linac 11 Klystrons (2 types) 449 Cavities 51 Cryomodules PULSED RIA Front End Linac Single 3 MW JPARC Klystron Multi-Cavity Fanout at 10-50 kw/cavity Phase and Amplitude Control w/ Ferrite Tuners 325 MHz 0-110 MeV H- RFQ MEBT RTSR SSR DSR DSR β<1 TESLA LINAC 1300 MHz 0.1-1.2 GeV 2 Klystrons 96 Elliptical Cavities 12 Cryomodules Elliptical Option β=.47 β=.47 β=.61 β=.61 β=.61 β=.61 or 325 MHz Spoke Resonators β=.81 48 Cavites / Klystron 10 MW TESLA Multi-Beam Klystrons β=.81 β=.81 β=.81 β=.81 β=.81 8 Cavites / Cryomodule TESLA LINAC 1300 MHz β=1 8 Klystrons 288 Cavities in 36 Cryomodules 10 MW TESLA Klystrons 36 Cavites / Klystron β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1

Proton Driver Linac - Technology Flow Other Labs & Universities TESLA COLLABORATION FNAL SNS (JLAB) RIA (ANL) JHF ANL / SNS RIA (MSU) APT (LANL) (KEK) RF Distribution Klystrons Cryogenics Cavities Pulsed s Fast Ferrite Shifters β < 1 Cavity Design SNS Production Experience Linac Accel. Physics SCRF Spoke Cavities 325 MHz RFQ and Klystron TESLA SNS / RIA Beta < 1 Elliptical Cavity Linac PULSED RIA R H Elliptical Cavity SCRF Linac SCRF Spoke F _ Beta = 1 1300 MHz Cavity Linac Q SNS & DESY 8 GeV 1.3 GeV New FNAL Proton Source Linear Collider Test Facility PROTON DRIVER Beam Transport and Collimation Design NUMI Beamline & BNL / SNS FNAL Proton Plan Upgrades Main Injector @2 MW Infrastructure 8 GeV beams: P, n, ν, µ, e Technological & HEP Applications Neutrino Super-beams

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Fermilab G. W. Foster SRF 2005

Main Parameter Decisions 1. Main Injector Beam: (1.5 E14, 1.5 sec, 2 MW) 2. Pulse Parameters: ( 8 ma x 3 msec x 2.5 Hz) Ultimate Upgrade: (25 ma x 1 msec x 10 Hz) 3. Operating Frequency: (1300 MHz / 325 MHz) 4. Copper to SCRF transition: (15 MeV) 5. Spokes to Elliptical transition: (110-400 MeV) 6. Design Margins on 8 GeV H- Transport Fermilab G. W. Foster SRF 2005

Primary Parameter List (for reference) PRIMARY PARAMETERS 8 GeV Initial 0.5 M W {Ultimate 2M W in Brackets} Linac beam kinetic energy 8 GeV Linac Particle Types Baseline M ission H - ions Protons Electrons via foil stripping in transfer line Possible w/upgrade of Phase Shifters & Injector Linac Stand-Alone Beam power 0.5 {2.0} MW 8 GeV beam power available directly from linac Linac Pulse repetition rate 2.5 {10} Hz Linac macropulse width 3.0 {1.0} ms Linac current (avg. in m acropulse) 8.7 {26} m A Linac current (peak in m acropulse) 9.3 {28} m A Linac Beam C hopping factor in macropulse 94 % For adiabatic capture with 700ns abort gap. Linac Particles per m acropulse 1.56E+14 Linac Charge per m acropulse 26 uc Linac Energy per m acropulse 208 kj Linac average beam current 0.07 {0.26} m A Linac beam m acropulse duty factor 0.75 {1.0} % Linac RF duty factor 1.00 {1.3} % Linac Active Length including Front End 614 m Excludes possible expansion length Linac Beam-floor distance 0.69 m =27 in. sam e as Ferm ilab M ain Injector Linac Depth Below Grade 9 m same as Fermilab Main Injector Transfer Line Length to Ring 972 m for M I-10 Injection point Transfer Line Total Bend 40 deg two 20-degree collim ation arcs Ring circum ference 3319.4 m Ferm ilab M ain Injector Ring Beam Energy 8-120 GeV M I cycle tim e varies with energy Ring Beam Power on Target 2 MW ~ independent of MI Beam Energy Ring C irculating C urrent 2.3 A Ring cycle tim e 0.2-1.5 sec depends on M I beam energy & flat-top Ring Protons per Pulse on Target 1.50E+14 protons Ring Charge per pulse on target 25 uc Ring Energy per pulse on target 200-3000 kj at 8-120 G ev Ring Proton pulse length on target 10 us 1 turn, or longer with resonant extraction Linac W all Power 5.5 {12.5} MW approx 3 MW Standby + 1MW / Hz Fermilab G. W. Foster SRF 2005

