Technology Challenges for SRF Guns as ERL Sources in View of Rossendorf work

Size: px
Start display at page:

Download "Technology Challenges for SRF Guns as ERL Sources in View of Rossendorf work"

Transcription

1 Technology Challenges for SRF Guns as ERL Sources in View of Rossendorf work, Hartmut Buettig, Pavel Evtushenko, Ulf Lehnert, Peter Michel, Karsten Moeller, Petr Murcek, Christof Schneider, Rico Schurig, Friedrich Staufenbiel, Jochen Teichert, Rong Xiang, (FZR, Dresden), Juergen Stephan (IKS Dresden), Wolf-Dietrich Lehmann (IfE Dresden), Thorsten Kamps, Dirk Lipka (BESSY GmbH, Berlin), Vladimir Volkov (BINP SB RAS, Novosibirsk), Ingo Will (MBI, Berlin) 1

2 Basic Design Normal-conducting cathode inside SC cavity Successful Proof of Principle Experiment, D. Janssen et al., NIM A507(2003)314 Cavity: Niobium 3+½ cell (TESLA Geometry) Choke filter Operation: T = 1.8 K Frequency: 1.3 GHz HF power: 10 kw Electron energy: 10 MeV Average current: 1 ma Cathode: Cs 2 Te thermally insulated, LN 2 cooled Laser: 262 nm, 1W Pulse frequency: 13 MHz & < 1 MHz Bunch charge: 77 pc & 1 nc 2

3 Main Components of the SRF Photogun in Rossendorf Tuning system RF input coupler Low level rf system Power rf system Control systems Synchronisation He-pressure&level Tuning, rf system, laser Beam line devices PSS, MPS, Vacuum Diagnostic beam line View ports, current, beam shape Energy and energy width Bunch length, emittance 3½-cell cavity test benches for Critical component SRF-Gun ELBE connection beam line Cryostat cathode insert&cooling He-vessel & port LN 2 cooling & port magnetic shield, vacuum diagnostics LHe transfer line & distribution box Driver Laser Laser beam line Photocathode transfer&storage Photocathode preparation equipment 3

4 Design consideration of the gun cell L1 is mainly determinated by technological conditions (pressure, multipacting, etching) The optimal L2 value follows from the beam properties One dimensional model calculation: E(Φ) max, Ez cath *sin(φ) max Shorted by 5mm α 0 = L1 L1 L2 Ez cath *sinφ [MV/m] α 0 = α 0 = A0=L2/(λ/4) L=L1+L2 width of the gun cell L1 = α 0 *A0*λ/2π 4

5 Result of numerical optimization Numerical minimization of the beam emittance by variation of the gun cell shape with the condition, that Bs max < 115mT and Es max < 52MV/m when E acc = 25MV/m Shorted by 5.7mm L1 L1 L2 Obtained result: [mm] L1+L2= λ/4-20 = 37.7 a1=9, b1=16, R1=102.5, r1=11.4, 5

6 RRR40 and RRR300 cavity of the SRF gun 6

7 Cavity Design Parameter shortened TESLA cup 1. 3 GHz, 10 kw optimized half cell & 3 TESLA cells E z,max = 50 MV/m (T cells) = 33 MV/m (1/2 cell) E, MV/m z E c E r max E z max E z E r 10 Fields are normalized to the accelerating gradient in the TESLA cells of 25 MV/m z r max z z max z, cm (origin at the back wall plane) r = 1 mm 77 pc 0.5 mm mrad RF focusing in SC gun cavities I av = 1 ma E = 9.5 MeV D. Janssen, V.Volkov, NIM A452(2000)34 1 nc 2.5 mm mrad 7

8 Magnetic RF field inside the cavity Surface B-field [T] Axis electric RF field [MV/m] z[m] Axis magnetic RF field [T] z[m] 8

9 σ x [mm ] Designparameter including the magnetic mode ε[mm mrad] ε[mm mrad] z[m] 180 φ TE [grad] Beam parameter Field parameter Laser parameter ε x [mm mrad] B TMsurf [mt] 115 Puls length [ps] 20 σ x [mm] 3.06 B TEsurf [mt] 136 Raise time [ps] 1 ε z [kev mm] 72.4 B TM + B TE surf [mt] 144 Spot size [mm] 2.6 z[mm] 2.79 E TM,axis [MV/m] 50 Bunch charge[nc] 1 E av [MeV] 8.82 φ TM [grad] 74.6 E rms [kev] 53.9 φ TE [grad]

