Optical shift register based on an optical flip-flop memory with a single active element Zhang, S.; Li, Z.; Liu, Y.; Khoe, G.D.; Dorren, H.J.S.

Similar documents
All-Optical Flip-Flop Based on Coupled Laser Diodes

All-optical Write/Read Memory for 20 Gb/s Data Packets

Wavelength selective electro-optic flip-flop

All-Optical Flip-Flop Based on Coupled SOA-PSW

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

High gain L-band erbium-doped fiber amplifier with two-stage double-pass configuration

Investigation of Two Bidirectional C + L Band Fiber Amplifiers with Pumping Sharing and Wavelength Reused Mechanisms

Chapter 4: One-Shots, Counters, and Clocks

Opto-VLSI-based Tunable Linear-Cavity Fibre Laser

Scholars Research Library. Performance analysis of MZI in label- swapped networks using integrated soa-based Flip- Flops and Optical Gates

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Experimental Study on Dual-Wavelength Distributed Feedback Fiber Laser

Chapter 4. Logic Design

IT T35 Digital system desigm y - ii /s - iii

AFRL-RY-WP-TR

LaserPXIe Series. Tunable Laser Source PRELIMINARY SPEC SHEET

RX40_V1_0 Measurement Report F.Faccio

PESIT Bangalore South Campus

SHF Communication Technologies AG,

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur

Kodak Ektapro HS Motion Analyser

Dual-input hybrid acousto-optic set reset flip-flop and its nonlinear dynamics

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Chapter 5 Flip-Flops and Related Devices

Application Note 5098

Compact multichannel MEMS based spectrometer for FBG sensing

INTEGRATED ASSEMBLIES MICROWAVE SOLUTIONS FROM TELEDYNE COUGAR

Design of Barker code generator in optical domain using Mach-Zehnder interferometer

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS

Research Article Ultra Low Power, High Performance Negative Edge Triggered ECRL Energy Recovery Sequential Elements with Power Clock Gating

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Reducing input dynamic range of SOA-preamplifier for 100G-EPON upstream

LATCHES & FLIP-FLOP. Chapter 7

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

OSA20 KEY FEATURES SPEC SHEET OPTICAL SPECTRUM ANALYZER

Advanced Test Equipment Rentals ATEC (2832)

Sri Vidya College of Engineering And Technology. Virudhunagar Department of Electrical and Electronics Engineering

Amon: Advanced Mesh-Like Optical NoC

MC9211 Computer Organization

LASERS. Fabry Perot (FP) Distributed Feedback (DFB) Vertical Cavity Surface Emitting Laser (VCSEL)

INC 253 Digital and electronics laboratory I

A Quasi-Static Optoelectronic ATM Switch

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

GFT Channel Digital Delay Generator

PEP-II longitudinal feedback and the low groupdelay. Dmitry Teytelman

MULTIDYNE INNOVATIONS IN TELEVISION TESTING & DISTRIBUTION DIGITAL VIDEO, AUDIO & DATA FIBER OPTIC MULTIPLEXER TRANSPORT SYSTEM

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN

Fast Orbit Feedback at the SLS. Outline

D Latch (Transparent Latch)

MODULE 3. Combinational & Sequential logic

CMOS Design Analysis of 4 Bit Shifters 1 Baljot Kaur, M.E Scholar, Department of Electronics & Communication Engineering, National

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

O-to-E and E-to-O Converters

Overcoming Nonlinear Optical Impairments Due to High- Source Laser and Launch Powers

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers

EEE2135 Digital Logic Design Chapter 6. Latches/Flip-Flops and Registers/Counters 서강대학교 전자공학과

Contents Circuits... 1

QSFP+ 40GBASE-SR4 Fiber Transceiver

Application Note #63 Field Analyzers in EMC Radiated Immunity Testing

Discrete Mode Laser Diodes emitting at l~689 and 780nm for Optical Atomic clock applications.

