Accelerator Systems of the TPS

Size: px
Start display at page:

Download "Accelerator Systems of the TPS"

Transcription

1 Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring July 2-22, 2005, Hsinchu, Taiwan Accelerator Systems of the TPS Preinjector, Booster Synchrotron, Transfer Line, and Storage Ring Kuo-Tung Hsu July 2, 2005

2 Outline Preinjector and Booster Synchrotron Beam Transfer Line Storage Ring System Summary 2

3 3

4 Preinjector Thermionic Gun (RF Gun is option) Two Linac sections - 00 MeV (Three linac sections 50 MeV options) Command charging modulator Solid state preamplifier + high power klystron High performance low level RF system Precision power supply Sophisticated diagnostics Max. bunch width Charge in a single bunch Energy Pulse to pulse energy stability Relative energy spread Normalized emittance (s) Single bunch purity Repetition rate Single Bunch Specifications ns <.5 nc > 00 MeV < 0.25% < 0.5% rms, (+/-.5% full width) < 50π mm mrad (both planes) < Hz (nominal), 0 Hz (maximal) 4

5 Preinjector Diagnostics Macropulse envelope FCT or Wall current monitor > 3 GHz B.W real-time oscilloscope < nsec Faraday cup ~ 00 kv beam dump ~ 00 MeV beam dump ~ 5 OTR and FS OTR with sub-mm thickness could remain in the transfer line Stripline DBPM in pulse mode Longitudinal profile and bunching CTR At energy > 50 MeV SR bending magnet Bending magnet, FS, OTR Spectrometer Emittance FS, OTR Changing quad(s) strength and measuring beam profile 5

6 6

7 Booster Synchrotron Futures Lattice: FODO lattice Emittance: Comparable with the storage ring Location: Same tunnel as storage ring Repetitive rate: Up to 3 Hz Ramping profile is programmable 7

8 Booster Synchrotron Extraction energy [GeV] Injection energy [GeV] Circumference [m] Nature chromaticity (ξ x /ξ y ) 3 GeV [nm-rad] Damping time (τ x /τ y /τ e )[ms] Momentum compaction α RF frequency [MHz] Radiation loss 3 GeV Repetition rate [Hz] 3.0 ~ Harmonic number 832 Tune v x /v y 27. / / /25.6/ x ε = 2.7 π 0. MV, +-.3% accept. 0.4 MV τ Q ~ 2 min. 0.5 MV τ Q ~.7E6 min. 8

9 Booster Synchrotron Magnet Parameters Injection (Extraction) Injection (Extraction) ( (0.4) 7 (6.46) (m) () 0.6 (.04) 0.2 (cm) (2.2).2 (0.6) ~0.33 T 0.4~2.4 T/m (0.045) T (0.9) T 0.04 T mm 2 (HxV) 24x20 mm 2 20x20 mm 2 32x22 (32x22) mm 2 25x2 (25x6) mm B/B 0-3 G/G 5x0-3 B/B 0-3 B/B 0-3 B/B 0-3 (A) (690) 650 (4.2 k) 0 (mω) (0.54) --- (mh) (0.0026) (0.0057) --- 9

10 Booster Synchrotron Power Supply Parameters Power supply AC input Output Spec. Current Ripple (ppm) Short term Stability (ppm) Long term Stability (ppm) Flow rate (LPM) Units Dipole 3 380V 60A 200V/250A Quadrupole 3 380V 05A 200V/250A Kicker & septum pulser 3 380V Corrector 220V 3A 20V/ 20A

11 Booster Synchrotron Pulse Magnets Kickers, Septums => Solid state power supply Power Supply Switching power supply (with PSI controller?) Programmable ramping profile Diagnostics Button BPM + Digital BPM processor Stripline FCT/ICT NPCT Destructive monitor (OTR screen) Orbit Control Orbit correction and feedback is possible Control system Same as storage ring e.g. Dipole Magnet PS

12 Booster Synchrotron RF System Two Options. Adopt DORIS cavities and existing RF transmitter 2. 5 cells PETRA cavity and new/existing RF transmitter 2

