Silicon Drift Detectors for the NLC

Size: px
Start display at page:

Download "Silicon Drift Detectors for the NLC"

Transcription

1 Silicon Drift Detectors for the NLC Rene Bellwied (Wayne State University) SD Tracking Meeting September 18th, 2003 Proposed layout for LC tracker Silicon Drift technology hardware progress & plans SVT in STAR Simulation update Summary and Outlook

2 Silicon detector option for LCD (small detector, high field B=5T) Central tracker: Five Layer Device based on Silicon Drift or Silicon Strip Wafers Radiation length / layer = 0.5 %, sigma_rphi = 7 µm, sigma_rz = 10 µm Layer Radii Half-lengths cm cm cm cm cm cm cm cm cm cm 56 m 2 Silicon, Wafer size: 10 by 10 cm, # of Wafers: 6000 (incl. spares) # of Channels: 4,404,480 channels

3 Silicon Drift Tracker (SDT) in UCLC Participants: Wayne State University (WSU) & Brookhaven National Laboratory (BNL) BNL Physics: V. Jain, F. Lanni, D. Lissauer BNL Instrumentation: W. Chen, Z. Li, V. Radeka WSU: R. Bellwied, D. Cinabro, M. Coscione, V.Rykov (KEK) + new postdoc Funding: 3-year NSF proposal (pending, positive review): for a total of $450 K ($ 80, 170, 200 K). Previously we had limited NSF funding for two years. Hardware contribution per year (for BNL): $ 25, 50, 90 K Check out the web at:

4 in use in STAR (RHIC), in construction for ALICE (LHC) SDD s: 3-d measuring devices Features: Low anode capacitance = low noise 3d information with 1d readout Pixel-like by storing 2 nd dimension in SCA Low number of RDO channels based on charge sharing

5 Details of mask design Future: stiffer implanted resistors, no outside power supplies R.Bellwied, June 30, 2002

6 SVT in STAR 216 wafers (bi-directional drift) 3 barrels, r = 5, 10, 15 cm, 103,680 channels, 13,271,040 pixels Resolution: 8 micron and 17 micron respectively, two-track: 150 micron Radiation length: 1.4% per layer 0.3% silicon, 0.5% FEE (Front End Electronics), 0.6% cooling and support. Beryllium support structure. FEE placed adjacent to wafers. No driving capability in very high resistivity n-type NTD Silicon. Water cooling.

7 Typical projective clam-shell design Typical projective clam-shell design

8 STAR-SVT characteristics 216 wafers (bi-directional drift) = 432 hybrids 3 barrels, r = 5, 10, 15 cm, 103,680 channels, 13,271,040 pixels Pixel count determined by # of time buckets in Switched Capacitor Array Resolution: 8 micron and 17 micron respectively Very high resistivity NTD n-type Silicon with no driving capability. At least preamplification stage has to be on detector Radiation length: 1.4% per layer 0.3% silicon, 0.5% FEE (Front End Electronics), 0.6% cooling and support. Beryllium support structure. FEE placed beside wafers. Water cooling. Future: 5 barrels, 6000 wafers, 4,400,000 channels, 0.5% rad.length per layer resolution: 7 micron and 10 micron respectively.

9 achieved with one-dimensional readout with 250 µm pitch Typical SDD Resolution Bench measurements now confirmed by STAR beam time results! (Feb.03) Can be improved through: faster drift, stiffer resistor chain for voltage gradient, different anode pitch, and better starting material

10 3d resolution with relaxed 1d readout pitch Drift detectors are dynamic, i.e. during the drift the electron cloud undergoes diffusion and Coulomb repulsion. That means cloud expands in both dimension (time and anode dimension). There will always be charge sharing because of instant Coulomb repulsion, but the amplitude changes as a function of drift distance and drift velocity. There is an intricate connection between size of wafer, applied voltage, readout pitch, and cluster reconstruction). The optimized readout pitch for STAR was 250 micron for a < 20 micron resolution in both dimensions for a dynamic range from 1-40 MIP when 1500 V are applied to a 3 cm drift distance.

11 Difference between drift and strip in terms of channel count Estimates for the SDT are around 4.4 Million channels assuming readout pitch similar to SVT. You get 1.1 billion pixels. Pixels are all around 300 by 200 micron. The suggested strip detector would have around 1.4 Million channels with 33 micron pitch in x and no z segmentation. You get 1.4 Million pixels. Pixels are 33 by up to 1,670,000 micron. Cost is similar although going to these very long nonsegmented strips might make the strip detector slightly cheaper. Difference is 2d vs 3d. Do we need 3d?

12 STAR measurements (I) Position resolution before and after calibration 13µm 8 µm

13 STAR measurements (II) Global track----momentum resolution----primary track

14 What is next for STAR-SVT? Enhance low pt coverage by accessing primary and secondary particles from MeV/c and MeV/c, respectively Enable high pt extension of TPC physics by improving momentum resolution for GeV/c particles Enable D-meson, B-meson and potentially pentaquark reconstruction through hadronic decay channel reconstruction via impact parameter cuts. (Measured impact parameter resolution in pp-collisions with SVT is 90 micron.

15 Proposed wafer R&D Present: 6 by 6 cm active area = max. 3 cm drift, 3 mm (inactive) guard area Max. HV=1500 V, max. drift time=5 µs anode pitch = 250 µm, cathode pitch = 150 µm Future: 10 by 10 cm active area (or more?) Max. HV=2000 V Anode pitch, cathode pitch have to be optimized to give better position resolution (more channels = more money) Stiffer resistor chain dissipates slightly more heat on detector, but requires no off detector HV support and allows a more linear drift in drift direction (better position resolution) Reduce wafer thickness from 280 micron to 150 micron.