Linac Segment Details (for reference) Open Technical Choice: 3-spoke or Elliptical RFQ Room Temp SRF SRF Spoke Option Elliptical Option TSR 1-spoke 2-spoke 3-spoke Low Medium Frequency, MHz 325 325 325 325 325 1300 1300 1300 1300 Energy Range, MeV 0.065-3 3-15 15-33 33-110 110-400 110-175 175-400 400-1200 1200-8000 Beta geometrical - 0.08 to 0.18 0.21 0.4 0.61 0.47 0.61 0.81 1.00 Number of cavities or resonators 4 21 16 28 42 16 32 48 288 Number of accelerating gaps / cavity - 4 2 3 4 6 6 8 9 Epeak, MV/m 32.1 TBD 32 32 32 52 52 52 52 Eacc, MV/m - 2.3 to 3.7 10.67 10.67 10.67 15.2 19.2 23.7 26 Cavity effective length, cm - 15 to 32 13 36.9 85.8 32.5 42.2 74.8 103.8 Synchronous phase, deg (typ.) - -40 to -30-30 -30-30 to -20-30 -25-20 -16 Length of Segment, m ~4 10.4 12.5 17.2 64 18.8 38.5 70.1 438.3 Number of Cryomodules - - 1 2 6 2 4 6 36 Cavities per Cryomodule - - 16 14 7 8 8 8 8 Magnetic Focusing Type - Solenoid Solenoid Solenoid Quad Quad Quad Quad Quad Coupler Power Initial {Ultimate}, kw 125 40 {54} 9 {26} 34 {102} 80 {238} 42 {125} 72 {214} 133 {398} 220 {660} Cavities per Klystron Initial {Ultimate} 72 {36} 42 {14} 48 {24} 48 {24} 36 {12} Number of Klystrons Initial {Ultimate} 1 {2} 1 {3} 1 {2} 1 {3} 8 {24} High TESLA Parameter List gives subsystem details for technically feasible baseline http://tdserver1.fnal.gov/8gevlinacpapers/parameterlist2005/cd0_parameter_list_current_version.pdf Fermilab G. W. Foster SRF 2005

Linac Pulse Parameters Comparison with Other SRF Linacs 8 GeV Initial 8 GeV {Ultimate} SNS (Spallation Neutron Source) TESLA-500 (w/ FEL) TESLA-800 Linac Energy 8 GeV 8 GeV 1 GeV 500 GeV 800 GeV Particle Type H -, e+, or e - H -, e+, or e - H - e+, e - e+, e - Beam Power 0.5 MW 2 MW 1.56 MW 22.6 MW 34 MW AC Power (incl. warm FE) 5.5 MW 13 MW ~15 MW 97 MW 150 MW Beam Pulse Width 3 msec 1 msec 1 msec 0.95 msec 0.86 msec Beam Current(avg. in pulse) 8.6 ma 26 ma 26 ma 9.5 ma 12.7 ma Pulse Rate 2.5 Hz 10 Hz 60 Hz 5(10) Hz 4 Hz # Superconducting Cavities 384 384 81 21024 21852 / 2 # Cryomodules 48 48 23 1752 1821 # Klystrons 12 33 93 584 1240 # Cavities per Klystron(typ) 36 12 1 36 18 Cavity Surface Fields (max) 52 MV/m 52 MV/m 35 MV/m 46.8 MV/m 70 MV/m Accel. Gradient (max) 25 MV/m 25 MV/m 16 MV/m 23.4 MV/m 35 MV/m Linac Active Length 614 m 614 m 258 m 22 km 22 km Fermilab G. W. Foster SRF 2005

Two Design Points for 8 GeV Linac Initial: 0.5 MW Linac Beam Power (BASELINE) 8.3 ma x 3 msec x 2.5 Hz x 8 GeV = 0.5 MW Twelve Klystrons Required Ultimate: 2 MW Linac Beam Power 25 ma x 1 msec x 10 Hz x 8 GeV = 2.0 MW 33 Klystrons Required Either Option Supports: 1.5E14 x 0.7 Hz x 120 GeV = 2 MW Beam Power from Fermilab Main Injector Fermilab G. W. Foster SRF 2005