1640 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 12, JUNE 15, 2008

CHAPTER1: Digital Logic Circuits

WINTER 15 EXAMINATION Model Answer

The high-end network analyzers from Rohde & Schwarz now include an option for pulse profile measurements plus, the new R&S ZVA 40 covers the

Registers and Counters

Agilent 81600B Tunable Laser Source Family

Using the MAX3656 Laser Driver to Transmit Serial Digital Video with Pathological Patterns

Logic Design Viva Question Bank Compiled By Channveer Patil

Compact EGC Fiber Deep Nodes A90100 and A90300

MAFA 5000 Series Erbium Doped Fiber Preamplifier

UNIT-3: SEQUENTIAL LOGIC CIRCUITS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COUNTERS

CHAPTER 1 LATCHES & FLIP-FLOPS

Module -5 Sequential Logic Design

MPX and MPZ series Low frequencies to 40 GHz Phase Modulators

PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4

3036 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 18, SEPTEMBER 15, 2012

High-Speed ADC Building Blocks in 90 nm CMOS

CHEETAH-X Compact Picosecond Laser. Customized systems with SESAM technology*

CBF500 High resolution Streak camera

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops

Rangkaian Sekuensial. Flip-flop

Review of Flip-Flop. Divya Aggarwal. Student, Department of Physics and Astro-Physics, University of Delhi, New Delhi. their state.

Performance Driven Reliable Link Design for Network on Chips

Introduction to Sequential Circuits

GFT Channel Slave Generator

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers

Logic and Computer Design Fundamentals. Chapter 7. Registers and Counters

Introduction to Microprocessor & Digital Logic

EKT 121/4 ELEKTRONIK DIGIT 1

EBU INTERFACES FOR 625 LINE DIGITAL VIDEO SIGNALS AT THE 4:2:2 LEVEL OF CCIR RECOMMENDATION 601 CONTENTS

OSICS 8-Channel Modular Platform for DWDM Testing

Delta-Sigma ADC

EITF35: Introduction to Structured VLSI Design

AC103/AT103 ANALOG & DIGITAL ELECTRONICS JUN 2015

Transcription:

Optical shift register based on an optical flip-flop memory with a single active element Zhang, S.; Li, Z.; Liu, Y.; Khoe, G.D.; Dorren, H.J.S. Published in: Optics Express DOI: 10.1364/OPEX.13.009708 Published: 01/01/2005 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. The final author version and the galley proof are versions of the publication after peer review. The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication Citation for published version (APA): Zhang, S., Li, Z., Liu, Y., Khoe, G. D., & Dorren, H. J. S. (2005). Optical shift register based on an optical flip-flop memory with a single active element. Optics Express, 13(24), 9708-9713. DOI: 10.1364/OPEX.13.009708 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 21. Apr. 2018

