SuperTRISTAN. A possibility of ring collider for Higgs factory. 13 Feb K. Oide (KEK)

Similar documents
PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland

PEP II Design Outline

Future Circular Collider Study

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

PEP II STATUS AND PLANS *

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer

Focus of efforts. ILC 2010, Mar/27/10 A. Seryi, BDS: 2

KEKB Accelerator Physics Report

Upgrading LHC Luminosity

ABORT DIAGNOSTICS AND ANALYSIS DURING KEKB OPERATION

Present Status and Future Upgrade of KEKB Injector Linac

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

CONSTRUCTION AND COMMISSIONING OF BEPCII

PEP II Status and Plans

Status and Plans for PEP-II

PEP-II STATUS REPORT *

STATUS AND FUTURE PROSPECTS OF CLIC

LEP OPERATION AND PERFORMANCE WITH ELECTRON-POSITRON COLLISIONS AT 209 GEV

STATUS OF THE INTERNATIONAL LINEAR COLLIDER

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems

LEP Status and Performance in 2000

LHC COMMISSIONING PLANS

SUMMARY OF SESSION 4 - UPGRADE SCENARIO 2

Operational Status of PF-Ring and PF-AR after the Earthquake

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003

Overview of the X-band R&D Program

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN

Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme (Padova), Italy

FIRST SIMULTANEOUS TOP-UP OPERATION OF THREE DIFFERENT RINGS IN KEK INJECTOR LINAC

LHC Beam Instrumentation Further Discussion

Production of quasi-monochromatic MeV photon in a synchrotron radiation facility

Accelerator Instrumentation RD. Monday, July 14, 2003 Marc Ross

SUMMARY OF THE ILC R&D AND DESIGN

LEPTON COLLIDER OPERATION WITH CONSTANT CURRENTS Λ

Drift Tubes as Muon Detectors for ILC

Trigger-timing signal distribution system for the KEK electron/positron injector linac

The LEP Superconducting RF System

Development of an Abort Gap Monitor for High-Energy Proton Rings *

The Elettra Storage Ring and Top-Up Operation

SPEAR 3: Operations Update and Impact of Top-Off Injection

Assembly of the HIE-ISOLDE accelerator cavities in a clean room.

OPERATIONAL EXPERIENCE AT J-PARC

Status of Elettra, top-up and other upgrades

!"!3

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

P. Emma, et al. LCLS Operations Lectures

AARHUS UNIVERSITET November, ASTRID2 Status. Heine Dølrath Thomsen on behalf of the ASTRID2 Team

SUMMARY OF CARE-HHH IR 07

2008 JINST 3 S LHC Machine THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS. Lyndon Evans 1 and Philip Bryant (editors) 2

4.4 Injector Linear Accelerator

RF upgrade program in LHC injectors and LHC machine

PEP-II Status and Outlook

P. Adamson, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA. Abstract

Status of RF Power and Acceleration of the MAX IV - LINAC

PEP-II Status. U. Wienands, PEP-II Run Coordinator for the PEP-II team

ILC Damping Ring Lattice Status Report. Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007

Precision measurements of beam current, position and phase for an e+e- linear collider

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

November 5,1999. The NLC Injector UCRL-JC

Periodic Seasonal Variation of Magnets Level of the STB ring

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The 2011 LHC Run - Lessons in Beam Diagnostics

beam dump from P2 losses this morning

North Damping Ring RF

LHC Nominal injection sequence

Linac upgrade plan using a C-band system for SuperKEKB

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

PEP-II Overview & Ramp Down Plan. J. Seeman DOE PEP-II Ramp Down-D&D Review August 6-7, 2007

BUNCH BY BUNCH FEEDBACK SYSTEMS FOR SUPERKEKB RINGS

What can be learned from HERA Experience for ILC Availability

ILC-LNF TECHNICAL NOTE

PEP-I1 RF Feedback System Simulation

OPERATIONAL EXPERIENCE WITH CIRCULATING BEAM

Control of Intra-Bunch Vertical Motion in the SPS with GHz Bandwidth Feedback

Concept and R&D Plans for Project X

Synchrotron Light Facility. Operation of ALBA RF. Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo

DELIVERY RECORD. Location: Ibaraki, Japan

1. General principles for injection of beam into the LHC

Challenges in Accelerator Beam Instrumentation

Linear Collider Research and Development at SLAC, LBL and LLNL*

Status of CTF3. G.Geschonke CERN, AB

Commissioning of the CNGS Extraction in SPS LSS4

PULSED POWER FOR FUTURE LINEAR ACCELERATORS

HIGH-INTENSITY PROTON BEAMS AT CERN AND THE SPL STUDY

Status of SOLARIS Arkadiusz Kisiel

A Facility for Accelerator Physics and Test Beam Experiments

arxiv: v1 [physics.acc-ph] 9 Aug 2016

Hall-B Beamline Commissioning Plan for CLAS12

PUBLICATION. Measurement setup at light source operational: Milestone M4.3

NSLS2 Diagnostic System Commissioning and Measurements

Simulations on Beam Monitor Systems for Longitudinal Feedback Schemes at FLASH.

