LDPC-PAM12 PHY proposal for 10GBase-T. P802.3an July 04 Jose Tellado, Teranetics Katsutoshi Seki, NEC Electronics

Similar documents
100Gb/s Single-lane SERDES Discussion. Phil Sun, Credo Semiconductor IEEE New Ethernet Applications Ad Hoc May 24, 2017

Scrambler Choices to Meet Emission Requirement for 1000BASE-T1

Training & EEE Baseline Proposal

802.3bj FEC Overview and Status IEEE P802.3bm

Chapter 7 Registers and Register Transfers

STx. Compact HD/SD COFDM Transmitter. Features. Options. Accessories. Applications

EE260: Digital Design, Spring /3/18. n Combinational Logic: n Output depends only on current input. n Require cascading of many structures

Reliable Transmission Control Scheme Based on FEC Sensing and Adaptive MIMO for Mobile Internet of Things

Transmission Strategies for 10GBase-T over CAT- 6 Copper Wiring. IEEE Meeting November 2003

BRR Tektronix BroadR-Reach Compliance Solution for Automotive Ethernet. Anshuman Bhat Product Manager

Analysis of Link Budget for 3m Cable Objective

Analysis of Link Budget for 3m Cable Objective

Update on FEC Proposal for 10GbE Backplane Ethernet. Andrey Belegolovy Andrey Ovchinnikov Ilango. Ganga Fulvio Spagna Luke Chang

Line numbering and synchronization in digital HDTV systems

Canova Tech. IEEE 802.3cg Collision Detection Reliability in 10BASE-T1S March 6 th, 2019 PIERGIORGIO BERUTO ANTONIO ORZELLI

Voice Security Selection Guide

Transmission scheme for GEPOF

64G Fibre Channel strawman update. 6 th Dec 2016, rv1 Jonathan King, Finisar

CODE GENERATION FOR WIDEBAND CDMA

FSK Transmitter/Receiver Simulation Using AWR VSS

BesTrans AOC (Active Optical Cable) Spec and Manual

PAM8 Baseline Proposal

Quality improvement in measurement channel including of ADC under operation conditions

Logistics We are here. If you cannot login to MarkUs, me your UTORID and name.

10G-BASE-T. Jaime E. Kardontchik Stefan Wurster Carlos Laber. Idaho - June

Supplemental Measurements of System Background Noise in 10GBASE-T Systems

ttco.com

Data Rate to Line Rate Conversion. Glen Kramer (Broadcom Ltd)

SMARTEYE ColorWise TM. Specialty Application Photoelectric Sensors. True Color Sensor 2-65

2 Specialty Application Photoelectric Sensors

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom

A Way to Evaluate post-fec BER based on IBIS-AMI Model

Image Intensifier Reference Manual

IEEE 100BASE-T1 Physical Coding Sublayer Test Suite

Proposed reference equalizer change in Clause 124 (TDECQ/SECQ. methodologies).

ModBox-850nm-NRZ-series

Higher-order modulation is indispensable in mobile, satellite,

GALILEO Timing Receiver

An Effort to Create Multi-vender Environment for 100 Mb/s P2P optical Ethernet Access in Japan

Polychrome Devices Reference Manual

Error performance objective for 25 GbE

Error performance objective for 400GbE

DVB-T2 modulator design supporting multiple PLP and auxiliary streams

50GbE and NG 100GbE Logic Baseline Proposal

Comment #147, #169: Problems of high DFE coefficients

ModBox-1310nm-1550nm-28Gbaud-PAM nm & 1550 nm, 28 Gbaud PAM-4 Reference Transmitter

EFM Copper Technical Overview EFM May, 2003 Hugh Barrass (Cisco Systems), Vice Chair. IEEE 802.3ah EFM Task Force IEEE802.

10 Mb/s Single Twisted Pair Ethernet Proposed PCS Layer for Long Reach PHY Dirk Ziegelmeier Steffen Graber Pepperl+Fuchs

WaveDevice Hardware Modules

ModBox-CBand-NRZ series C-Band, 28 Gb/s, 44 Gb/s, 50 Gb/s Reference Transmitters

10GE WAN PHY: Physical Medium Attachment (PMA)

PAM4 signals for 400 Gbps: acquisition for measurement and signal processing

LPI SIGNALING ACROSS CLAUSE 108 RS-FEC

Is the Golden Age of Analog circuit Design Over?