Optical shift register based on an optical flip-flop memory with a single active element S. Zhang, Z. Li, Y. Liu, G. D. Khoe and H. J. S. Dorren COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513,5600 MB, Eindhoven, the Netherlands s.zhang@tue.nl Abstract: We present an optical shift register that consist out of two serially connected optical flip-flop memories driven by common clock pulses. Each optical flip-flop consists out of two ring lasers sharing a single active element, which makes the optical flip-flops easily cascade with each other. The two cascaded optical flip-flops are controlled by the clock pulses in such a way that the input data set the new state of the first optical flipflop, after the state of the first flip-flop has been transferred to the second optical flip-flop. The concept is demonstrated at an operation speed of 20 khz, which is limited by the 10 m long laser cavities formed by the fiber pig-tailed components. 2005 Optical Society of America OCIS codes: (210.4680) Optical memories; (200.4560) Optical data processing. References and link 1. N. A. Whitaker Jr., M. C. Gabriel, H. Avramopoulos, and A. Huang, All-optical, all-fiber circulating shift register with an inverter, Opt. Lett. 16, 1999-2001 (1991). 2. A. J. Poustie, R. J. Manning, and K. J. Blow, All-optical circulating shift register using a semiconductor optical amplifier in a fibre, Electron. Lett. 32, 1215-1216 (1996). 3. B. Tian, W. V. Etten, and W. Beuwer, Ultrafast all-optical shift register and its perspective application for optical packet switching, IEEE J. Sel. Top. Quantum Electron. 8, 722-728 (2002). 4. S. Zhang, Y. Liu, D. Lenstra, M. T. Hill, H. Ju, G. D. Khoe, and H. J. S. Dorren, Ring-laser optical flipflop memory with single active element, IEEE J. Sel. Top. Quantum Electron. 10, 1093-1100 (2004). 5. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes, (Artech House, London, 1994). 6. M. T. Hill, H. J. S. Dorren, T. J. de Vries, X. J. M. Leijtens, J. H. den Besten, E. Smalbrugge, Y. S. Oei, G. D. Khoe, and M. K. Smit, A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206-209 (2004). 7. S. Zhang, D. Owens, Y. Liu, M. T. Hill, D. Lenstra, A. Tzanakaki, G. D. Khoe, and H. J. S. Dorren, Multistate optical memory based on serially interconnected lasers. IEEE Photon. Technol. Lett. 17, 1962-1964 (2005). 1. Introduction Optical shift registers have received considerable attention since they could be potentially applied in optical packet buffers and serial-to-parallel converters [1-3]. Several approaches have been explored. It is shown in Refs. [1, 2] that circulating optical shift registers are realized using either fiber buffers or using Sagnac interferometers. Another example, given in Ref. [3], is based on coupled SEEDS (self-electro-optic effect device) driven by changes of the driving voltage. In this paper, we present an optical shift register based on cascaded optical flip-flop memories driven by common optical clock pluses. The optical flip-flop memory consists of two ring lasers that share a single active element [4], which makes that the optical flip-flops easily cascade with each other. The optical shift register configuration is generic. This concept can be implemented using different optical flip-fops [5]. Ultra-compact optical flip-flops with a switching speed that is potentially greater than 100 GHz have been demonstrated in Ref. [6]. It has been shown that optical flip-flops can be coupled without isolation to form memories [7]. This means that this concept has potential to be integrated and to perform at high speed. (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9708

2. Operation principle Figure 1 shows a block diagram of the optical shift-register, which consists of an optical converter in combination with two cascaded optical flip-flop memories. The optical flip-flop memory consists of two coupled ring lasers [4] which are bi-stable in the sense that in each stable state one of the lasers lases while the other is suppressed. The state of the optical flipflop memory is thus determined by the wavelength of the dominant laser. Therefore, an optical converter is needed to transform optical data encoded by two binary intensity levels (on and off) into data encoded in two different wavelengths corresponding to the two states of the optical flip-flop. Each optical flip-flop has two input ports and two output ports. The light injected into the port In1 can not set a new state unless the optical flip-flop is cleared by a strong external optical pulse injected into the port In2. Two optical flip-flops are cascaded by connecting the port Out1 of optical flip-flop 1 with the port In1 of optical flip-flop2. Port Out2 of each optical flip-flop is used to output light for monitoring. Fig. 1. Schematic configuration of the optical shift register. The optical shift-register operates in the following fashion. Firstly, the intensity modulated input data are transformed by the optical converter into wavelength encoded data and subsequently injected into the port In1 of flip-flop1, which is cascaded with optical flip-flop 2. The two cascaded optical flip-flops are controlled by optical clock pulses that are required to clear the optical flip-flops. We use an external optical clock signal whose power is divided into two parts. 50% of the power is delayed while the other 50% of the power is used to clear the state of optical flip-flop 2 (by injection via its port In2 ). The output from optical flip-flop 1 then sets the new state of optical flip-flop 2. After this operation, the delayed clock pulse is injected into the port In2 of optical flip-flop 1 and subsequently clears its state. The signal encoded in wavelength that outputs from the optical converter then sets the new state of optical flip-flop 1. Thus a compete shift function has been realized. 3. Experiment results The optical shift register shown in Fig. 1 is implemented using fiber pig-tailed components. The optical converter consists of a unidirectional ring laser as shown in Fig. 2(a). A bulk strained semiconductor optical amplifier (SOA) that acts as the active element has a typical small gain of 20 db at 200 ma and a 3dB saturation power of -5 dbm. A Fabry-Perot filter (3 db bandwidth 0.20 nm) with a wavelength of 1550.92 nm (λ 1 ) is used as a wavelength selective element. An isolator is used to ensure unidirectional lasing. The optical data to be injected into the ring laser are at a wavelength of 1552.52 nm (λ 2 ) and have an average power of 3 dbm, as shown in Fig. 2(c). If the injected information is a binary 1, 50% of the injected optical power is directly coupled to the output port. The other half of the injected light is coupled into the ring cavity by a 50/50 coupler and suppresses the lasing by saturating the (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9709