10 Dual tuning system gun-cell tuner TESLA-cell tuner TESLA-cell tuner gun-cell tuner Gun cell TESLA cells choke-cell setting range resolution ±0.25mm 2nm ±0.3mm 2nm load ±2250N ±2700N frequency ±137kHz ±286kHz 10

11 Liquid N 2 Cathode Cooling Test bench LN 2 reservoir cathode cooler thermal conductance measurements, cathode cathode temperature? & test of the cathode transfer system Cone in cooler - centres cathode - cathode is pressed in by spring - thermal contact of cone surface? 11

12 Test bench for the cathode cooler heater cathode cathode cooler LN 2 reservoir 12

13 Cavity with cathode tuning system Cathode input End of the cryostat LN 2 reservoir Pic up flange Titanium bridge Cavity tube 13

14 Beam tube with higher order mode and main coupler HOM coupler (TESLA design) Main coupler Max. power 10kW Design M.Champion Development of HEPL, Stanford 14

15 RF power input around the cathode Power input LN 2 cooling Bellow for adjustment of Q ext and heat isolation Quater wave choke Tube for cathode exchange cathode cavity Warm RF window Cold RF window L z Power input End of the cryostat 15

16 External quality factor and head load of a cathode-rf coupler Heat load of the cathode [W], beam power [kw] External Quality Factor Heat load of the cathode 90 Beam Power Length L of the choke cell [mm] 1E9 1E8 1E7 External quality factor Heat load of the cathode [W], beam power [kw] External quality factor Heat load of the cathode Beam power Width z of the choke cell [mm] External quality factor Field parameters for W = J Ez max (r=0) = 50MV/m, Ur max = 6.5kV Es max = 43.6MV/m, Bs max = 0.11T 16

17 Cryomodule design of the SRF gun 17

18 LN 2 cooling shield of the cryostat 18

19 Present Status and next steps Cavity: Cavity tuners: Fabrication finished Fabrication of 2 (RRR 40 & 300) cavities at ACCEL finished next steps: warm tuning in Rossendorf, BCP, HPR, tests at 2K at DESY Fabrication finished design of a test bench Cathode cooling system: Fabrication finished tests are running Cathode transfer system: Design finished, in the workshop Cathode preparation chamber: Cryomodule: Design and fabrication finished, assembling and tests Design finished, in fabrication 19

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR Rong Xiang On behalf of the BESSY-DESY-FZD-MBI collaboration and the ELBE team FEL 2009, Liverpool, United Kingdom, August 23 ~ 28, 2009 Outline Introduction

More information

PHIN. Report on the Development of a Radio-Frequency Photo Electron Source with Superconducting Niobium Cavity (SRF Gun Realization)

PHIN. Report on the Development of a Radio-Frequency Photo Electron Source with Superconducting Niobium Cavity (SRF Gun Realization) PHIN Report on the Development of a Radio-Frequency Photo Electron Source with Superconducting Niobium Cavity (SRF Gun Realization) J. Teichert, A. Arnold, H. Buettig, R. Hempel, D. Janssen, U. Lehnert,

More information

High Rep Rate Guns: FZD Superconducting RF Photogun

High Rep Rate Guns: FZD Superconducting RF Photogun High Rep Rate Guns: FZD Superconducting RF Photogun J. Teichert, A. Arnold, H. Büttig, D. Janssen, M. Justus, U. Lehnert, P. Michel, K. Moeller, P. Murcek, Ch. Schneider, R. Schurig, G. Staats, F. Staufenbiel,

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

SRF-gun Development Overview. J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada

SRF-gun Development Overview. J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada SRF-gun Development Overview J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada Acknowledgment Many thanks to: A. Arnold, J. Hao, E. Kako, T. Konomi, D. Kostin, J. Lorkiewicz, A. Neumann, J. Teichert

