Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops

Similar documents
AN OPTIMIZED IMPLEMENTATION OF MULTI- BIT FLIP-FLOP USING VERILOG

A Low Power Delay Buffer Using Gated Driver Tree

University College of Engineering, JNTUK, Kakinada, India Member of Technical Staff, Seerakademi, Hyderabad

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops

Low-Power Delay Buffer Design Using Asymmetric C-Element Gated Clock Strategy

A Survey on Post-Placement Techniques of Multibit Flip-Flops

A Design Of A Low Power Delay Buffer Using Ring Counter Addressing Schemes

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Use of Low Power DET Address Pointer Circuit for FIFO Memory Design

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

Power Optimization by Using Multi-Bit Flip-Flops

A Greedy Heuristic Algorithm for Flip-Flop Replacement Power Reduction in Digital Integrated Circuits

COPY RIGHT. To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

An FPGA Implementation of Shift Register Using Pulsed Latches

Power Reduction Approach by using Multi-Bit Flip-Flops

CMOS Low Power, High Speed Dual- Modulus32/33Prescalerin sub-nanometer Technology

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

Australian Journal of Basic and Applied Sciences. Design of SRAM using Multibit Flipflop with Clock Gating Technique

Power Efficient Design of Sequential Circuits using OBSC and RTPG Integration

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

Random Access Scan. Veeraraghavan Ramamurthy Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL

Dual Edge Adaptive Pulse Triggered Flip-Flop for a High Speed and Low Power Applications

Figure.1 Clock signal II. SYSTEM ANALYSIS

Design of an Efficient Low Power Multi Modulus Prescaler

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY

A Power Efficient Flip Flop by using 90nm Technology

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology

Low Power D Flip Flop Using Static Pass Transistor Logic

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall,

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION

FAULT SECURE ENCODER AND DECODER WITH CLOCK GATING

Analysis of Digitally Controlled Delay Loop-NAND Gate for Glitch Free Design

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE

2.6 Reset Design Strategy

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH

Low Power Approach of Clock Gating in Synchronous System like FIFO: A Novel Clock Gating Approach and Comparative Analysis

Design of Low Power and Area Efficient 64 Bits Shift Register Using Pulsed Latches

Minimization of Power for the Design of an Optimal Flip Flop

Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC)

Reduction of Area and Power of Shift Register Using Pulsed Latches

LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch

International Journal of Computer Trends and Technology (IJCTT) volume 24 Number 2 June 2015

LFSR Counter Implementation in CMOS VLSI

Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient

Experiment 8 Introduction to Latches and Flip-Flops and registers

QDR SRAM DESIGN USING MULTI-BIT FLIP-FLOP M.Ananthi, C.Sathish Kumar 1. INTRODUCTION In memory devices the most

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits

Clock Tree Power Optimization of Three Dimensional VLSI System with Network

ISSN Vol.08,Issue.24, December-2016, Pages:

11. Sequential Elements

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online:

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet

EE178 Lecture Module 4. Eric Crabill SJSU / Xilinx Fall 2005

Low Power Area Efficient Parallel Counter Architecture

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

DESIGN OF A NEW MODIFIED CLOCK GATED SENSE-AMPLIFIER FLIP-FLOP

Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky,

A REVIEW OF FLIP-FLOP DESIGNS FOR LOW POWER VLSI CIRCUITS

EE178 Spring 2018 Lecture Module 5. Eric Crabill

Design and Analysis of Semi-Transparent Flip-Flops for high speed and Low Power Applications in Networks

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance

High speed, Low power N/ (N+1) prescaler using TSPC and E-TSPC: A survey Nemitha B 1, Pradeep Kumar B.P 2

DUE to the popularity of portable electronic products,

DESIGN OF DOUBLE PULSE TRIGGERED FLIP-FLOP BASED ON SIGNAL FEED THROUGH SCHEME

IN DIGITAL transmission systems, there are always scramblers

RS flip-flop using NOR gate

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique

P.Akila 1. P a g e 60

Chapter 6. sequential logic design. This is the beginning of the second part of this course, sequential logic.

Dual Slope ADC Design from Power, Speed and Area Perspectives

K.T. Tim Cheng 07_dft, v Testability

Combinational vs Sequential

EITF35: Introduction to Structured VLSI Design

D Latch (Transparent Latch)

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register

ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5

COMP2611: Computer Organization. Introduction to Digital Logic

High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique

A NOVEL APPROACH TO ACHIEVE HIGH SPEED LOW-POWER HYBRID FLIP-FLOP

DUAL EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH LOW POWER CONSUMPTION

Design of Testable Reversible Toggle Flip Flop

UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN

Transcription:

International Journal of Emerging Engineering Research and Technology Volume 2, Issue 4, July 2014, PP 250-254 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops K Gnanendra Verma 1, V Purandhar Reddy 2 1 B.Tech Student, Department of ECE, S V College of Engineering, Tirupati, India 2 Associate Professor, Department of ECE, S V College of Engineering, Tirupati, India Abstract: Power reduction has become a vital design goal for sophisticated design applications, whether mobile or not. Researchers have shown that multi-bit flip-flop is an effective method for clock power consumption reduction. The underlying idea behind multi-bit flip-flop method is to eliminate total inverter number by sharing the inverters in the flip-flops. Since the ring counter is made up of an array of D-type flip-flops (DFFs) triggered by a global clock signal it is possible to disable the clock signal to most DFFs. Such a gated-clock ring counter is implemented to compose a low-power first-in first-out (FIFO) memory. In this paper, we will review multi-bit flipflop concepts, and introduce the benefits of using multi-bit flip-flops in our design. We proposed to use doubleedge-triggered (DET) flip-flops instead of traditional DFFs in the ring counter to halve the operating clock frequency. A novel approach using the C-elements instead of the R S flip-flops in the control logic for generating the clock-gating signals is adopted to avoid increasing the loading of the global clock signal. The technique will greatly decrease the loading on distribution network of the clock signal for the ring counter and thus the overall power consumption. The same technique is applied to the input driver and output driver of the memory part in the delay buffer. Then, we will show how to implement multi-bit flip-flop methodology using gated drive tree by XILINX Design Compiler. Experimental results indicate that multi-bit flip-flop using gated drive tree is very effective and efficient method in lower-power designs. 1. INTRODUCTION Portable multimedia and communication devices have experienced explosive growth recently. Longer battery life is one of the crucial factors in the widespread success of these products. As such, low-power circuit design for multimedia and wireless communication applications has become very important. In many such products, multi-bit flip-flops and delay buffers (line buffers, delay lines) make up a significant portion of their circuits [1] [3]. Such serial access memory is needed in temporary storage of signals that are being processed, e.g., delay of one line of video signals, delay of signals within a fast Fourier transform (FFT) architectures [4], and delay of signals in a delay correlator [2]. Currently, most circuits adopt static random access memory (SRAM) plus some control/addressing logic to implement delay buffers. For smaller-length delay buffers, shift register can be used instead. The former approach is convenient since SRAM compilers are readily available and they are optimized to generate memory modules with low power consumption and high operation speed with a compact cell size. The latter approach is also convenient since shift register can be easily synthesized, though it may consume much power due to unnecessary data movement. Besides, for a design when considering power consumption, smaller flip-flops are replaced by larger multi-bit flip-flops, device variations in the corresponding circuit can be effectively reduced. Fig 1. Maximum loading number of a minimum-sized inverter of different technologies. As CMOS technology progresses, the driving capability of an inverter-based clock buffer increases significantly. The driving capability of a clock buffer can be evaluated by the number of minimum-sized IJEERT www.ijeert.org 250

K Gnanendra Verma & V Purandhar Reddy inverters that it can drive on a given rising or falling time. Fig. 1 shows the maximum number of minimum-sized inverters that can be driven by a clock buffer in different processes. Because of this phenomenon, several flip-flops can share a common clock buffer to avoid unnecessary power waste. However, the locations of some flip-flops would be changed after this replacement, and thus the wire lengths of nets connecting pins to a flip-flop are also changed. To avoid violating the timing constraints, we restrict that the wire lengths of nets connecting pins to a flip-flop cannot be longer than specified values after this process. Besides, to guarantee that a new flip-flop can be placed within the desired region, we also need to consider the area capacity of the region. 2. MULTI BIT FLIP-FLOP CONCEPT In this section, we will introduce multi-bit flip-flop conception. Before that, we will review single-bit flip-flop. Figure 2 shows an example of single-bit flip-flop. A single-bit flip-flop has two latches (Master latch and slave latch). The latches need Clk and Clk signal to perform operations, such as Figure2 shows. Figure 2. Single-Bit Flip-Flop In order to have better delay from Clk-> Q, we will regenerate Clk from Clk. Hence we will have two inverters in the clock path. Figure 3 shows an example of merging two 1-bit flip-flops into one 2-bit flip-flop. Each 1-bit flip-flop contains two inverters, master-latch and slave-latch. Figure 3. An example of merging two 1-bit flip-flops into one 2-bit flip-flop. Due to the manufacturing rules, inverters in flip-flops tend to be oversized. As the process technology advances into smaller geometry nodes like 65nm and beyond, the minimum size of clock drivers can drive more than one flip-flop. Merging single-bit flip-flops into one multi-bit flip-flop can avoid duplicate inverters, and lower the total clock dynamic power consumption. The total area contributing to flip-flops can be reduced as well. By using multi-bit flip-flop to implement ASIC design, users can enjoy the following benefits: Lower power consumption by the clock in sequential banked components Smaller area and delay, due to shared transistors and optimized transistor-level layout. Reduced clock skew in sequential gates International Journal of Emerging Engineering Research and Technology 251