Cooperation Activities for Linear Colliders

Andrei Seryi, Toshiaki Tauchi. December 15-18, 2008

reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8

DATA ACQUISITION SYSTEM FOR SUPERKEKB BEAM LOSS MONITORS

PRESENT STATUS OF J-PARC

WG2 Group Summary. Chris Adolphsen Terry Garvey Hitoshi Hayano

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract

A new Scintillating Fibre Tracker for LHCb experiment

Transcription:

A possibility of ring collider for Higgs factory 13 Feb. 2012 K. Oide (KEK) Inspired by A. Blondel and F. Zimmermann, A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson, V2.1 - V2.7, arxiv:1112.2518v1 [hep- ex], 24 Dec 2011.

Motivations If the Higgs mass is below 130 GeV, an e+e- ring collider may have merits as a Higgs factory: Based on existing technologies which have been proven for 40 years by a number of colliders. The machine will be simple enough, and the operation will be easy and straightforward. The design luminosity will be quickly achieved, for instance after 6 months commissioning. Cheaper construction / operation costs than linear machines. S. Yamashita via A. Blondel and F. Zimmermann

Parameters Example TRISTAN KEKB LEP2 LEP3 DLEP 40 60 Beam Energy Circumference Beam Current / beam Bunches / beam β* x / y Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn RF Voltage RF frequency Total SR Power Luminosity / IP 32 8 / 3.5 105 120 120 120 120 GeV 3 3 27 27 53 40 60 km 7 1400 / 1700 4 7.2 14.4 8.6 8.6 ma 2 1600 4 3 60 12 18 2000 / 40 1200 / 6 1500 / 65 150 / 1.2 200 / 2 80 / 2.5 80 / 2.5 mm 18 / 0.1 48 / 0.25 20 / 0.15 5 / 0.05 23.3 / 0.09 24.6 / 0.09 nm 10 6 3 3 1.5 3 3 mm 0.02 0.025 0.05 0.09 0.025 0.065 0.126 0.13 0.1 0.1 0.05 0.156 0.045 0.155 300 4 / 2 2750 6900 3470 3420 2150 MV 400 10 / 5 3640 9000 4600 5000 3300 MV 508 509 352 1300 1300 1300 1300 MHz 4.2 5.6 / 3.4 22 100 100 59 37 MW 0.04 21 0.13 13 16 10 10 /nb/s

Injection / top up Just follow the LEP3 s scheme (Figure). Use a 10 GeV injector instead of SPS in our case. A. Blondel and F. Zimmermann

Lattice (without IP, etc.)

40 八郷植物センター 薬王院 12.3 km KEK

Costs (very very very rough) Tunnel RF Magnet Beam pipe Synchrotron Others Detector CF 40 60 1600 2400 0.04 / m 450 300 5 / MW 50 60 0.04 / magnet 80 120 0.002 / m 150 200? 100 100? 200 200 1 IP? 100 100? Total construction site power* cost / year 2730 3480 83 63 4,000h 15 yen / kwh *Assuming site power SR power *1.5 + 50 MW

More Aggressive Choices Nano beam scheme as applied at SuperKEKB & SuperB allows βy* shorter than the bunch length. ECM = 400 GeV to detect the self coupling of Higgs. L = 5 x 10 34 with σ = 0.07 fb generates 35 ZHH events per year (10 7 sec). G. Belanger, et al

Parameters Example (2) 40-Nano 60-Nano 80-Nano Beam Energy Circumference Beam Current / beam Bunches / beam β* x / y Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn RF Voltage RF frequency Total SR Power Luminosity / IP 200 200 200 GeV 40 60 80 km 1.5 2 3 ma 1 1 2 20 / 0.2 30 / 0.32 25 / 0.2 mm 2.0 / 0.011 3.2 / 0.017 3.2 / 0.017 nm 1.3 1.4 1.7 mm 0.017 0.160 0.017 0.155 0.015 0.160 33900 18500 13060 MV 35000 21000 15000 MV 1300 1300 1300 MHz 102 74 78 MW 40 52 77 /nb/s