More information

STATUS OF THE SUPERCONDUCTING RF PHOTO-INJECTOR DEVELOPMENT*

STATUS OF THE SUPERCONDUCTING RF PHOTO-INJECTOR DEVELOPMENT* STATUS OF THE SUPERCONDUCTING RF PHOTO-INJECTOR DEVELOPMENT* J. Teichert #, A. Arnold, H. Buettig, D. Janssen, M. Justus, U. Lehnert, P. Michel, K. Moeller, P. Murcek, Ch. Schneider, R. Schurig, F. Staufenbiel,

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION

DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION J. Teichert #, A. Arnold, P. Murcek, G. Staats, R. Xiang, HZDR, Dresden, Germany P. Lu, H. Vennekate, HZDR & Technische Universität,

More information

Technology Challenges for SRF Guns as ERL Source in View of BNL Work

Technology Challenges for SRF Guns as ERL Source in View of BNL Work Technology Challenges for SRF Guns as ERL Source in View of BNL Work Work being performed and supported by the Collider Accelerator Division of Brookhaven National Labs as well as the Office of Naval Research

More information

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics High Brightness Injector Development and ERL Planning at Cornell Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics June 22, 2006 JLab CASA Seminar 2 Background During 2000-2001,

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

SRF GUN DEVELOPMENT OVERVIEW

SRF GUN DEVELOPMENT OVERVIEW SRF GUN DEVELOPMENT OVERVIEW J. Sekutowicz, DESY, Hamburg, Germany Abstract The most demanding component of a continuous wave (cw) operating electron injector delivering low emittance electron bunches

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

!"!3

!!3 Abstract A single-mode 500 MHz superconducting cavity cryomodule has been developed at Cornell for the electronpositron collider/synchrotron light source CESR. The Cornell B-cell cavity belongs to the

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

INFN School on Electron Accelerators. RF Power Sources and Distribution

INFN School on Electron Accelerators. RF Power Sources and Distribution INFN School on Electron Accelerators 12-14 September 2007, INFN Sezione di Pisa Lecture 7b RF Power Sources and Distribution Carlo Pagani University of Milano INFN Milano-LASA & GDE The ILC Double Tunnel

More information

News from HZB / BESSY Wolfgang Anders at ESLS-RF Meeting September 2010 Trieste

News from HZB / BESSY Wolfgang Anders at ESLS-RF Meeting September 2010 Trieste News from HZB / BESSY Wolfgang Anders at ESLS-RF Meeting September 2010 Trieste Outline Status Klystrons / IOT Modifications of transmitters New LINAC for BESSY II Status BERLinPro HoBiCaT Extension --

More information

Photoinjector Laser Operation and Cathode Performance

Photoinjector Laser Operation and Cathode Performance Photoinjector Laser Operation and Cathode Performance Daniele Sertore, INFN Milano LASA Siegfried Schreiber, DESY Laser operational experience Laser beam properties Cathode performances Outlook TTF and

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

Activities on FEL Development and Application at Kyoto University

Activities on FEL Development and Application at Kyoto University Activities on FEL Development and Application at Kyoto University China-Korea-Japan Joint Workshop on Electron / Photon Sources and Applications Dec. 2-3, 2010 @ SINAP, Shanghai Kai Masuda Inst. Advanced

More information

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

Summary of recent photocathode studies

Summary of recent photocathode studies Summary of recent photocathode studies S. Lederer, S. Schreiber DESY L. Monaco, D. Sertore INFN Milano LASA FLASH seminar November 17 th, 2009 Outlook Cs 2 Te photocathodes Pulsed QE measurements laser

More information

Photo cathode RF gun -

Photo cathode RF gun - Photo cathode RF gun - *),,, ( 05 Nov. 2004 Spring8 UTNL Linac & Mg Photocathode RF Gun Mg photocathode NERL, 18 MeV Linac and the RF gun Electron Beam Mg photocathode Mg photocathode RF gun of SPring8

More information

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC L-Band RF R&D SLAC DOE Review June 15 th, 2005 Chris Adolphsen SLAC International Linear Collider (ILC) RF Unit (TESLA TDR Layout) Gradient = 23.4 MV/m Bunch Spacing = 337 ns Fill Time = 420 µs Train Length