13 Booster Synchrotron Quantity Beam Current NPCT, New Parametric Current Transformer, Bergoz Magnetic shielding, ma resolution Nondestructive beam position OTR, FS Commissioning 2 Nondestructive first turn beam position Digital BPM Single short mode Nondestructive turn-by-turn beam position Digital BPM Turn-by-turn mode Nondestructive closed orbit beam position Digital BPM Closed orbit mode ~ 50 Tune Stripline electrode, spectrum analyzer, digital BPM Synchronize operation with booster cycle Aperture, halo scraper Filling pattern Electrode and fast oscilloscope Transverse/Longitudinal beam property Stripline electrodes 2 Lifetime NPCT, Scraper calculate form measured beam current Beam loss Fiber type or ionization type BLM Distributed around booster ring ~ 30 Transverse profile Visible light synchrotron radiation monitor Synchronize with booster cycle 3

14 4

15 Beam Transfer Line Booster-to-Storage Ring (BTS) Transfer Line Design in on going Linac-to-Booster (LTB) Transfer Line Design in on going 5

16 Macropulse envelope FCT or Wall current monitor < nsec 2 OTR and FS Stripline OTR with sub-mm thickness could remain in the transfer line DBPM in pulse mode several 3 Bending magnet, FS, OTR Energy spectrometer FS, OTR Changing quad(s) strength and measuring beam profile Longitudinal profile and bunching Longitudinal profile and bunching Longitudinal profile and bunching FS, OTR FS in low energy OTR at energy > 50 MeV 2 DBPM in pulse mode Wall current monitor Macropulse envelope FCT or Wall current monitor Rise time < nsec FS or OTR FS in low energy OTR at energy > 50 MeV Changing quad(s) strength and measuring beam profile 6

17 7

18 Major Parameters of the TPS Energy (GeV) Beam current (ma) Circumference (m) Nat. emittance (nm-rad) Cell/symmetry/structure β x / β y / η x (m) LS centre RF frequency (MHz) RF voltage (MV) Harmonic number SR loss/turn, dipole (MeV) 3.0 ~ / 6 /DBA 0.59/ 9.3 / Long Straights Standard Straights Betatron tune ν x / ν y / 2.28 Synchrotron tune ν s Bunch length (mm) Dipole B/L (Tesla)/(m) Mom. comp. (α, α 2 ).72m*6 7m* / , Nat. energy spread σ E Damping time (τ x /τ y /τ e ms) Nat. chromaticity ξx / ξy / 0.5 / /

19 Pulse Magnet System Specifications of the Reference Design Septum Kicker 74.5 mard bending angle 300 usec, ~ 7000 A, 000 ppm 7.8 mard bending angle 6 µsec, ~ 5000 A, 000 ppm One turn kicker (pinger), ~ 2 µsec pulser Power Supply Technology Solid state pulser Low jitter (nsec) High amplitude stability (0-3 ) 9

20 Magnet System Magnet Parameters Quantity (deg.) (m) 0.3/0.4 / (mm) (T) (T/m) (T/m 2 ) B/B x0-4 G/G 2x0-3 S/S 5x0-3 (mm) Bds/ Bds (m)

21 Technology Power Supply Switching power supply Digital PWM (e.g. PSI regulator) Simple and homogenous interface Design criterions Same control interface for all PS (~000) Easy for maintenance High reliability Control resolution ~ 20 bit for main power supply and corrector power supply Short term stability ~ 0 ppm Long term stability ~ 00 ppm Synchronization operation of all PS 2

22 Insertion Devices Parameters Long straights.72 m x 6 (Injection, SRF, Long IDs) Standard straights 7 m x 8 EPU00 EPU70 SW60 EPU60 EPU46 IVXU28 SEPU25 SU5 (kev) (mm) By (Bx) (T).0.0 (0.77) (0.7) 0.76 (0.49) (0.58) (.7) (3.92) 2.79 (.07) (.35) 2. Length (m) (mm) (kw/mr 2 ) Hybrid Pure SC Pure Pure Hybrid SC SC 22

23 RF System Parameters Beam Energy 3 ~ 3.3 GeV RF Frequency MHz Maximum Beam Current (3 GeV) 400 ma Maximum Gap Voltage 6.4 (5) MV Maximum RF Power 720 kw CESR-III 23