16 Details of mask design Future: stiffer implanted resistors, no outside power supplies R.Bellwied, June 30, 2002

17 Proposed Frontend (FEE) R&D Present: bipolar PASA & CMOS-SCA ( 16 channel per die, 15 die for 240 channels on beryllia substrate ) Multiplexing on detector, 8-bit ADC off detector (3m) Future: 0.25 micron (DSM) radiation hard CMOS technology for all three stages in one single chip (PASA, SCA, 10-bit ADC) Example: ALICE-PASCAL Less power consumption and power cycling allows us to switch from liquid cooling to air cooling!

18 Proposed mechanical R&D Present: Be angled brackets with Beryllia hybrids mounted Future: carbon fiber staves with TAB electronics wraparounds

19 Capabilities & Industry contacts In house capabilities High quality clean room facilities for design and prototyping of wafers and electronics at BNL Instrumentation division High level CMOS engineering capabilities at BNL Instrumentation Sensor testing facilities at WSU, Ohio State, and UT Austin Dedicated electronics testing facilities at BNL Physics Dedicated mechanical assembly facilities (CMM & CNC devices) at BNL Physics plus expert machine shop at BNL Industry contacts Past production contracts with commercial drift detector vendors: SINTEF, CSEM, EUROSYS, CANBERRA Potential interests: MICRON, HAMAMATSU Carbon fiber machining capabilities in house and in US, France & Russia Potential interest in scientific collaboration in France and Italy (LHC- ALICE groups)

20 Hardware deliverables in present 3 year proposal 2003 hardware deliverables: new drift detector wafer layout according to R&D goals. Feasibility study of BNL stripixel technology vs. drift detectors. long ladder prototype with old drift wafers (mechanical feasibility) 2004 hardware deliverables: large batch of prototype detectors, test radiation damage in test beam and with sources. Beginning design of new frontend electronics 2005 hardware deliverables: complete design for CMOS DSM type frontend with reduced power consumption and potentially integrated ADC, test TAB bonding of frontend to detector prototype, produce large frontend prototype batch. Extensive test beam requirements for completed detector/fee combination by end of 2005.

21 Stripixels:alternative from BNL? Alternating Stripixel Detector (ASD) Interleaved Stripixel Detector (ISD) Pseudo-3d readout with speed and resolution comparable to double-side strip detector on single-sided technology (Zheng Li, BNL report, Nov.2000). Attractive for faster speed and easier to manufacture than double-sided strip

22 Simulation update: L vs. SD

23 Simulation update: hit occupancy on single wafer Using STAR detector layout and LC simulations (t-tbar to 6 jet events at root-s = 500 GeV incl. γ background according to T. Maruyama): Around 2000 γ/event leave hit in Silicon, corresponding to an occupancy of 13 hits/hybrid (0.5% occupancy) 51,200 pixels per hybrid, 20 pixels/hit Occupancy could be further reduced by factor 2 by using different SCA

24 Occupancies and tracking efficiencies with background For 100% hit efficiency: (97.3±0.10)% Almost identical to no background!

25 New simulations two track resolution Two hit resolving power κ = xv 1/2 / 2Dx 0 Input: two MIP hits High κ = good resolving power κ > 2 two tracks resolved κ > 1 two tracks resolved using deconvolution K depends on : Drift velocity Drift distance Sampling rate PASA impulse response

26 Two track resolution results

27 Two track resolution - Conclusions Conclusions: 2-track resolution without deconvolution: 600 micron in both dimensions 2-track resolution below drift distances of 2cm without deconvolution: 400 micron 2-track resolution with deconvolution via waveform analysis: 300 micron

28 New SVT publications Presentation at Vertex 2002 (H.Caines et al., New NIM summary article (R. Bellwied et al., NIM A 499, 640 (2003))

29 Need for test-beam in 2004/2005 z z z z Use particle beams in the momentum range from 100 MeV/c to several GeV/c Measure single particle and two-track resolution Check noise and repetition rate for frontend Check settling time and power consumption for RDO power-off mode during bunches

30 Summary / Conclusions Silicon Drift is an interesting and rather new technology Proof of principle is the mass produced STAR-SVT (0.7 m 2 ). Next generation is the ALICE-ITD (~ 2m 2 ). Can we conceive of a 56 m 2 SDT? This technology gives you comparable 3d information for the same price than a strip detector will give you strictly 2d information. Do we need 3d? It is an interesting alternative that should be supported during the R&D phase and then a decision should be made on the basis of physics (and manpower, infrastructure, cost, feasibility).