More information

TESLA FEL-Report

TESLA FEL-Report Determination of the Longitudinal Phase Space Distribution produced with the TTF Photo Injector M. Geitz a,s.schreiber a,g.von Walter b, D. Sertore a;1, M. Bernard c, B. Leblond c a Deutsches Elektronen-Synchrotron,

More information

First Results and Future of the Photo Injector Test Facility at DESY Zeuthen PITZ. introduction first measurements future schedule

First Results and Future of the Photo Injector Test Facility at DESY Zeuthen PITZ. introduction first measurements future schedule First Results and Future of the Photo Injector Test Facility at DESY Zeuthen PITZ introduction first measurements future schedule Frank Stephan for the PITZ Collaboration, TTF Meeting Saclay, April 3 rd

More information

Design Studies For The LCLS 120 Hz RF Gun Injector

Design Studies For The LCLS 120 Hz RF Gun Injector BNL-67922 Informal Report LCLS-TN-01-3 Design Studies For The LCLS 120 Hz RF Gun Injector X.J. Wang, M. Babzien, I. Ben-Zvi, X.Y. Chang, S. Pjerov, and M. Woodle National Synchrotron Light Source Brookhaven

More information

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Introduction The PITZ RF Photo Gun Field simulations Dark current simulations Multipacting simulations Summary Igor Isaev

More information

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL*

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* D. Kayran #,1,2, Z. Altinbas 1, D. Beavis 1, S. Belomestnykh 1,2, I. Ben-Zvi 1,2, S. Deonarine 1, D.M. Gassner 1, R. C. Gupta 1, H. Hahn 1,L.R. Hammons

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

Introduction: CW SRF linac types, requirements and challenges High power RF system architecture

Introduction: CW SRF linac types, requirements and challenges High power RF system architecture RF systems for CW SRF linacs S. Belomestnykh Cornell University Laboratory for Elementary-Particle Physics LINAC08, Victoria, Canada October 1, 2008 Outline L band Introduction: CW SRF linac types, requirements

More information

Commissioning program of the 704 MHz SRF gun at BNL

Commissioning program of the 704 MHz SRF gun at BNL BROOKHAVEN SCIENCE ASSOCIATES Commissioning program of the 704 MHz SRF gun at BNL Brookhaven National Laboratory ERL workshop June 7-12 2015 1 Outline Brief Introduction of the BNL R&D ERL and SRF gun

More information

Results of recent photocathode studies at FLASH. S. Lederer, S. Schreiber DESY. L. Monaco, D. Sertore, P. Michelato INFN Milano LASA

Results of recent photocathode studies at FLASH. S. Lederer, S. Schreiber DESY. L. Monaco, D. Sertore, P. Michelato INFN Milano LASA Results of recent photocathode studies at FLASH S. Lederer, S. Schreiber DESY L. Monaco, D. Sertore, P. Michelato INFN Milano LASA FLASH seminar October 21 st, 2008 Outlook Cs 2 Te photocathodes cw QE

More information

SRS and ERLP developments. Andrew moss

SRS and ERLP developments. Andrew moss SRS and ERLP developments Andrew moss Contents SRS Status Latest news Major faults Status Energy Recovery Linac Prototype Latest news Status of the RF system Status of the cryogenic system SRS Status Machine

More information

Cathode Studies at FLASH: CW and Pulsed QE measurements

Cathode Studies at FLASH: CW and Pulsed QE measurements Cathode Studies at FLASH: CW and Pulsed QE measurements L. Monaco, D. Sertore, P. Michelato S. Lederer, S. Schreiber Work supported by the European Community (contract number RII3-CT-2004-506008) 1/27

More information

Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme (Padova), Italy

Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme (Padova), Italy BEAM RELATED THERMAL LOSSES ON THE CRYOGENIC AND VACUUM SYSTEMS OF LEP G. Cavallari, Ph. Gayet, G. Geschonke, D. Kaiser, J.M. Jimenez CERN, 111 GENEVA 3 (Switzerland) Abstract The LEP Collider was operated