2 0.5 MW MW Ultimate Initial 8 GeV Linac 11 32 Klystrons (2 types) 470 Cavities 53 Cryomodules PULSED RIA Front End Linac 3 MW JPARC Klystron Multi-Cavity Fanout at 10-50 kw/cavity Phase and Amplitude Control w/ Ferrite Tuners 325 MHz 0-110 MeV H- RFQ MEBT RTSR SSR DSR DSR β<1 TESLA LINAC 1300 MHz 0.1-1.2 GeV 2 6 Klystrons 96 Elliptical Cavities 12 Cryomodules β=.47 β=.47 β=.61 β=.61 β=.61 β=.61 or 325 MHz Spoke Resonators 16 Cavites / Klystron 48 Cavites / Klystron 10 MW TESLA Klystrons β=.81 β=.81 β=.81 β=.81 β=.81 β=.81 8 Cavites / Cryomodule TESLA LINAC 1300 MHz β=1 8 Klystrons 288 Cavities in 36 Cryomodules 10 MW TESLA Klystrons 12 Cavites 36 / Klystron Cavites / Klystron β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1

Initial Ultimate Upgrade Equipment Initial 0.5 MW Gallery is nearly empty One Klystron every 180 feet Ultimate 2 MW Gallery is comfortable One Klystron every 60 feet Fermilab G. W. Foster SRF 2005

ILC Compatible Operating Frequencies Following the selection of the Cold SCRF Option for the ILC, We have chosen TESLA/XFEL Compatible Frequencies: 1300 MHz Main Linac (= ILC / TESLA / XFEL) 325 MHz (=1300MHz/4) Front-End Linac (= JPARC) (a gift! ) Valuable assets at these frequencies: SRF Cavities, RF Couplers, Cryomodule Designs, Klystrons, Front-End Linac Designs, Collaborators (e.g. ILC, Euro-XFEL, JPARC ) In the final analysis, it is much easier these days to develop a new SRF cavity design than to develop a new Klystron. Fermilab G. W. Foster SRF 2005

8 GeV Linac Klystrons 2 Types Thales TH1801 1300 MHz 10 MW Multiple Vendors Toshiba E3740A 325 MHz 3 MW (17 Delivered for JPARC ) Fermilab G. W. Foster SRF 2005

Copper-to-SCRF Transition We have chosen 15 MeV (RFQ + warm TSRs.) Much lower than SNS ( ~ 186 MeV) Allows Single Klystron to drive linac up to 110 MeV Leverages uses of Fast Phase Shifters to produce many channels of RF from a single Klystron Previous Design Study assumed 85 MeV DTL Conventional Solution, still valid Modified Commercial Product at 325 MHz Required 7 Klystrons, $30M + contingency etc. Fermilab G. W. Foster SRF 2005

Spokes-to-Elliptical Transition 1. Preserving two technical options (110-400 MeV): 1. 325 MHz triple-spoke Resonators (BASELINE) 2. 1300 MHz Elliptical Cavities 2. The tradeoffs have been extensively discussed for the Rare Isotope Accelerator (RIA). 3. Our Decision Will be based on: 1. Accelerator Physics 2. Cost 3. Collaboration Fermilab G. W. Foster SRF 2005

0.5 MW Initial 8 GeV Linac 11 Klystrons (2 types) 449 Cavities 51 Cryomodules PULSED RIA Front End Linac 3 MW JPARC Klystrons Multi-Cavity Fanout at 10-50 kw/cavity Phase and Amplitude Control w/ Ferrite Tuners 325 MHz 0-350 MeV H- RFQ MEBT RTSR SSR DSR DSR β<1 TESLA LINAC 1300 MHz 0.35-1.2 GeV 2 Klystrons 96 Elliptical Cavities 12 Cryomodules 110 MeV 325 MHz Spoke Option TSR TSR TSR TSR TSR TSR or 1300 MHz Elliptical Cavities 350 MeV β=.81 48 Cavites / Klystron 10 MW TESLA Multi-Beam Klystrons β=.81 β=.81 β=.81 β=.81 β=.81 8 Cavites / Cryomodule TESLA LINAC 1300 MHz β=1 8 Klystrons 288 Cavities in 36 Cryomodules 10 MW TESLA Klystrons 36 Cavites / Klystron β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1