TV4U QUAD DVB-S2 to DVB-C TRANSMODULATOR

Detailed. EEE in 100G. Healey, Velu Pillai, Matt Brown, Wael Diab. IEEE P802.3bj March, 2012

802.3bj Scrambling Options

Backplane NRZ FEC Baseline Proposal

Further information on PAM4 error performance and power budget considerations

Read Only Memory (ROM)

(51) Int Cl.: H04L 1/00 ( )

PROJECTOR SFX SUFA-X. Properties. Specifications. Application. Tel

ModBox-1310nm-1550nm-NRZ 1310nm & 1550 nm, 28 Gb/s, 44 Gb/s Reference Transmitters

Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling

Features. PFD Output Voltage 2000 mv, Pk - Pk. PFD Gain Gain = Vpp / 2π Rad khz 100 MHz Square Wave Ref.

BER MEASUREMENT IN THE NOISY CHANNEL

Proposal for 10Gb/s single-lane PHY using PAM-4 signaling

100G PSM4 & RS(528, 514, 7, 10) FEC. John Petrilla: Avago Technologies September 2012

New Results on QAM-Based 1000BASE-T Transceiver

50 Gb/s per lane MMF baseline proposals. P802.3cd, Whistler, BC 21 st May 2016 Jonathan King, Finisar Jonathan Ingham, FIT

DLC SPY maintainance tool User manual

TP2 and TP3 Parameter Measurement Test Readiness

MODELLING PERCEPTION OF SPEED IN MUSIC AUDIO

RS232 Connection. Graphic LCD Screen. Power Button. Charger Adapter Input LNB Output. MagicFINDER Digital SatLock Operating Manual

400GbE AMs and PAM4 test pattern characteristics

40G SWDM4 MSA Technical Specifications Optical Specifications

LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES. Masum Hossain University of Alberta

MPX / MPZ series. Low frequencies to 32 GHz Phase Modulators. Modulator. Features. Applications. MPX-LN series Performance Highlights

Motivation. Analysis-and-manipulation approach to pitch and duration of musical instrument sounds without distorting timbral characteristics

802.3bj FEC Overview and Status. 400GbE PCS Baseline Proposal DRAFT. IEEE P802.3bs 400 Gb/s Ethernet Task Force

802.3bj FEC Overview and Status. PCS, FEC and PMA Sublayer Baseline Proposal DRAFT. IEEE P802.3ck

MDVBS SPECIFICATION COMTECH TECHNOLOGY CO., LTD. DVBS TUNER Revision:1.0

DVB-S2X for Next Generation C4ISR Applications

9311 EN. DIGIFORCE X/Y monitoring. For monitoring press-fit, joining, rivet and caulking operations Series 9311 ±10V DMS.

10 Mb/s Single Twisted Pair Ethernet Preliminary Cable Properties Steffen Graber Pepperl+Fuchs

7000 Series Signal Source Analyzer & Dedicated Phase Noise Test System

MPX and MPZ series Low frequencies to 40 GHz Phase Modulators

Problems of high DFE coefficients

Challenge Series Satellite High Speed DVB-S2 IP Modem SK-IP / SK-DV

Analysis on Feasibility to Support a 40km Objective in 50/200/400GbE. Xinyuan Wang, Yu Xu Huawei Technologies

MANUAL ENG DT-2100 ENGLISH QPSK

Further Clarification of FEC Performance over PAM4 links with Bit-multiplexing

Noise Detector ND-1 Operating Manual

EEE ALERT signal for 100GBASE-KP4

Draft Baseline Proposal for CDAUI-8 Chipto-Module (C2M) Electrical Interface (NRZ)

Achieving BER/FLR targets with clause 74 FEC. Phil Sun, Marvell Adee Ran, Intel Venugopal Balasubramonian, Marvell Zhenyu Liu, Marvell

Model 7330 Signal Source Analyzer Dedicated Phase Noise Test System V1.02

Table LDCP codes used by the CLT {EPoC_PMD_Name} PCS for active CCDN

MENU EXECUTE Shiloh Road Alpharetta, Georgia (770) FAX (770) Toll Free

Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing

Transcription:

LDPC-PAM12 PHY proposal for 10GBase-T P802.3a July 04 Jose Tellado, Teraetics Katsutoshi Seki, NEC Electroics 1

Supporters 2

Overview Mai parameters of PHY proposal PAM LDPC THP Start-up ad Framig Performace Margi or Noise Immuity Trasmitter ad Receiver assumptios Implemetatio 3

Mai parameters of PHY proposal FEC code: LDPC(833,1024) Modulatio: 12PAM. Symbol rate: 825MHz Equalizatio: Tomliso-Harashima precodig (THP) LDPC Framig MAC I/F, MAC/PHY Cotrol 4