More information

DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS*

DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS* DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS* A. G. Ruggiero, J. Alessi, M. Harrison, M. Iarocci, T. Nehring, D. Raparia, T. Roser, J. Tuozzolo, W. Weng. Brookhaven National Laboratory, PO Box

More information

ILC-LNF TECHNICAL NOTE

ILC-LNF TECHNICAL NOTE IL-LNF EHNIAL NOE Divisione Acceleratori Frascati, July 4, 2006 Note: IL-LNF-001 RF SYSEM FOR HE IL DAMPING RINGS R. Boni, INFN-LNF, Frascati, Italy G. avallari, ERN, Geneva, Switzerland Introduction For

More information

Jefferson Lab Experience with Beam Halo, Beam Loss, etc.

Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Pavel Evtushenko with a lot of input from many experienced colleagues Steve Benson, Dave Douglas, Kevin Jordan, Carlos Hernandez-Garcia, Dan Sexton,

More information

Production of accelerators and accelerator components in industry

Production of accelerators and accelerator components in industry Production of accelerators and accelerator components in industry Michael Pekeler RI Research Instruments GmbH Friedrich-Ebert-Str. 1 51429 Bergisch Gladbach 28.04.2009 Foundation of RI Research Instruments

More information

Pulses inside the pulse mode of operation at RF Gun

Pulses inside the pulse mode of operation at RF Gun Pulses inside the pulse mode of operation at RF Gun V. Vogel, V. Ayvazyan, K. Floettmann, D. Lipka, P. Morozov, H. Schlarb, S. Schreiber FLASH Seminar, DESY March 29, 2011 Contents Why we need a PiPmode

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

RF Design of the LCLS Gun C.Limborg, Z.Li, L.Xiao, J.F. Schmerge, D.Dowell, S.Gierman, E.Bong, S.Gilevich February 9, 2005

RF Design of the LCLS Gun C.Limborg, Z.Li, L.Xiao, J.F. Schmerge, D.Dowell, S.Gierman, E.Bong, S.Gilevich February 9, 2005 RF Design of the LCLS Gun C.Limborg, Z.Li, L.Xiao, J.F. Schmerge, D.Dowell, S.Gierman, E.Bong, S.Gilevich February 9, 2005 Summary Final dimensions for the LCLS RF gun are described. This gun, referred

More information

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 1 BROOKHAVEN SCIENCE ASSOCIATES Introduction Linac RF cavities and klystrons Booster Cavity-Transmitter Storage Ring 500 MHz SRF cavity

More information

STATUS OF THE EUROPEAN XFEL CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR

STATUS OF THE EUROPEAN XFEL CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR STATUS OF THE EUROPEAN XFEL CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR Winfried Decking, DESY for the European XFEL Accelerator Consortium Up to 17.5 GeV SC Linac, 27000 pulses per second

More information

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland CERN 1211 Geneva 23, Switzerland E-mail: andrew.butterworth@cern.ch O. Brunner CERN 1211 Geneva 23, Switzerland E-mail: olivier.brunner@cern.ch R. Calaga CERN 1211 Geneva 23, Switzerland E-mail: rama.calaga@cern.ch

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The basic parameters of the pre-injector are listed in the Table below. 100 MeV 3.3 The Pre-injector The high design brightness of the SLS requires very high phase space density of the stored electrons, leading to a comparatively short lifetime of the beam in the storage ring. This,

More information

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

SRF PHOTOINJECTOR TESTS AT HOBICAT

SRF PHOTOINJECTOR TESTS AT HOBICAT SRF PHOTOINJECTOR TESTS AT HOBICAT Abstract A. Neumann, W. Anders, R. Barday, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A. Matveenko, T. Quast, J. Rudolph, S. Schubert, J. Voelker Helmholtz-Zentrum-Berlin,

More information

SLAC R&D Program for a Polarized RF Gun

SLAC R&D Program for a Polarized RF Gun ILC @ SLAC R&D Program for a Polarized RF Gun SLAC-PUB-11657 January 2006 (A) J. E. CLENDENIN, A. BRACHMANN, D. H. DOWELL, E. L. GARWIN, K. IOAKEIMIDI, R. E. KIRBY, T. MARUYAMA, R. A. MILLER, C. Y. PRESCOTT,

More information

The sc cw-linac project TASCA2012, S. Mickat, LINAC

The sc cw-linac project TASCA2012, S. Mickat, LINAC The sc cw-linac project 14.09.2012 TASCA2012, S. Mickat, LINAC What is the status of the cw LINAC? 1. Motivation 2. HLI-Upgrade 3. cw-linac 4. cw-linac-demonstrator 5. Perspective of a cw-linac @GSI 6.