0.5 MW Initial 8 GeV Linac 11 Klystrons (2 types) 449 Cavities 51 Cryomodules PULSED RIA Front End Linac 3 MW JPARC Klystron Multi-Cavity Fanout at 10-50 kw/cavity Phase and Amplitude Control w/ Ferrite Tuners 325 MHz 0-110 MeV H- RFQ MEBT RTSR SSR DSR DSR β<1 TESLA LINAC 1300 MHz 0.1-1.2 GeV 2 Klystrons 96 Elliptical Cavities 12 Cryomodules Elliptical Spoke Option 100 MeV β=.47 TSR β=.47 TSR β=.61 TSR β=.61 TSR β=.61 TSR β=.61 TSR or 1300 325 MHz Spoke Elliptical Resonators Cavities 350 MeV β=.81 48 Cavites / Klystron 10 MW TESLA Multi-Beam Klystrons β=.81 β=.81 β=.81 β=.81 β=.81 8 Cavites / Cryomodule TESLA LINAC 1300 MHz β=1 8 Klystrons 288 Cavities in 36 Cryomodules 10 MW TESLA Klystrons 36 Cavites / Klystron β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1

325 MHz Spoke Resonators Ken Shepard s Talk Well Developed Technology for RIA, APT,... Simulations indicate excellent beam dynamics Runs Pool-Boiling at 4.5K Simple Cryosystem R&D Demonstration (SMTF): beam properties with pulsed operation. Fermilab G. W. Foster SRF 2005

325 MHz Front-End Single Klystron Feeds SCRF Linac to E > 100 MeV Linac SCRF Spoke Resonator Cryomodules MEBT Charging Supply RFQ Ferrite Tuners Capacitor / Switch / Bouncer RF Distribution Waveguide 115kV Pulse Transformer 325 MHz Klystron Toshiba E3740A (JPARC)

325 MHz RF System MODULATOR: FNAL/TTF Reconfigurable for 1,2 or 3 msec beam pulse Single JPARC Klystron 325MHz 3 MW 110 kv Pulse Transformer & Oil Tank 10 kv IGBT Switch & Bouncer CAP BANK 10kV Charging Supply 300kW TOSHIBA E3740A WR2300 Distribution Waveguide RF Couplers 400kW 20 kw 20 kw 120 kw Fast Ferrite Isolated I/Q s I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M I Q M Cables to Tunnel H- R F Q M E B T S S R S S R D S R D S Radio Frequency Quadrupole Medium Energy Beam Transport Copper Cavities Cryomodule #1 Single-Spoke Resonators Cryomodule #2 Double-Spoke Resonators I Q M R

Fermilab 1300 MHz Elliptical Cavites Beta<1 cavities are frequency scaled from 805 MHz designs for SNS/JLAB and RIA/MSU/JLAB FNAL/MSU Design collaboration investigating low-loss geometries for 1300 MHz Beta=0.81 G. W. Foster SRF 2005

1300 MHz Cryomodules Giorgio Apolinari s Talk 1 300 M H z E L L IP T IC A L C A V IT Y C R Y O M O D U L E S : 2-4 T Y P E S B eta = 0.47 2 C ryom od u les 16 C avities B eta = 0.61 4 C ryom od u les 32 C avities O P T IO N O F E L L IP T IC AL M E D IUM -B E T A C AV IT E S 1 1 0-4 0 0 M e V B eta = 0.81 6 C ryom od u les 48 C avities TESLA (TTF3) B eta = 1.00 36 C ryom od s 288 C avities Fermilab G. W. Foster SRF 2005

Ferrite Vector R&D Provides fast, flexible drive to individual cavites of a proton linac, when one is using a TESLA-style RF fanout. (1 klystron feeds 36 cavities) Also needed if Linac alternates between e- and P. This R&D was started by SNS but dropped due to lack of time. SNS went to one-klystron-per-cavity which cost them a lot of money ($20M - $60M). Making this technology work is important to the financial feasibility of the 8 GeV Linac. April 7, 2004 G.W.Foster - SCRF Proton Driver

Cost Driver: Klystrons per GeV Spallation Neutron Source 96 FNAL Linac Upgrade 20 X-Band (warm) NLC 8 GeV Linac (2 MW) 8 GeV Linac (0.5 MW) TESLA 8.13 5 1.5 1.1 0 20 40 60 80 100 Klystrons Per GeV Beam Energy April 7, 2004 G.W.Foster - SCRF Proton Driver

RF Fan-out for 8 GeV Linac KLYSTRON 35 foot waveguide from gallery to tunnel DIRECTIONAL COUPLER 1/8 Power Split (9.03 db) 1/7 Power Split (8.45 db) 1/6 Power Split (7.78 db) 1/5 Power Split (6.99 db) 1/4 Power Split (6.02 db) 1/3 Power Split (4.77 db) 1/2 Power Split (3.01 db) CIRCULATOR/ ISOLATOR E-H TUNER Ferrite Loaded Stub Magic Tee BEAM CAVITY Nov 18, 2004 G.W.Foster - Proton Driver