LDPC 5

LDPC Parameters Code Iformatio bits/symbol Required SNR for BER=1E-12 Shao boud Gap to capacity @ BER =1E-12 Itrisic Latecy Symbol rate (w/o packet overhead) Hammig Distace LDPC(833,1024) PAM12 mappig 3.13bits 23.8dB (*1) 18.8dB 5dB 160sec 799MHz 12 LDPC(1723,2048) PAM12 mappig 3.18bits ~ 24dB (*2) 19.1dB ~ 5dB 320sec 786MHz 8 *1 : Ref. http://www.ieee802.org/3/a/public/jul04/seki_1_0704.pdf *2 : Estimated based o Rao's proposal ad re-mappig the code from PAM8 to PAM12 LDPC(833,1024) has comparable performace to LDPC(1723,2048) with lower latecy. 6

LDPC(833,1024) Performace No error see i 2.0E13 bits at SNR=23.8dB Average umber of error bits per error blocks =24.0 No error see i 2.0E13 bits at SNR=23.8dB 80% Iterval upper boud - No error floor observed up to 1E-12 BER - Required SNR=23.8dB for 1E-12 BER FER=BER/24.0*1792 UB: Upper Boud BER with 80% cofidece NF: Number of Frames =2.0E13/1792 f(x) : The probability of error free at x FER ( UB / 24*1792) 0 1 0 f ( x) dx f ( x) dx = 0.8 f ( x) = exp( NF *log(1 x)) 7

THP 8

Beefits of THP 1. Permits strog block code such as LDPC by decouplig chael equalizatio from chael codig Strog block code is ecessary to get sufficiet margi for implemetatio losses ad reliable performace 2. Error propagatio free Avoids sub-optimal performace of DFE equalizer 3. Removes DFSE timig loop Simplifies timig closure Ref. http://www.ieee802.org/3/a/public/mar04/powell_1_0504.pdf Scott Powell et al, Multi-Vedor Agreemet o Precoder Proposal 9

Performace relative to um. of coef. IL Model : P802.3 Task Force Material Measured Class E model ANEXT : 64.5-10.0*Iog10(F/100) ( F < 100MHz) 64.5-15.0*Iog10(F/100) ( F >= 100MHz) BGN : -150dBm/HZ Without other impairmets FFE : 64 taps 20 coefs. are ecessary to achieve eough performace over differet chaels 10

Performace relative to accuracy of coef. IL Model : P802.3 Task Force Material Measured Class E model ANEXT : 64.5-10.0*Iog10(F/100) ( F < 100MHz) 64.5-15.0*Iog10(F/100) ( F >= 100MHz) BGN : -150dBm/HZ Tx Power : 10dBm(Flat PSD) FFE : 64taps DFE : 32taps Bit legths after the decimal poit = #bits 3bit THP coefficiets requires 12 bits accuracy for egligible loss 11

THP proposal summary Number of coef. : 20 taps Bit accuracy of coef. : 12 bits Iteroperability : HDSL2 approach Coefficiets determied at start up the fixed We have provided a mechaism for coefficiet update which may be elimiated if we have sufficiet data to prove that the update is ot required 12

Startup protocol 13

Startup sequece 14

PHY Cotrol State Diagram lik_cotrol=enable cofig=master* miwait timer_doe* loc_rcvr_pma_status = OK* rem_rcvr_pma_status = OK Slave Silet Start maxwait timer tx_mode <= SEND_Z PMA Traiig Start miwait timer tx_mode <= SEND_P SEND THP coef. Start miwait timer tx_mode <= SEND_T miwait timer_doe*ts_detect=ok SEND THP coef. tx_mode <= SEND_F Ed of Secod FM Frame THP coef settig Start thp_set_timer tx_mode <= SEND_Z thp_set_timer_doe PCS Traiig Start miwait timer miwait timer_doe* loc_rcvr_pcs_status = OK miwait timer_doe* loc_rcvr_pcs_status = NOT_OK tx_mode <= SEND_L PCS Lik OK Stop maxwait timer Start miwait timer tx_mode <= SEND_L cofig=master+scr_status = OK cofig=slave* miwait timer_doe* tm_detect=ok SEND THP coef. Start miwait timer tx_mode <= SEND_T miwait timer_doe*fm_detect=ok tx_mode: PCS seds sigal accordig to this variable SEND_Z: Silet SEND_P: 2PAM-PRBS for PMA Traiig SEND_T: Frame for exchagig THP coefficiets (TM/TS) SEND_F: Frame for phase3 termiatio (FM) SEND_L: LDPC Frame tm_detect idicates whether TM frame is detected or ot ts_detect idicates whether TM frame is detected or ot fm_detect idicates whether FM frame is detected or ot 15