The Silicon Pixel Detector (SPD) for the ALICE Experiment

The Silicon Pixel Detector (SPD) for the ALICE Experiment The Silicon Pixel Detector (SPD) for the ALICE Experiment V. Manzari/INFN Bari, Italy for the SPD Project in the ALICE Experiment INFN and Università Bari, Comenius University Bratislava, INFN and Università

More information

The Status of the ATLAS Inner Detector

The Status of the ATLAS Inner Detector The Status of the ATLAS Inner Detector Introduction Hans-Günther Moser for the ATLAS Collaboration Outline Tracking in ATLAS ATLAS ID Pixel detector Silicon Tracker Transition Radiation Tracker System

More information

Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC

Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC 1 A L E J A N D R O A L O N S O L U N D U N I V E R S I T Y O N B E H A L F O F T H E A T L A

More information

TORCH a large-area detector for high resolution time-of-flight

TORCH a large-area detector for high resolution time-of-flight TORCH a large-area detector for high resolution time-of-flight Roger Forty (CERN) on behalf of the TORCH collaboration 1. TORCH concept 2. Application in LHCb 3. R&D project 4. Test-beam studies TIPP 2017,

More information

The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration

The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration The Alice Pixel Detector R 1 =3.9 cm R 2 =7.6 cm Main Physics Goal Heavy Flavour Physics D 0 K π+ 15 days Pb-Pb data

More information

The ATLAS Pixel Detector

The ATLAS Pixel Detector The ATLAS Pixel Detector Fabian Hügging arxiv:physics/0412138v2 [physics.ins-det] 5 Aug 5 Abstract The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly

More information

arxiv:hep-ex/ v1 27 Nov 2003

arxiv:hep-ex/ v1 27 Nov 2003 arxiv:hep-ex/0311058v1 27 Nov 2003 THE ATLAS TRANSITION RADIATION TRACKER V. A. MITSOU European Laboratory for Particle Physics (CERN), EP Division, CH-1211 Geneva 23, Switzerland E-mail: Vasiliki.Mitsou@cern.ch

More information

A Review of Tracking Sessions

A Review of Tracking Sessions A Review of Tracking Sessions Madhu S. Dixit TRIUMF & Carleton University Durham ECFA Workshop 1-4 September 2004 8 minutes time for this summary (allow 2 minutes for questions) 3 tracking sessions lasting

More information

CMS Upgrade Activities

CMS Upgrade Activities CMS Upgrade Activities G. Eckerlin DESY WA, 1. Feb. 2011 CMS @ LHC CMS Upgrade Phase I CMS Upgrade Phase II Infrastructure Conclusion DESY-WA, 1. Feb. 2011 G. Eckerlin 1 The CMS Experiments at the LHC

More information

Concept and operation of the high resolution gaseous micro-pixel detector Gossip

Concept and operation of the high resolution gaseous micro-pixel detector Gossip Concept and operation of the high resolution gaseous micro-pixel detector Gossip Yevgen Bilevych 1,Victor Blanco Carballo 1, Maarten van Dijk 1, Martin Fransen 1, Harry van der Graaf 1, Fred Hartjes 1,

More information

SciFi A Large Scintillating Fibre Tracker for LHCb

SciFi A Large Scintillating Fibre Tracker for LHCb SciFi A Large Scintillating Fibre Tracker for LHCb Roman Greim on behalf of the LHCb-SciFi-Collaboration 14th Topical Seminar on Innovative Particle Radiation Detectors, Siena 5th October 2016 I. Physikalisches

More information

Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds

Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds Juan Palacios, On behalf of the LHCb VELO group J.P. Palacios, Liverpool Outline LHCb and VELO performance

More information

A new Scintillating Fibre Tracker for LHCb experiment

A new Scintillating Fibre Tracker for LHCb experiment A new Scintillating Fibre Tracker for LHCb experiment Alexander Malinin, NRC Kurchatov Institute on behalf of the LHCb-SciFi-Collaboration Instrumentation for Colliding Beam Physics BINP, Novosibirsk,

More information

THE ATLAS Inner Detector [2] is designed for precision

THE ATLAS Inner Detector [2] is designed for precision The ATLAS Pixel Detector Fabian Hügging on behalf of the ATLAS Pixel Collaboration [1] arxiv:physics/412138v1 [physics.ins-det] 21 Dec 4 Abstract The ATLAS Pixel Detector is the innermost layer of the

More information

Progress Update FDC Prototype Test Stand Development Upcoming Work

Progress Update FDC Prototype Test Stand Development Upcoming Work Progress Update FDC Prototype Test Stand Development Upcoming Work Progress Update OU GlueX postdoc position filled. Simon Taylor joins our group July 1, 2004 Position funded jointly by Ohio University

More information

CGEM-IT project update

CGEM-IT project update BESIII Physics and Software Workshop Beihang University February 20-23, 2014 CGEM-IT project update Gianluigi Cibinetto (INFN Ferrara) on behalf of the CGEM group Outline Introduction Mechanical development

More information

Status of CMS Silicon Strip Tracker

Status of CMS Silicon Strip Tracker 1 Status of CMS Silicon Strip Tracker N. Demaria a on behalf of the CMS Tracker Collaboration a INFN Sez. di Torino, v. P.Giuria 1, I-10125 Torino Italy E-mail: Natale.Demaria@to.infn.it The CMS Silicon

More information

Muon Forward Tracker. MFT Collaboration

Muon Forward Tracker. MFT Collaboration Muon Forward Tracker MFT Collaboration QGP France 2013 Introduction Summary of what «physically» MFT looks like: - Silicon detector - Data flow - Mechanical aspects - Power supplies - Cooling - Insertion/Extraction

More information

Study of the performances of the ALICE muon spectrometer

Study of the performances of the ALICE muon spectrometer Study of the performances of the ALICE muon spectrometer Blanc Aurélien, December 2008 PhD description Study of the performances of the ALICE muon spectrometer instrumentation/detection. Master Physique

More information

R&D on high performance RPC for the ATLAS Phase-II upgrade

R&D on high performance RPC for the ATLAS Phase-II upgrade R&D on high performance RPC for the ATLAS Phase-II upgrade Yongjie Sun State Key Laboratory of Particle detection and electronics Department of Modern Physics, USTC outline ATLAS Phase-II Muon Spectrometer