Parameters Example (3) 40-Nano 60-Nano Beam Energy Circumference Beam Current / beam Bunches / beam β* x / y Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn RF Voltage RF frequency Total SR Power Luminosity / IP 120 120 GeV 40 60 km 1 0.85 ma 1 1 26 / 0.25 30 / 0.25 mm 3.0 / 0.011 3.0 / 0.011 nm 1.9 1.9 mm 0.014 0.160 0.013 0.160 3420 2150 MV 5000 3300 MV 1300 1300 MHz 6.84 3.655 MW 12 10 /nb/s

Costs (very very very rough) Tunnel RF Magnet Beam pipe Synchrotron Others Detector CF Total construction site power* cost / year 40-Nano 60-Nano 80-Nano 1600 2400 3200 0.04 / m 750 560 585 5 / MW 240 200 200 0.04 / magnet 80 120 160 0.002 / m 200 250 300? 100 120 150? 200 200 200 1 IP? 100 150 200? 3270 4000 4995 122 97 100 4,000h 15 yen / kwh *Assuming site power SR power *1.5 + 50 MW

Even More Aggressive... ECM = 500 GeV to detect the Higgs-top coupling. L = 1 x 10 34 with σ = 0.3 fb generates 30 tth events per year (10 7 sec). ttbar-higgs 800 GeV 600 GeV 500 GeV e + e t t H Cross section (fb) 3 2.5 2 1.5 1 0.5 0 120 140 150 200 250 300 350 Higgs Mass (GeV) J. Butler

Parameters Example (4) Beam Energy Circumference 80-Nano 250 GeV 80 km Tunnel 80-Nano 3200 0.04 / m Beam Current / beam 1.4 ma RF 680 5 / MW Bunches / beam 2 Magnet 200 0.04 / magnet β* x / y 34 / 0.26 mm Beam pipe 160 0.002 / m Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn 3.4 / 0.013 nm 1.9 mm 0.018 0.140 32450 MV Synchrotron Others Detector CF 300? 150? 200 1 IP? 200? RF Voltage RF frequency Total SR Power 34700 MV 1300 MHz 90 MW Total construction site power* cost / year 5090 111 4,000h 15 yen / kwh Luminosity / IP 20 /nb/s *Assuming site power SR power *1.5 + 50 MW

Parameters Example (5) Beam Energy Circumference 40-Nano 120 GeV 40 km Tunnel 80-Nano 1600 0.04 / m Beam Current / beam 1 ma RF 450 5 / MW Bunches / beam 1 Magnet 50 0.04 / magnet β* x / y 26 / 0.25 mm Beam pipe 80 0.002 / m Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn 3.0 / 0.011 nm 1.9 mm 0.014 0.160 3420 MV Synchrotron Others Detector CF 150? 100? 200 1 IP? 100? RF Voltage RF frequency Total SR Power 5000 MV 1300 MHz 6.84 MW Total construction site power* cost / year 2730 31 4,000h 15 yen / kwh Luminosity / IP 12 /nb/s *Assuming site power SR power *1.5 + 50 MW

Parameters Example (6) Beam Energy Circumference 60-Nano 200 GeV 60 km Tunnel 80-Nano 2400 0.04 / m Beam Current / beam 2 ma RF 560 5 / MW Bunches / beam 1 Magnet 200 0.04 / magnet β* x / y 30 / 0.32 mm Beam pipe 120 0.002 / m Emittances x / y Bunch length Beam-beam parameters Radiation loss / turn 3.2 / 0.017 nm 1.4 mm 0.017 0.155 18500 MV Synchrotron Others Detector CF 250? 120? 200 1 IP? 150? RF Voltage RF frequency Total SR Power 21000 MV 1300 MHz 74 MW Total construction site power* cost / year 4000 97 4,000h 15 yen / kwh Luminosity / IP 52 /nb/s *Assuming site power SR power *1.5 + 50 MW

Ring or Linear? Technology: Matured & Experienced Ring >>> Linear Robustness on Luminosity Ring >> Linear Remember SLC. Beamstrahlung-free Ring Linear? Needs detailed calculation Electron Cloud-free Ring >>> Linear Sources Ring >> Linear Polarization Linear > Ring ΥΥ option Linear >>> Ring No solution known for ring. Extendability Ring: Hadron Collider Linear: Higher Energy by a different scheme Both require significant investment.

Ring or Linear? Construction Site Power (MW) ECM (GeV) Ring Linear ECM (GeV) Ring Linear 240 2700 4300 240 60 146 400 4000 5900 400 111 210 500 5090 6900 500 185 250 7000 250 6000 200 5000 4000 150 3000 100 2000 50 1000 0 0 240 400 ECM (GeV) 500 Ring 240 Linear 400 ECM (GeV) 500