SOA. The light that outputs the optical converter is thus at the wavelength λ 2, as indicated in Fig. 2(d). If no light is injected into the ring laser (a binary 0 ), the ring laser remains lasing at the wavelength λ 1, as indicated in Fig. 2(e). In this case, the light that outputs the optical converter is at the wavelength λ 1. Thus the data encoded in intensities are transformed by the optical converter into the data encoded in wavelengths. Fig. 2. (a) The configuration of the optical converter. (b) The symbol that we use to indicate the optical converter. (c) The signal injected into the optical converter at the wavelength of λ 2 (1552.52 nm). (d) and (e) The signal that outputs the optical converter at the wavelengths of λ 2 and λ 1 (1550.92 nm), respectively. ISO Isolator. Fig. 3. (a) Schematic configuration of the optical flip-flop memory. (b) The symbol that we use to indicate the optical flip-flop memory. (c) and (d) Experimental results to show that the system has two stable states. ATT: Attenuator Each optical flip-flop memory consists of two ring lasers sharing a SOA and a feedback arm as shown in Fig. 3(a). The two ring cavities are formed using two 50/50 couplers. Each ring cavity contains a Fabry-Perot filter acting as a wavelength selective element. A variable (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9710

attenuator is placed in each ring to balance the cavity losses. The central wavelengths of the Fabry-Perot filter in the ring cavity 1 and 2 are λ 1 and λ 2, respectively. The SOA is biased with 250 ma injection current. It is shown in Ref. [4] that the roundtrip conditions of the two ring cavities can not be satisfied simultaneously due to the presence of feedback light. As a result of this the intensity of the lasing state shows periodic oscillations. The system shows bistable behavior in the sense that only one of the two lasers can lase while the other is suppressed (Fig. 3(c) and 3(d)). Switching between the two states takes place by injecting external light, at the same central wavelength of the suppressed laser, to the port In1. The threshold switching power of the external light is -15.0 dbm. The length of the ring cavity is about 10 m employing a fiber pig-tailed setup, which leads to a switching time of 5.0 μs. When the power of the external light is below the threshold value, the system maintains the initial state. In this case, another external light input (with 3 dbm of power) at a central wavelength of 1559.30 nm (λ 3 ) is injected into the optical flip-flop via the port In2. This additional input light deeply saturates the SOA so that both lasers are suppressed. In the remainder of this paper, we refer to this process as clearing of the memory. After clearing the optical flip-flop, the light injection via the port In2 is stopped and the light injected via the port In1 sets the new state of the memory. Thus the optical flip-flop starts lasing at the wavelength of the light injected via the port In1. Fig. 4. Experimental results for shifting of the binary sequence 01010011. (a): The 20 khz clock signal. (b) The output of the optical converter. (c) The output of optical flip-flop 1. (d) The output of optical flip-flop 2. All the signals in panels (b), (c) and (d) are filtered by a filter with a center wavelength of λ 2 (1552.92 nm). The optical converter combined with two cascaded optical flip-flops form the optical shift register. Figure 4 shows how the information of a binary 01010011 signal is shifted. As shown in Fig. 4(a), the 20 khz optical clock pulses are at the wavelength λ 3 and have a pulse-width of 4.0 μs (Full Width at Half Maximum). The intensity encoded input signal operates at the same frequency and is synchronized with the clock pulses. The input signal is firstly transformed into wavelength encoded signal by the optical converter, and is then injected into the port In1 of optical flip-flop 1, which is cascaded with optical flip-flop 2. The output of the optical converter, optical flip-flop 1 and optical flip-flop 2 are shown in Fig. 4(b), 4(c) and 4(d), respectively. In order to present the experimental results explicitly, the three outputs are filtered using a filter with a central wavelength of λ 2. Hence, a 0 state in Fig. 4(c) and 4(d) correspond to a lasing state at the wavelength λ 1 as shown in Fig. 3(c). It is shown in Fig. 4 that both optical flip-flops keep their initial states until they are cleared by the strong clock (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9711