PCS Lik Moitor State Diagram 16

PMA Traiig sigal Objective: Recover timig ad adaptive filter coefficiets Establish polarity correctio, pair swap, pair deskew Side stream scrambler: (ref IEEE802.3 40.3.1.3.1) g m (x)=1+x 13 +x 33 g s (x)=1+x 20 +x 33 17

PMA Traiig sigal (cot ) Geeratio of bits Sy[3:0] Sy Sy Sy Sy [0] = Scr [0] [1] = g( Sy[0]) = Scr [2] = g( Sy [1]) = Scr g( Sy [3] = g( Sy g( x) = x 3 + x 8 [2]) = Scr [3]^ Scr [8] [2])^ Sy [0] = Scr [6]^ Scr [16] [9]^ Scr [14]^ Scr [19]^ Scr [24] if ( loc _ rcvr _ [9]^ Scr [14]^ Scr [19]^ Scr [24]^ Scr [0] pma _ status else = NG) Geeratio of Trasmit symbol vector 7 if ( Sy[0] = 0) A = 7 else 7 if ( Sy[2] = 0) C = 7 else 7 if ( Sy[1] = 0) B = 7 else 7 if ( Sy[3] = 0) D = 7 else This PMA traiig sigal ca meet objectives of polarity correctio, pair swap ad pair deskew. 18

19 >= + < = >= + < = >= + < = >= < = else TxTM if D else TxTM if C else TxTM if B else TxTM if A 7 0) 3 4 ( 7 7 0) 2 4 ( 7 7 0) 1 4 ( 7 7 0) 4 ( 7 PAM2 mappig THP coefficiet exchage frame

Framig 20

PCS Fuctioal block 21

FER Moitor FER_MT_INT high_fer <=false fer_test_prity<=false UCT reset+!block_lock!parity_valid START_TIMER fer_ct <= 0 start 125us_timer fer_test_parity FER_TEST_PARITY fer_test_prity<=false parity_valid 125us_timer_doe Proposal: FER moitor istead of BER moitor usig 66B 2bits syc header FER_BAD_PARITY fer_ct ++ fer_ct<tbd* 125us_timer_doe fer_test_parity* fer_ct<tbd* 125us_timer_ot_doe fer_ct=tbd HI_FER hi_fer <= true 125us_timer_doe GOOD_FER hi_fer <= false UCT block_lock: Boollea variable that is set true whe receiver aquires LDPC frame sychroizatio. The method used to detect frame sychroizatio is vedor depedet. parity_valid:boollea variable that is set true if recieved LDPC subuit has o parity check error. 22

Framig ad Cotrol 64B/65B Code (based o 64B/66B Clause 49) Aliged with LDPC Frame Automatic 64B/65B code syc after required LDPC frame syc Elimiates oe syc bit (uecessary with LDPC frame syc) data code 01 -> 0 cotrol code 10 -> 1 LDPC frame payload : 800 65B blocks + 721 PHYcotrol/padbits +112 pad bits for LDPC frame aligmet PHY cotrol/padbits ope for PHY status, THP updates, CRC, LDPC subuit : 1792bits =128 4D PAM12 symbol LDPC symbol frame : 33 LDPC subuits Symbol rate: 10Gx(1792x33)/(64x800)/14 = 825MHz Symbol rate of 825MHz is easy to geerate from stadard oscillators i the rage 25-170MHz (e.g. 25, 100, 125, 150MHz) with a N/M PLL multiplicatio 23

Framig ad Cotrol (cot ) 4224 = 128*33 =(2^7)*33 symbol clock Power of 2 (128=2^7) block facilitates use of frequecy domai processig. 24

Frame aligmet parameters Frame aligmet parameters Num. of Frame aligmet symbol (FAS) bits Num. of cadidate positios Assumed BER before decodig Average reframe time (Trf) Variatio reframe time (Vrf) False I-frame time (Tff) Out-of-frame detectio time (Tof) Misframe time (Tmf) 32 bits 4224 <1E-12 2.00 frames 0 frames 4.367E15 frames = 709 years 4.00 frames 9.537E41 frames =1.55E29 years Note 1 : Two successive good FAS cofirmatio for frame aligmet Note 2 : Four successive bad FAS cofirmatio for frame misaligmet Ref. : D. Choi, Frame aligmet i digital carrier system A tutorial, IEEE Commuicatios magazie, Feb. 1990, p47-54 PAM2 Frame aligmet ca achieve fast reframe ad egligible misframe 25