More information

Electron linac photo-fission driver for rare isotope program at TRIUMF

Electron linac photo-fission driver for rare isotope program at TRIUMF Canada s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Electron linac photo-fission driver for

More information

Performance of a DC GaAs photocathode gun for the Jefferson lab FEL

Performance of a DC GaAs photocathode gun for the Jefferson lab FEL Nuclear Instruments and Methods in Physics Research A 475 (2001) 549 553 Performance of a DC GaAs photocathode gun for the Jefferson lab FEL T. Siggins a, *, C. Sinclair a, C. Bohn b, D. Bullard a, D.

More information

The Construction Status of CSNS Linac

The Construction Status of CSNS Linac The Construction Status of CSNS Linac Sheng Wang Dongguan branch, Institute of High Energy Physics, CAS Sep.2, 2014, Geneva Outline The introduction to CSNS accelerators The commissoning of ion source

More information

High QE Photocathodes lifetime and dark current investigation

High QE Photocathodes lifetime and dark current investigation High QE Photocathodes lifetime and dark current investigation Paolo Michelato INFN Milano - LASA Main Topics High QE photocathode lifetime QE vs. time (measurements on several cathodes, FLASH data) QE

More information

LCLS Injector Technical Review

LCLS Injector Technical Review LCLS Injector Technical Review Stanford Linear Accelerator Center November 3&4 2003 Review Committee Members: Prof. Patrick O Shea Chair University of Maryland Dr. E. Colby Stanford Linear Accelerator

More information

Effects of the cryogenics operational conditions on the mechanical stability of the FLASH linac modules

Effects of the cryogenics operational conditions on the mechanical stability of the FLASH linac modules Effects of the cryogenics operational conditions on the mechanical stability of the FLASH linac modules Ramila Amirikas, Alessandro Bertolini, Jürgen Eschke, Mark Lomperski XFEL Module Meeting, January

More information

Accelerator Instrumentation RD. Monday, July 14, 2003 Marc Ross

Accelerator Instrumentation RD. Monday, July 14, 2003 Marc Ross Monday, Marc Ross Linear Collider RD Most RD funds address the most serious cost driver energy The most serious impact of the late technology choice is the failure to adequately address luminosity RD issues

More information

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR Proceedings of FEL213, New York, NY, USA STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR F. Loehl, J. Alex, H. Blumer, M. Bopp, H. Braun, A. Citterio, U. Ellenberger, H. Fitze, H. Joehri, T. Kleeb, L.

More information

5 Project Costs and Schedule

5 Project Costs and Schedule 93 5 Project Costs and Schedule 5.1 Overview The cost evaluation for the integrated version of the XFEL with 30 experiments and 35 GeV beam energy as described in the TDR-2001 yielded 673 million EUR for

More information

SUMMARY OF THE ILC R&D AND DESIGN

SUMMARY OF THE ILC R&D AND DESIGN SUMMARY OF THE ILC R&D AND DESIGN B. C. Barish, California Institute of Technology, USA Abstract The International Linear Collider (ILC) is a linear electron-positron collider based on 1.3 GHz superconducting

More information

Thoughts on Project Standard in Japan

Thoughts on Project Standard in Japan Thoughts on Project Standard in Japan August 16, 2005 H. Hayano, KEK Thoughts on project standard in Japan Production is industry-base, almost all-case. 1. Industry makes every detail drawings. 2. (Big)