pulses. This is because the optical power injected into each optical flip-flop via the port In1 is below the threshold power and the optical flip-flops can only be cleared by a well-timed clock pulse injected via the port In2. The optical power of the clock signal is split into two parts. 50% of the power is directly injected into the port In2 of optical flip-flop 2 to clear this memory. After 4 μs (the duration of the clock pulse), the output of optical flip-flop 1 sets the new state of optical flip-flop 2. This procedure is repeated for optical flip-flop 1 using the other 50% of the power of the clock pulse delayed by 12.7 μs. The new state of optical flipflop 1 is then set by the output of the optical converter which leads to the completion of the shift function. All the operations take place within one clock cycle. Note that the seemingly noisy output from each flip-flop shown in Figs. 4(c) and 4(d) is due to the feedback induced oscillation of the intensity of the lasing light in each flip-flop. The oscillation frequency is typically at a few hundreds of MHz, which is so fast compared with the 10 KHz operation speed that the output looks like noisy. The way to improve the noise performance is to use a threshold functional device, like the optical coveter shown in Fig. 2, to smooth out the oscillation. A shift register should not only shift information, but also maintain the state in the absence of clock pulses, which is demonstrated as follows. The data to be shifted is a repetitive binary 01010101 signal. The 20 khz optical clock pulses are modulated in such a way that every six consecutive optical pluses are followed by five consecutive blank cycles as shown in Fig. 5(a). The output of the optical converter, optical flip-flop 1 and optical flip-flop 2 are shown in Figs. 5(b), 5(c) and 5(d), respectively. In order to show the experimental results explicitly, the three outputs are filtered using a filter with a central wavelength of λ 2, Hence, a 0 state in Fig. 4(c) and 4(d) corresponds to a lasing state at the wavelength λ 1 as shown in Fig. 3(c). It is shown in Fig. 4 that both optical flip-flops keep their states in the absence of clock pulses, while the system starts to shift data with an injected optical clock pulse. Fig. 5. Experimental results when the clock signal is modulated such that every six consecutive pluses are followed by five consecutive blank cycles. (a) The 20 khz clock signal. (b) The output of the optical converter. (c) The output of optical flip-flop 1. (d) The output of optical flip-flop 2. All the signals in panels (b), (c) and (d) are filtered by a filter with a center wavelength of λ 2 (1552.92 nm). 4. Conclusion An optical shift register based on serially connected optical flip-flop memories is experimentally demonstrated at an operation speed of 20 khz. The operation speed is limited (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9712

by the slow switching speed of the optical flip-flop memory due to 10 m long ring cavity made by fiber-pig-tailed components. Photonic integration would decrease the dimensions of the building blocks and increases the operation speed of the shift register. Optical shift registers have advantages over fiber delay line. A simple delay line can only delay the signal, while an optical shift register can store data and only shift data as a response on clock pulses. Besides its potential for photonic integration, more complex functionalities like tunable shift slot and serial-to-parallel converters are feasible, since it digitally manipulates optical data at a bit-level. Furthermore, the optical shift register demonstrates that cascaded optical flip-flops can perform more sophisticated digital optical signal processing functions. In principle, the concept can also be applied using different flip-flop concepts with ultra-fast operation speed. Acknowledgments This work was supported by the Technology Foundation STW through the Innovation Research Incentives Scheme program. (C) 2005 OSA 28 November 2005 / Vol. 13, No. 24 / OPTICS EXPRESS 9713