More information

TPC R&D by LCTPC. Organisation, results, plans. Jan Timmermans NIKHEF & DESY(2009) On behalf of the LCTPC Collaboration TILC09, Tsukuba

TPC R&D by LCTPC. Organisation, results, plans. Jan Timmermans NIKHEF & DESY(2009) On behalf of the LCTPC Collaboration TILC09, Tsukuba TPC R&D by LCTPC Organisation, results, plans Jan Timmermans NIKHEF & DESY(2009) On behalf of the LCTPC Collaboration TILC09, Tsukuba 20 April, 2009 LCTPC Collaboration IIHE ULB-VUB Brussels 2 LCTPC Collaboration

More information

PIXEL2000, June 5-8, FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy. For the ALICE Collaboration

PIXEL2000, June 5-8, FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy. For the ALICE Collaboration PIXEL2000, June 5-8, 2000 FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy For the ALICE Collaboration CONTENTS: Introduction: Physics Requirements Design Considerations Present development status

More information

DEPFET Active Pixel Sensors for the ILC

DEPFET Active Pixel Sensors for the ILC DEPFET Active Pixel Sensors for the ILC Laci Andricek for the DEPFET Collaboration (www.depfet.org) The DEPFET ILC VTX Project steering chips Switcher thinning technology Simulation sensor development

More information

The hybrid photon detectors for the LHCb-RICH counters

The hybrid photon detectors for the LHCb-RICH counters 7 th International Conference on Advanced Technology and Particle Physics The hybrid photon detectors for the LHCb-RICH counters Maria Girone, CERN and Imperial College on behalf of the LHCb-RICH group

More information

Sensors for the CMS High Granularity Calorimeter

Sensors for the CMS High Granularity Calorimeter Sensors for the CMS High Granularity Calorimeter Andreas Alexander Maier (CERN) on behalf of the CMS Collaboration Wed, March 1, 2017 The CMS HGCAL project ECAL Answer to HL-LHC challenges: Pile-up: up

More information

Atlas Pixel Replacement/Upgrade. Measurements on 3D sensors

Atlas Pixel Replacement/Upgrade. Measurements on 3D sensors Atlas Pixel Replacement/Upgrade and Measurements on 3D sensors Forskerskole 2007 by E. Bolle erlend.bolle@fys.uio.no Outline Sensors for Atlas pixel b-layer replacement/upgrade UiO activities CERN 3D test

More information

Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. R.Bellazzini - INFN Pisa. Vienna February

Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. R.Bellazzini - INFN Pisa. Vienna February Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode Ronaldo Bellazzini INFN Pisa Vienna February 16-21 2004 The GEM amplifier The most interesting feature of the Gas Electron

More information

HAPD and Electronics Updates

HAPD and Electronics Updates S. Nishida KEK 3rd Open Meeting for Belle II Collaboration 1 Contents Frontend Electronics Neutron Irradiation News from Hamamtsu 2 144ch HAPD HAPD (Hybrid Avalanche Photo Detector) photon bi alkali photocathode

More information

The ALICE Inner Tracking System: commissioning and running experience

The ALICE Inner Tracking System: commissioning and running experience The ALICE Inner Tracking System: commissioning and running experience 1 INFN Bari, Italy on behalf of the ALICE Collaboration E-mail: vito.manzari@cern.ch The Inner Tracking System (ITS) is the innermost

More information

FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy. For the ALICE Collaboration

FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy. For the ALICE Collaboration PIXEL2000, June 5-8, 2000 FRANCO MEDDI CERN-ALICE / University of Rome & INFN, Italy For the ALICE Collaboration JUNE 5-8,2000 PIXEL2000 1 CONTENTS: Introduction: Physics Requirements Design Considerations

More information

Drift Tubes as Muon Detectors for ILC

Drift Tubes as Muon Detectors for ILC Drift Tubes as Muon Detectors for ILC Dmitri Denisov Fermilab Major specifications for muon detectors D0 muon system tracking detectors Advantages and disadvantages of drift chambers as muon detectors

More information

The Large TPC Prototype: Infrastructure/ Status/ Plans

The Large TPC Prototype: Infrastructure/ Status/ Plans The Large TPC Prototype: Infrastructure/ Status/ Plans Takeshi Matsuda, KEK/ DESY Ties Behnke, DESY For the LC-TPC collaboration Status of the test beam infrastructure Status of the Large Prototype Field

More information

Review of the CMS muon detector system

Review of the CMS muon detector system 1 Review of the CMS muon detector system E. Torassa a a INFN sez. di Padova, Via Marzolo 8, 35131 Padova, Italy The muon detector system of CMS consists of 3 sub detectors, the barrel drift tube chambers

More information

Advanced Front End Signal Processing Electronics for ATLAS CSC System: Status And Post Production Performance.