More information

ERL 2009 WG1 SUMMARY PAPER: DRIVE LASERS AND RF GUN OPERATION AND CHALLENGES*

ERL 2009 WG1 SUMMARY PAPER: DRIVE LASERS AND RF GUN OPERATION AND CHALLENGES* ERL 2009 WG1 SUMMARY PAPER: DRIVE LASERS AND RF GUN OPERATION AND CHALLENGES* J.W. Lewellen 1, H. Bluem 2, A. Burrill 3, T.L. Grimm 4, T. Kamps 5, R. Legg 6, K. Liu 7, T. Rao 3, J. Smedley 3, J. Teichert

More information

Welcome and FRIB Project Status. FRIB Highlights and Plan Ahead

Welcome and FRIB Project Status. FRIB Highlights and Plan Ahead Welcome and FRIB Project Status Thomas Glasmacher Project Manager This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh Design and Simulation of High Power RF Modulated Triode Electron Gun A. Poursaleh National Academy of Sciences of Armenia, Institute of Radio Physics & Electronics, Yerevan, Armenia poursaleh83@yahoo.com

More information

Beam Loss Detection for MPS at FRIB

Beam Loss Detection for MPS at FRIB Beam Loss Detection for MPS at FRIB Zhengzheng Liu Beam Diagnostics Physicist This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The ESS Accelerator For Norwegian Industry and Research Oslo, 24 Sept 2013 Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The Hadron Intensity Frontier Courtesy of M. Seidel (PSI)

More information

Design, Fabrication and Testing of Gun-Collector Test Module for 6 MW Peak, 24 kw Average Power, S-Band Klystron

Design, Fabrication and Testing of Gun-Collector Test Module for 6 MW Peak, 24 kw Average Power, S-Band Klystron Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 11-15 Research Article ISSN: 2394-658X Design, Fabrication and Testing of Gun-Collector Test Module

More information

Photocathodes FLASH: Quantum Efficiency (QE)

Photocathodes FLASH: Quantum Efficiency (QE) Photocathodes Studies @ FLASH: Quantum Efficiency (QE) L. Monaco, D. Sertore, P. Michelato J. H. Han, S. Schreiber Work supported by the European Community (contract number RII3-CT-4-568) /8 Main Topics

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

STATE-OF-THE-ART ELECTRON GUNS AND INJECTOR DESIGNS FOR ENERGY RECOVERY LINACS (ERL)

STATE-OF-THE-ART ELECTRON GUNS AND INJECTOR DESIGNS FOR ENERGY RECOVERY LINACS (ERL) STATE-OF-THE-ART ELECTRON GUNS AND INJECTOR DESIGNS FOR ENERGY RECOVERY LINACS (ERL) Alan Todd Advanced Energy Systems P.O. Box 7455, Princeton, NJ 08543-7455, U.S.A. Corresponding author: Alan Todd Phone:

More information

RF Solutions for Science.

RF Solutions for Science. RF Solutions for Science www.thalesgroup.com State-of-the-art RF sources for your scientific needs High-power klystrons HIGH KLYSTRONS WITH RF LONG PULSE above 50 μs Thales has been one of the leading

More information

STATUS OF THE EUROPEAN XFEL

STATUS OF THE EUROPEAN XFEL STATUS OF THE EUROPEAN XFEL M. Hüning, DESY, Hamburg, Germany for the European XFEL Accelerator Construction Consortium * Abstract The European XFEL is one of the world's largest accelerators presently

More information

reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8

reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8 C-band RF System R&D reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8 Project was funded in 2001 April Material Science

More information

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC*

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* D. Sprehn, E. Jongewaard, A. Haase, A. Jensen, D. Martin, SLAC National Accelerator Laboratory, Menlo Park, CA 94020, U.S.A. A. Burke, SAIC, San

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs Basic rules Basic rules for the design of RF Controls in High Intensity Proton Linacs Particularities of proton linacs wrt electron linacs Non-zero synchronous phase needs reactive beam-loading compensation

More information

TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267

TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267 TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267 The company was created for the development and manufacture of precision microwave vacuum-electron-tube devices (VETD). The main product areas

More information

Status of CTF3. G.Geschonke CERN, AB

Status of CTF3. G.Geschonke CERN, AB Status of CTF3 G.Geschonke CERN, AB CTF3 layout CTF3 - Test of Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 Drive Beam Injector ~ 50 m 3.5 A - 2100 b of 2.33 nc 150 MeV - 1.4