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops Figure 4. A dual-bit flip-flop cell. Figure 4 shows an example of dual-bit flip-flop cell. It has two data input pins, two data output pins, one clock pin and reset pin. Use dual-bit flip-flop can get the benefits of lower power consumption then single-bit, and almost no other additional costs to pay. Figure 5. The true table of dual-bit flip-flop cell Figure 5 shows the true table of dual-bit flip-flop cell. We could find that when CK is positive edge, the value of Q1 will pass to D1, and the value of Q2 will pass to D2. Or Q1 and Q2 will keep original value. 3. MULTI BIT FLIP-FLOP METHODOLOGY In the section, we will introduce that how to use Design Compiler and Faraday s multi-bit flip-flop to implement ASIC design. A) The criteria of using multi-bit flip-flop Multi-bit flip-flop cells are capable of decreasing the power consumption because they have shared inverter inside the flip-flop. Meanwhile, they can minimize clock skew at the same time. To obtain these benefits, the ASIC design must meet the following requirements. The single-bit flip-flops we want to replace with multi-bit flip-flop must have same clock condition and same set/reset condition. When you set the variable handling multibit,flipflops as default all, Design Compiler will use multi-bit flip-flop to replace bus type single-bit flip-flops. For non-bus condition, your must use create multibit to identify the multi-bit flip-flop candidates. 4. MEMORY ORGANIZATION BETWEEN EACH MODE In the proposed memory organization, several power reduction techniques are adopted. Mainly, these circuit techniques are designed with a view to decreasing the loading on high fan-out nets, e.g., clock and read/write ports. International Journal of Emerging Engineering Research and Technology 252

K Gnanendra Verma & V Purandhar Reddy A) RING COUNTER This ring counter proposed to replace the R S flip-flop by a C-element and to use tree-structured clock drivers with gating so as to greatly reduce the loading on active clock drivers. Additionally, DET flipflops are used to reduce the clock rate to half and thus also reduce the power consumption on the clock signal. The proposed ring counter with hierarchical clock gating and the control logic is shown in above figure. Each block contains one C-element to control the delivery of the local clock signal CLK to the DET flip-flops, and only the CKE signals along the path passing the global clock source to the local clock signal are active. The gate signal (CKE) can also be derived from the output of the DET flipflops in the ring counter. The C-element is an essential element in asynchronous circuits for handshaking. B) GATED DRIVER TREE To save area, the memory module of a delay buffer is often in the form of an SRAM array with input/output data bus as in [6]. Special read/write circuitry, such as a sense amplifier, is needed for fast and low-power operations. However, of all the memory cells, only two words will be activated: one is written by the input data and the other is read to the output. Driving the input signal all the way to all memory cells seems to be a waste of power. The same can be said for the read circuitry of the output port. In light of the previous gated-clock tree technique, we shall apply the same idea to the input driving/output sensing circuitry in the memory module of the delay buffer. The memory words are also grouped into blocks. Each memory block associates with one DET flip-flop block in the proposed ring counter and one DET flip-flop output addresses a corresponding memory word for read-out and at the same time addresses the word that was read one-clock earlier for write-in. International Journal of Emerging Engineering Research and Technology 253

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops 5. RESULTS 6. CONCLUSION Using Multi-Bit Flip-flop in combination with gated tree drive is an effective and efficient implementation methodology to reduce the power consumption by merging single-bit flip-flop. In this paper, we have implemented design with XILINX Design Compiler and Faraday s multi-bit flip-flop. Experimental results indicate that multi-bit flip-flop is very effective and efficient method in lowerpower designs. We will use this methodology to implement real ASIC project in the future. REFERENCES [1] Ya-Ting Shyu, Jai-Ming Lin, Chun-Po Huang, Cheng-Wu Lin, Ying-Zu Lin, and Soon-Jyh Chang Effective and Efficient Approach for Power Reduction by Using Multi-Bit Flip-Flops IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS [2] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L.Allmon, High-performance microprocessor design, IEEE J. Solid-StateCircuits, vol. 33, no. 5, pp. 676 686, May 1998. [3] W. Hou, D. Liu, and P.-H. Ho, Automatic register banking for low-power clock trees, in Proc. Quality Electron. Design, San Jose, CA,Mar. 2009, pp. 647 652. [4] Eberle.W et al 2001 80-Mb/s QPSK and 72-Mb/s 64-QAM flexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the 5-GHz band IEEE J. Solid- State Circuits, vol. 36, no. 11, pp. 1829 1838. [5] Hosain.R, L. D. Wronshi, and albicki.a,1994. Low power design using double edge triggered flip -flop, IEEE Trans. Very Large Scale Integr. (VLSI ) Syst., vol. 2, no. 2, pp. 261 265. International Journal of Emerging Engineering Research and Technology 254