Advanced Front End Signal Processing Electronics for ATLAS CSC System: Status And Post Production Performance. Advanced Front End Signal Processing Electronics for ATLAS CSC System: Status And Post Production Performance. Sachin S Junnarkar, Anand Kandasamy, Paul O Connor Brookhaven National Laboratory, Upton,

More information

Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov

Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov Part 1: The TBM and CMS Understanding how the LHC and the CMS detector work as a

More information

Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals

Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals M. Ippolitov 1 NRC Kurchatov Institute and NRNU MEPhI Kurchatov sq.1, 123182, Moscow, Russian Federation E-mail:

More information

The field cage for a large TPC prototype

The field cage for a large TPC prototype EUDET The field cage for a large TPC prototype T.Behnke, L. Hallermann, P. Schade, R. Diener December 7, 2006 Abstract Within the EUDET Programme, the FLC TPC Group at DESY in collaboration with the Department

More information

Status of GEM-based Digital Hadron Calorimetry

Status of GEM-based Digital Hadron Calorimetry Status of GEM-based Digital Hadron Calorimetry Snowmass Meeting August 23, 2005 Andy White (for the GEM-DHCAL group: UTA, U.Washington, Tsinghua U., Changwon National University, KAERI- Radiation Detector

More information

A Cylindrical GEM Detector with Analog Readout for the BESIII Experiment. Gianluigi Cibinetto (INFN Ferrara) on behalf of the BESIIICGEM consortium

A Cylindrical GEM Detector with Analog Readout for the BESIII Experiment. Gianluigi Cibinetto (INFN Ferrara) on behalf of the BESIIICGEM consortium A Cylindrical GEM Detector with Analog Readout for the BESIII Experiment Gianluigi Cibinetto (INFN Ferrara) on behalf of the BESIIICGEM consortium Outline The BESIII experiment the Inner tracker The BESIII

More information

CSC Data Rates, Formats and Calibration Methods

CSC Data Rates, Formats and Calibration Methods CSC Data Rates, Formats and Calibration Methods D. Acosta University of Florida With most information collected from the The Ohio State University PRS March Milestones 1. Determination of calibration methods

More information

Report from the Tracking and Vertexing Group:

Report from the Tracking and Vertexing Group: Report from the Tracking and Vertexing Group: October 10, 2016 Sally Seidel, Petra Merkel, Maurice Garcia- Sciveres Structure of parallel session n Silicon Sensor Fabrication on 8 wafers (Ron Lipton) n

More information

The CMS Detector Status and Prospects

The CMS Detector Status and Prospects The CMS Detector Status and Prospects Jeremiah Mans On behalf of the CMS Collaboration APS April Meeting --- A Compact Muon Soloniod Philosophy: At the core of the CMS detector sits a large superconducting

More information

with Low Cost and Low Material Budget

with Low Cost and Low Material Budget Gaseous Beam Position Detectors, with Low Cost and Low Material Budget Gyula Bencédi on behalf of the REGaRD group MTA KFKI RMKI, ELTE November 29, 2011, Outline Physics Motivation Newish MWPCs, the Close

More information

The Scintillating Fibre Tracker for the LHCb Upgrade. DESY Joint Instrumentation Seminar

The Scintillating Fibre Tracker for the LHCb Upgrade. DESY Joint Instrumentation Seminar The Scintillating Fibre Tracker for the LHCb Upgrade DESY Joint Instrumentation Seminar Presented by Blake D. Leverington University of Heidelberg, DE on behalf of the LHCb SciFi Tracker group 1/45 Outline

More information

A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout

A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout Jingbo Ye, on behalf of the ATLAS Liquid Argon Calorimeter Group Department of Physics, Southern Methodist University, Dallas, Texas

More information

Beam Test Results and ORCA validation for CMS EMU CSC front-end electronics N. Terentiev

Beam Test Results and ORCA validation for CMS EMU CSC front-end electronics N. Terentiev Beam Test Results and ORCA validation for CMS EMU CSC front-end electronics US N. Terentiev Carnegie Mellon University CMS EMU Meeting, CERN June 18, 2005 Outline Motivation. CSC cathode strip pulse shape

More information

Studies of large dynamic range silicon photomultipliers for the CMS HCAL upgrade

Studies of large dynamic range silicon photomultipliers for the CMS HCAL upgrade Studies of large dynamic range silicon photomultipliers for the CMS HCAL upgrade Yuri Musienko* FNAL(USA) Arjan Heering University of Notre Dame (USA) For the CMS HCAL group *On leave from INR(Moscow)

More information

The Full Scale Prototype of the Cylindrical-GEM as Inner Tracker in Kloe2

The Full Scale Prototype of the Cylindrical-GEM as Inner Tracker in Kloe2 The Full Scale Prototype of the Cylindrical-GEM as Inner Tracker in Kloe2 G.Bencivenni, S.Cerioni, D.Domenici, M.Gatta, S.Lauciani, G.Pileggi, M.Pistilli, Laboratori Nazionali di Frascati - INFN 1 The

More information

Mechanical Considerations in the Outer Tracker and VXD. Bill Cooper Fermilab

Mechanical Considerations in the Outer Tracker and VXD. Bill Cooper Fermilab Mechanical Considerations in the Outer Tracker and VXD Fermilab August 23, 2005 1 Overview I ll describe developments since the SLAC workshop in mechanical design efforts at Fermilab related to SiD tracking.