More information

TITLE PAGE. Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton. Author Affiliation: Jefferson Lab. Requested Proceedings:

TITLE PAGE. Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton. Author Affiliation: Jefferson Lab. Requested Proceedings: TITLE PAGE Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton Author Affiliation: Jefferson Lab Requested Proceedings: Unique Session ID: Classification Codes: Keywords: Energy Recovery,

More information

TOSHIBA Industrial Magnetron E3328

TOSHIBA Industrial Magnetron E3328 TOSHIBA E3328 is a fixed frequency continuous wave magnetron intended for use in the industrial microwave heating applications. The average output power is 3kW in the frequency range from 2450 to 2470

More information

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team Status of SOLARIS Paweł Borowiec On behalf of Solaris Team e-mail: pawel.borowiec@uj.edu.pl XX ESLS-RF Meeting, Villingen 16-17.11.2016 Outline 1. Timeline 2. Injector 3. Storage ring 16-17.11.2016 XX

More information

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A.Beunas and G. Faillon Thales Electron Devices, Vélizy, France S. Choroba DESY, Hamburg, Germany Abstract THALES ELECTRON DEVICES has developed

More information

KARA and FLUTE RF Overview/status

KARA and FLUTE RF Overview/status KARA and FLUTE RF Overview/status Nigel Smale on behalf of IBPT and LAS teams Laboratory for Applications of Synchrotron radiation (LAS) Institute for Beam Physics and Technology (IBPT) KARA KIT The Research

More information

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Abstract The U.S. Department of Energy (DOE) Office of Science has funded the construction of a new accelerator-based

More information

P. Emma, et al. LCLS Operations Lectures

P. Emma, et al. LCLS Operations Lectures P. Emma, et al. LCLS Operations Lectures LCLS 1 LCLS Accelerator Schematic 6 MeV 135 MeV 250 MeV σ z 0.83 mm σ z 0.83 mm σ z 0.19 mm σ δ 0.05 % σ δ 0.10 % σ δ 1.6 % Linac-0 L =6 m rf gun L0-a,b Linac-1

More information

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement. Spear3 RF System RF Requirement Overall System High Power Components Operation and Control SPEAR 3 History 1996 Low emittance lattices explored 1996 SPEAR 3 proposed 11/97 SPEAR 3 design study team formed

More information

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CEBAF Accelerator Update Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CLAS12 Collaboration Meeting, June 13-16, 2017 1 Accelerator Division Leadership On April 30 Andrew

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

Review of Diamond SR RF Operation and Upgrades

Review of Diamond SR RF Operation and Upgrades Review of Diamond SR RF Operation and Upgrades Morten Jensen on behalf of Diamond Storage Ring RF Group Agenda Stats X-ray and LN2 pressure results Cavity Failure Conditioning in the RFTF Cavity Simulations

More information

The LEP Superconducting RF System

The LEP Superconducting RF System The LEP Superconducting RF System K. Hübner* for the LEP RF Group CERN The basic components and the layout of the LEP rf system for the year 2000 are presented. The superconducting system consisted of

More information

DELIVERY RECORD. Location: Ibaraki, Japan

DELIVERY RECORD. Location: Ibaraki, Japan DELIVERY RECORD Client: Japan Atomic Energy Agency (JAEA) High Energy Accelerator Research Organization (KEK) Facility: J-PARC (Japan Proton Accelerator Research Complex) Location: Ibaraki, Japan 1 October

More information

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala) 2 Work Package and Work Unit descriptions 2.8 WP8: RF Systems (R. Ruber, Uppsala) The RF systems work package (WP) addresses the design and development of the RF power generation, control and distribution

More information

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Michael V. Fazio C. Adolphsen, A. Jensen, C. Pearson, D.

More information

The SLAC Polarized Electron Source *

The SLAC Polarized Electron Source * SLAC-PUB-9509 October 2002 The SLAC Polarized Electron Source * J. E. Clendenin, A. Brachmann, T. Galetto, D.-A. Luh, T. Maruyama, J. Sodja, and J. L. Turner Stanford Linear Accelerator Center, 2575 Sand

More information