RF Fanout at Each Cavity KLYSTRON KLYSTRON - RF Power Source - Located in Gallery above tunnel - Each Klystron Feeds 8-16 Cavities 35 foot waveguide from gallery to tunnel DIRECTIONAL COUPLER DIRECTIONAL COUPLER - Picks of a fixed amount of RF power at each station - Passes remaining power downstream to other cavities CIRCULATOR/ ISOLATOR CIRCULATOR / ISOLATOR - Passes RF power forward towards cavity - Diverts reflected power to water cooled load E-H TUNER Ferrite Loaded Stub Magic Tee E-H TUNER - Provides Phase and Amplitude Control for Cavities - Biased Ferrite Provides Electronic Control BEAM CAVITY SUPERCONDUCTING RF CAVITY - Couples RF Power to Beam

FERRITE VECTOR MODULATOR (1300 MHz Waveguide Version) E-H TUNER ELECTRONIC TUNING WITH BIASED FERRITE MICROWAVE INPUT POWER from Klystron and Circulator Reflected Power (absorbed by circulator) ATTENUATED OUTPUT TO CAVITY Ferrite Loaded Stub Bias Coil Magic Tee TWO COILS PROVIDE INDEPENDENT PHASE AND AMPLITUDE CONTROL OF CAVITIES FERRITE LOADED SHORTED STUBS CHANGE ELECTRICAL LENGTH DEPENDING ON DC MAGNETIC BIAS.

Advanced RF Distribution RF FROM KLYSTRON DIRECTIONAL COUPLER (POWER SPLIT) COAXIAL FERRITE STUB TUNER AND WAVEGUIDE TRANSITION YET! CIRCULATOR AND LOAD MAGIC TEE AND CAVITY RF POWER COUPLER E/

3 Types of Fast-Ferrite Tuners 1. Waveguide Style (prototyped in house) 2. Coaxial Style (prototyped in-house) Iouri Terechkine s Talk 3. Strip Line Style (commercial procurement via AFT) Because of this device s importance to the PD, all three are being pursued in parallel. At present, it appears that all 3 approaches will lead to workable full-spec devices. Fermilab G. W. Foster SRF 2005

Key Specification of Ferrite Tuners Power Handling 0.6 MW 50kW x4 for full reflected standing wave exceeded by prototypes (after some work!) Range of adjustment: +/- 45 degrees Larger is possible Speed of Response: 1 degree per microsecond Simulations indicate 3-5x slower might be OK Insertion Loss: 0.1-0.2 db Cooling easy at 600kW peak, 1.5% duty factor Not dominant contributor to RF Distribution Losses Fermilab G. W. Foster SRF 2005

Examples of Phase Shifters Coaxial Device, Bell Labs 1968 L band (1.2 1.4 GHz) 350 kw peak power Field Range 800 1500 Oe Phase shift - 600 Insertion loss - 0.2 db Strip-line-based design, by AFT for ANL and CERN, 1998 ~ 2004 352 MHz 250 kw peak power 25% duty cycle 130º phase shift Fermilab

SNS Waveguide Phase Shifter R&D Waveguide-based device, Yoon Kang (ANL) for SNS ~ 2000 805 MHz 500 kw peak power 8% duty cycle 0.15 db insertion loss Fermilab

High Power 1300 MHz FVM Test A0 1300 MHz Klystron T = 250 µsec F = 5 Hz We snuck onto Helen s Klystron when she was out of town. Fermilab

High Power Ferrite Tuner Test Two methods of phase measurements: 1. Oscilloscope measurements 2. Using available IQ modulator Available phase range was limited by sparking that develops near the HOM resonance frequencies SF 6 added Max Power - 2000 kw (requirement: 600 kw) Useable Phase shift ~ 80 (requirement: ~90 degrees) Elimination of HOM resonances has increased usable range to ~360 degrees at low power levels. Fermilab

Coaxial Phase Shifter Coax design is preferred at 325MHz In-house design tested to 660kW at 1300 MHz Tested at 300 kw at ANL with APS 352MHz Klystron Fast coil and flux return should respond in ~50us Fermilab Ran for 1 Hour at 300kW x 3 msec x 2 Hz with 4 C Temp Rise very low losses

MORE INFORMATION Project site: http://protondriver.fnal.gov Physics and Machine CD-0 Documents Recent Director s Review: http://protondriver.fnal.gov/pdrev15mar05.htm Recent ICFA Workshop: http://www.niu.edu/clasep/hpslconf/