More information

RTPC 12 Simulation. Jixie Zhang Aug 2014

RTPC 12 Simulation. Jixie Zhang Aug 2014 RTPC 12 Simulation Aug 2014 1 Outline Try to answer the following questions: 1) What is the highest luminosity we can realistically achieve (including trigger and DAQ rates), and how big of a problem will

More information

SLHC tracker upgrade: challenges and strategies in ATLAS

SLHC tracker upgrade: challenges and strategies in ATLAS SLHC tracker upgrade: challenges and strategies in ATLAS 1 Rutherford Appleton Laboratory, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK E-mail: m.m.weber@rl.ac.uk The Large Hadron

More information

Note on the preliminary organisation for the design, fabrication and test of a prototype double-sided ladder equipped with MAPS

Note on the preliminary organisation for the design, fabrication and test of a prototype double-sided ladder equipped with MAPS Note on the preliminary organisation for the design, fabrication and test of a prototype double-sided ladder equipped with MAPS J.Baudot a, J.Goldstein b, A.Nomerotski c, M.Winter a a IPHC - Université

More information

R&D of Scintillating Fibers for Intermediate Tracking and Bunch Id

R&D of Scintillating Fibers for Intermediate Tracking and Bunch Id R&D of Scintillating Fibers for Intermediate Tracking and Bunch Id OUTLINE Brief outline of the problem Current status, progress Future plans R ick V an K ooten Indiana Univers ity Mike Hildreth Univ.

More information

Riccardo Farinelli. Charge Centroid Feasibility

Riccardo Farinelli. Charge Centroid Feasibility Riccardo Farinelli Charge Centroid Feasibility Outline Prototype and TB setup Data set studied Analysis approch Results Charge Centroid Feasibility Ferrara July 07, 2015 R.Farinelli 2 Test chambers Conversion

More information

A pixel chip for tracking in ALICE and particle identification in LHCb

A pixel chip for tracking in ALICE and particle identification in LHCb A pixel chip for tracking in ALICE and particle identification in LHCb K.Wyllie 1), M.Burns 1), M.Campbell 1), E.Cantatore 1), V.Cencelli 2) R.Dinapoli 3), F.Formenti 1), T.Grassi 1), E.Heijne 1), P.Jarron

More information

Mass production testing of the front-end ASICs for the ALICE SDD system

Mass production testing of the front-end ASICs for the ALICE SDD system Mass production testing of the front-end ASICs for the ALICE SDD system L. Toscano a, R.Arteche Diaz b,e, S.Di Liberto b, M.I.Martínez a,d, S.Martoiu a, M.Masera c, G.Mazza a, M.A.Mazzoni b, F.Meddi b,

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1999/012 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland February 23, 1999 Assembly and operation of

More information

ALICE Muon Trigger upgrade

ALICE Muon Trigger upgrade ALICE Muon Trigger upgrade Context RPC Detector Status Front-End Electronics Upgrade Readout Electronics Upgrade Conclusions and Perspectives Dr Pascal Dupieux, LPC Clermont, QGPF 2013 1 Context The Muon

More information

A fast and precise COME & KISS* QDC and TDC for diamond detectors and further applications

A fast and precise COME & KISS* QDC and TDC for diamond detectors and further applications A fast and precise COME & KISS* QDC and TDC for diamond detectors and further applications 3 rd ADAMAS Collaboration Meeting (2014) Trento, Italy *use commercial elements and keep it small & simple + +

More information

ILC Detector Work. Dan Peterson

ILC Detector Work. Dan Peterson ILC Detector Work Dan Peterson ** Cornell/Purdue TPC development program Large Detector Concept TPC Detector Response Simulation and Track Reconstruction World Wide Study Detector R&D Panel This project

More information

The Cornell/Purdue TPC

The Cornell/Purdue TPC The Cornell/Purdue TPC Cornell University Purdue University D. P. Peterson G. Bolla L. Fields I. P. J. Shipsey R. S. Galik P. Onyisi Information available at the web site: http://w4.lns.cornell.edu/~dpp/tpc_test_lab_info.html

More information

High ResolutionCross Strip Anodes for Photon Counting detectors

High ResolutionCross Strip Anodes for Photon Counting detectors High ResolutionCross Strip Anodes for Photon Counting detectors Oswald H.W. Siegmund, Anton S. Tremsin, Robert Abiad, J. Hull and John V. Vallerga Space Sciences Laboratory University of California Berkeley,

More information

Monolithic Thin Pixel Upgrade Testing Update. Gary S. Varner, Marlon Barbero and Fang Fang UH Belle Meeting, April 16 th 2004

Monolithic Thin Pixel Upgrade Testing Update. Gary S. Varner, Marlon Barbero and Fang Fang UH Belle Meeting, April 16 th 2004 Monolithic Thin Pixel Upgrade Testing Update Gary S. Varner, Marlon Barbero and Fang Fang UH Belle Meeting, April 16 th 2004 Basic Technology: Standard CMOS CMOS Camera Because of large Capacitance, need

More information

A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read-out

A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read-out A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read-out P.Branchini, F.Ceradini, B.Di Micco, A. Passeri INFN Roma Tre and Dipartimento di Fisica Università Roma Tre and

More information

CMS Tracker Synchronization

CMS Tracker Synchronization CMS Tracker Synchronization K. Gill CERN EP/CME B. Trocme, L. Mirabito Institut de Physique Nucleaire de Lyon Outline Timing issues in CMS Tracker Synchronization method Relative synchronization Synchronization

More information

Electronics procurements

Electronics procurements Electronics procurements 24 October 2014 Geoff Hall Procurements from CERN There are a wide range of electronics items procured by CERN but we are familiar with only some of them Probably two main categories:

More information

A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters TWEPP 2016, Karlsruhe HADES CBM

A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters TWEPP 2016, Karlsruhe HADES CBM A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters TWEPP 2016, Karlsruhe + + + = PaDiWa-AMPS front-end Adrian Rost for the HADES and CBM collaborations PMT Si-PM (MPPC) 27.09.2016

More information

TitleLarge strip RPCs for the LEPS2 TOF. Author(s) Chu, M.-L.; Chang, W.-C.; Chen, J.- Equipment (2014), 766:

TitleLarge strip RPCs for the LEPS2 TOF. Author(s) Chu, M.-L.; Chang, W.-C.; Chen, J.- Equipment (2014), 766: TitleLarge strip RPCs for the LEPS2 TOF Author(s) Tomida, N.; Niiyama, M.; Ohnishi, H Chu, M.-L.; Chang, W.-C.; Chen, J.- Nuclear Instruments and Methods in Citation A: Accelerators, Spectrometers, Det

More information

The ATLAS Pixel Chip FEI in 0.25µm Technology

The ATLAS Pixel Chip FEI in 0.25µm Technology The ATLAS Pixel Chip FEI in 0.25µm Technology Peter Fischer, Universität Bonn (for Ivan Peric) for the ATLAS pixel collaboration The ATLAS Pixel Chip FEI Short Introduction to ATLAS Pixel mechanics, modules

More information

R&D plan for ILC(ILD) TPC in (LC TPC Collaboration)

R&D plan for ILC(ILD) TPC in (LC TPC Collaboration) R&D plan for ILC(ILD) TPC in 2010-2012 (LC TPC Collaboration) LCWA09 Tracker Session 02 October 2009 LC TPC Collaboration Takeshi MATSUDA DESY/FLC 1 R&D Goals for ILC (ILD) TPC High Momentum resolution:

More information

Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector.

Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme, P.Netchaeva, P.Oppizzi, L.Rossi, E.Ruscino, F.Vernocchi Lawrence Berkeley National

More information

The Time-of-Flight Detector for the ALICE experiment

The Time-of-Flight Detector for the ALICE experiment ALICE-PUB-- The Time-of-Flight Detector for the ALICE experiment M.C.S. Williams for the ALICE collaboration EP Division, CERN, Geneva, Switzerland Abstract The Multigap Resistive Plate Chamber (MRPC)

More information

IPRD06 October 2nd, G. Cerminara on behalf of the CMS collaboration University and INFN Torino

IPRD06 October 2nd, G. Cerminara on behalf of the CMS collaboration University and INFN Torino IPRD06 October 2nd, 2006 The Drift Tube System of the CMS Experiment on behalf of the CMS collaboration University and INFN Torino Overview The CMS muon spectrometer and the Drift Tube (DT) system the

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

Realization and Test of the Engineering Prototype of the CALICE Tile Hadron Calorimeter

Realization and Test of the Engineering Prototype of the CALICE Tile Hadron Calorimeter Realization and Test of the Engineering Prototype of the CALICE Tile Hadron Calorimeter Mark Terwort on behalf of the CALICE collaboration arxiv:1011.4760v1 [physics.ins-det] 22 Nov 2010 Abstract The CALICE

More information

Front End Electronics

Front End Electronics CLAS12 Ring Imaging Cherenkov (RICH) Detector Mid-term Review Front End Electronics INFN - Ferrara Matteo Turisini 2015 October 13 th Overview Readout requirements Hardware design Electronics boards Integration

More information

Review Report of The SACLA Detector Meeting

Review Report of The SACLA Detector Meeting Review Report of The SACLA Detector Meeting The 2 nd Committee Meeting @ SPring-8 Date: Nov. 28-29, 2011 Committee Members: Dr. Peter Denes, LBNL, U.S. (Chair of the Committee) Prof. Yasuo Arai, KEK, Japan.

More information

PICOSECOND TIMING USING FAST ANALOG SAMPLING

PICOSECOND TIMING USING FAST ANALOG SAMPLING PICOSECOND TIMING USING FAST ANALOG SAMPLING H. Frisch, J-F Genat, F. Tang, EFI Chicago, Tuesday 6 th Nov 2007 INTRODUCTION In the context of picosecond timing, analog detector pulse sampling in the 10

More information

The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC

The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC Tomas Davidek (Charles University), on behalf of the ATLAS Collaboration Tile Calorimeter Sampling

More information

Updates on the Central TOF System for the CLAS12 detector

Updates on the Central TOF System for the CLAS12 detector Updates on the Central TOF System for the CLAS1 detector First measurements of the timing resolution of fine-mesh Hamamatsu R7761-70 photomultipliers Wooyoung Kim, Slava Kuznetsov, Andrey Ni, and the Nuclear

More information

Liquid Xenon Scintillation Detector with UV-SiPM Readout for MEG Upgrade

Liquid Xenon Scintillation Detector with UV-SiPM Readout for MEG Upgrade Liquid Xenon Scintillation Detector with UV-SiPM Readout for MEG Upgrade W. Ootani on behalf of MEG collaboration (ICEPP, Univ. of Tokyo) 13th Topical Seminar on Innovative Particle and Radiation Detectors

More information

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector William Nalti, Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group 12.06.2018, ICASiPM2018 1

More information

Screen investigations for low energetic electron beams at PITZ

Screen investigations for low energetic electron beams at PITZ 1 Screen investigations for low energetic electron beams at PITZ S. Rimjaem, J. Bähr, H.J. Grabosch, M. Groß Contents Review of PITZ setup Screens and beam profile monitors at PITZ Test results Summary

More information

SCT Activities. Nick Bedford, Mateusz Dyndal, Alexander Madsen, Edoardo Rossi, Christian Sander. DESY ATLAS Weekly Meeting 03. Jun.