Frame aligmet symbol spectrum All four Frame aligmet symbols (FAS) have good Spectral behavior Spectral Null at DC ad Nyquist frequecy Low peak to average level No spectral lies FAS spectrum has 2112 (=4224/2) carriers i 412.5MHz (=825MHz/2) Assumptios Max. trasmit voltage: 2.0Vp-p No digital filter 26

Trasmit bit orderig 27

LDPC Subuit Systematic Ecodig LDPC Ecodig (systematic) TxP<0:1600> (0:first bit) iput order TxP<0>=TxL<0> TxP<1449> TxP<1460> TxP<1598>=TxL<1785> ucoded 3bits TxP<1600> coded 4bits TxC<1020> TxC<0> TxP<6>=TxL<6>=TxC<3> TxP<1455> TxP<1459> TxL<1791>=TxC<1023> TxL<0:1791> (0:first bit) outut order TxP<0:1600>:Payload Subuit TxC<0:1023>:LDPC Codeword TxL<0:1791>:LDPC Subuit : Payload : Check bits 28

LDPC to PAM12 mappig Based o www.ieee802.org/3/a/public/mar04/dabiri_1_0304.pdf PAM12 mappig achieved with simple tables below TA=X1*8+X2 (12PAM mappig o wire A) TB=Y1*8+Y2 (mappig wire B) TC,TD shall use tx_data_ group<7:13> i the same way as TA,TB Tx_data_group<0:2> (ucoded bits A&B) X1 Y1 000 001 011 010 110 111-1 -1-1 0 1 1-1 0 1 1 1 0 Tx_data_group <3:4> (coded bits wire A) 00 01 11 10 X2-3 -1 1 3 Tx_data_group <5:6> (coded bits wire B) 00 01 11 10 Y2-3 -1 1 3 101 1-1 100 0-1 29

Scrambler Objective : Maitai DC balace Scrambler polyomial: x 58 +x 39 +1 The PAM2 frame aligmet symbols ad LDPC check bits shall ot be scrambled. 30

Performace 31

LDPC(833,1024) Margi Largest Margi or Noise Immuity close to 800MHz Assumptios: Model 3 with AWGN=-150dBm/Hz 4dBm Tx Power (2V pk-pk at MDI) LDPC 8dB gai EcCac(60dB), NXCac(40dB), FXCac(20dB), Margi (db) 9 8 7 6 5 4 3 16PAM LDPC(833,1024) Margi 12PAM 8PAM ADC(9b), DAC(10b) 700 800 900 1000 1100 Samplig Rate (MHz) ANEXT Margi SNR Margi 16PAM 12PAM 8PAM 32

12PAM at 825MHz (cot) 12PAM at 825MHz has largest margi Multiple presetatios cofirm largest margi close to 800MHz Broadcom~800MHz, NEC Electroics ~820MHz, Solarflare~833MHz, KeyEye~833 (ucoded 8PAM) 12PAM has lower symbol rate ~20% reductio i digital power cosumptio relative to 8PAM ~20% reductio i badwidth of aalog ad mixed sigal circuits relative to 8PAM 12PAM ca be combied efficietly with THP Allows for Framig ad MAC/PHY Cotrol overhead 33

Performace Margi 12PAM LDPC(833,1024) requires receiver SNR=23.8dB for BER<1E-12 ANEXT Lik Margi (Salz). Model 1&3: ~7.5dB Model 2: ~6.6dB SNR Lik Margi (Salz) Model 1&3: ~4.8dB Model 2: ~5.6dB 34

Trasmitter assumptios Modulatio: 12PAM FEC code: LDPC(833,1024) Symbol rate: 825MHz DAC resolutio: 10bits DAC speed: 825MHz Max trasmit lauch voltage: 2volt pk-pk at MDI port 35

Receiver assumptios Echo suppressio: 60dB NEXT suppressio: 40dB FEXT suppressio: 20dB ADC speed: 825MHz Ideal ADC resolutio: 9bits PAR at iput to ADC: 14dB Echo cacellatio prior to ADC: 25dB Additive Gaussia oise at receiver: -150dBm/Hz 36

Implemetatio 37

Implemetatio Complexity Digital Gates: 4M if operated at Fs This is ot a recommedatio to operate digital at Fs Power: 8W assumig 90m process Digital: ~3.5W Aalog: ~4.5W Tradeoffs possible betwee power ad gate cout 38

LDPC-PAM12 Proposal Summary Achieves 5-6dB of margi o approved chael models 1-4 Required to meet 10G objectives with sufficiet margi Low Itrisic latecy of ~160s Very similar parameters to multiple PHY proposals (THP, LDPC, Symbol rate ~800MHz ) 39