SCT Activities. Nick Bedford, Mateusz Dyndal, Alexander Madsen, Edoardo Rossi, Christian Sander. DESY ATLAS Weekly Meeting 03. Jun. SCT Activities Nick Bedford, Mateusz Dyndal, Alexander Madsen, Edoardo Rossi, Christian Sander DESY ATLAS Weekly Meeting 03. Jun. 2016 1 Semi-Conductor Tracker Barrel 4 Layers 2112 identical modules Endcaps

More information

-Technical Specifications-

-Technical Specifications- Annex I to Contract 108733 NL-Petten: the delivery, installation, warranty and maintenance of one (1) X-ray computed tomography system at the JRC-IET -Technical Specifications- INTRODUCTION In the 7th

More information

ILC requirements Review on CMOS Performances: state of the art Progress on fast read-out sensors & ADC Roadmap for the coming years Summary

ILC requirements Review on CMOS Performances: state of the art Progress on fast read-out sensors & ADC Roadmap for the coming years Summary Status on CMOS sensors Auguste Besson on behalf of DAPNIA/Saclay, LPSC/Grenoble, LPC/Clermont-F., DESY, Uni. Hamburg, JINR-Dubna & IPHC/Strasbourg contributions from IPN/Lyon, Uni. Frankfurt, GSI-Darmstadt,

More information

Imaging TOP (itop), Cosmic Ray Test Stand & PID Readout Update

Imaging TOP (itop), Cosmic Ray Test Stand & PID Readout Update Imaging TOP (itop), Cosmic Ray Test Stand & PID Readout Update Tom Browder, Herbert Hoedlmoser, Bryce Jacobsen, Jim Kennedy, KurtisNishimura, Marc Rosen, Larry Ruckman, Gary Varner Kurtis Nishimura SuperKEKB

More information

An extreme high resolution Timing Counter for the MEG Upgrade

An extreme high resolution Timing Counter for the MEG Upgrade An extreme high resolution Timing Counter for the MEG Upgrade M. De Gerone INFN Genova on behalf of the MEG collaboration 13th Topical Seminar on Innovative Particle and Radiation Detectors Siena, Oct.

More information

SiLC R&D: design, present status and perspectives

SiLC R&D: design, present status and perspectives SiLC R&D: design, present status and perspectives M. Lozano Centro Nacional de Microelectronica, IMB-CNM/CSIC, Barcelona, Spain R. Orava, N. van Remortel Department of Physical Sciences, University of

More information

Design, Realization and Test of a DAQ chain for ALICE ITS Experiment. S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi

Design, Realization and Test of a DAQ chain for ALICE ITS Experiment. S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi Design, Realization and Test of a DAQ chain for ALICE ITS Experiment S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi Physics Department, Bologna University, Viale Berti Pichat 6/2 40127 Bologna, Italy

More information

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits Stanislav Loboda R&D engineer The world-first small-volume contract manufacturing for plastic TFT-arrays

More information

Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC

Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC Dena Giovinazzo University of California, Santa Cruz Supervisors: Davide Ceresa

More information

Pixelated Positron Timing Counter with SiPM-readout Scintillator for MEG II experiment

Pixelated Positron Timing Counter with SiPM-readout Scintillator for MEG II experiment Pixelated Positron Timing Counter with SiPM-readout Scintillator for MEG II experiment Miki Nishimura a, Gianluigi Boca bc, Paolo Walter Cattaneo b, Matteo De Gerone d, Flavio Gatti de, Wataru Ootani a,

More information

Advanced Implantation Detector Array (AIDA) Second BRIKEN Workshop RIKEN July 2013

Advanced Implantation Detector Array (AIDA) Second BRIKEN Workshop RIKEN July 2013 Advanced Implantation Detector Array (AIDA) Second BRIKEN Workshop RIKEN 30-31 July 2013 presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh Liverpool STFC DL & RAL) Tom Davinson School

More information

Hybrid pixel detectors

Hybrid pixel detectors Inventor of Photon counting detectors Hybrid pixel detectors Do not adapt your system to the detector, let us adapt the detector to your system 1 imxpad stands for Imaging with the XPAD detector, our goal

More information

Data Quality Monitoring in the ATLAS Inner Detector

Data Quality Monitoring in the ATLAS Inner Detector On behalf of the ATLAS collaboration Cavendish Laboratory, University of Cambridge E-mail: white@hep.phy.cam.ac.uk This article describes the data quality monitoring systems of the ATLAS inner detector.

More information

The CALICE test beam programme

The CALICE test beam programme Journal of Physics: Conference Series The CALICE test beam programme To cite this article: F Salvatore 2009 J. Phys.: Conf. Ser. 160 012064 View the article online for updates and enhancements. Related

More information

Tracking Detector R&D at Cornell University and Purdue University

Tracking Detector R&D at Cornell University and Purdue University Tracking Detector R&D at Cornell University and Purdue University We have requested funding for this research from NSF through UCLC. Information available at the web site: * this presentation Cornell University

More information

Commissioning and Initial Performance of the Belle II itop PID Subdetector

Commissioning and Initial Performance of the Belle II itop PID Subdetector Commissioning and Initial Performance of the Belle II itop PID Subdetector Gary Varner University of Hawaii TIPP 2017 Beijing Upgrading PID Performance - PID (π/κ) detectors - Inside current calorimeter

More information

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 J. M. Bussat 1, G. Bohner 1, O. Rossetto 2, D. Dzahini 2, J. Lecoq 1, J. Pouxe 2, J. Colas 1, (1) L. A. P. P. Annecy-le-vieux, France (2) I. S. N. Grenoble,

More information