24 RF System cont. Transmitter Switching power supply technology High power klystron 500 MHz solid state power amplifier is also considered as an options LLRF I/Q Control Occupy two long straight sections Easy for maintenance High reliability 24

25 NPCT, New Parametric Current Transformer, Bergoz µ NPCT ICT NPCT Single short mode Turn-by-turn mode losed orbit mode ~ 68 Tune. RF knockout (Spectrum analyzer with tracking generator) 2. Digital BPM system in tune mode (Special turn-by-turn mode). Slow, high resolution 2. Fast, moderate resolution High resolution with NFAA algorithm Frequency map analysis 2 Aperture, halo < 5 % accuracy streak camera - -. Bunch-by-bunch digitizer 2. Gated intensify CCD Camera Bunch-by-bunch, Bunch-by-bunch Lifetime NPCT Calculated value Beam loss monitor, BLM PIN diode BLM PIN-diode BLM place at Hot Spots (Moderate counting rate) ~ 00 To support various lifetime study ~ 24 pin depolarization ~0-5 precision - Imaging, Interferometer, Streak camera Transverse, longitudinal, instability,..etc. - 25

26 26

27 Control System Available Candidates for Light Sources Propriety TLS Control System (TLS) EPICS toolkits (APS, SLS, DLS, etc.) TANGO (ESRF, Elettra, Soleil,..etc.) Three available candidates share the same hardware structure Functionality of the software are similar Plenty of hardware and software support for EPICS are available Reference design => EPICS * MODOCA (Spring-8, NewSUBARU, HiSOR) 27

28 Event System Ethernet connection to fanout modules RF Clock Generator Event Generator Ring Clock Generator Event Table Rep Rate Generator 2.5 Gbps Trigger Event Stream Timing System EVG Timing Drift Compensator TDC st Level Fanout w/o delay tuning EVR 2 nd Level Fanout w/o delay tuning 2 nd Level Fanout w/o delay tuning 2 nd Level Fanout w/o delay tuning E-Gun Trigger 8 ns resolution Event Receiver Event Receiver Event Receiver Fine Delay Trigger Output 0 psec resolution 28

29 Operation Mode e-gun : Multimode operation Single bunch Programmable length of bunch train Timing system support various injection mode Single bunch/a few bunches Multi-bunches (uniform filling) with gap Hybrid mode, Mixed mode, Camshaft mode Top-up operation 29

30 Networking High availability Adequate security scheme Fiber network Control network Timing distribution network Flexibility for future upgrade 30

31 Feedbacks Play roles of the last straw => breaks the camel's back (residues motion and instabilities) Slow orbit feedback Fast orbit feedback Feed-forward ID residue field compensation Tune correction Bunch-by-bunch feedback Transverse Longitudinal 3

32 Feedbacks Stability Requirements 24P8K, ε x =.72 nm-rad, ε y = 7.2 pm-rad Source Point σ µ σ µ σ µ σ µ.72 m Long straights m Standard straights Dipole centre Position stability ~ 0.2 µm (up to 00 Hz) Angular stability < 0. µrad 32

33 Feedbacks Slow Orbit Feedback Number of electron BPM Number of photon BPM Number of correctors Correction Algorithm Feedback Processor Sampling Rate Bandwidth Corrector maximum strength Corrector power supply stability Corrector magnets Up to 68 Optional 76 (Horizontal) and 48 (Vertical) or more SVD based algorithm General purpose processor 0 Hz < 0. Hz 000 µrad ~ 2000 µrad 0-5 ~ 0-6 sextupole 33

34 Feedbacks Fast Orbit Feedback Number of electron BPM Number of photon BPM Number of fast correctors Correction Algorithm Feedback Processor Sampling Rate Bandwidth Orbit stabilization ID Corrector maximum strength Corrector power supply stability Corrector magnets (air coil) Up to 68 Optional 48 (~ 2 * ν x ), installed at bellows or ceramic chamber (or more correctors) SVD based algorithm General purpose processor or FPGA embedded in BPM processor 4 ~ 0 KHz 50 Hz ~ 0.2 at LS (vertical, < 00 Hz) ~ µm at another place (vertical and horizontal) 50 µrad 0-4 ~ 0-6 > KHz, 3db BW 34

35 Feedbacks Bunch-by-bunch Feedback Transverse instabilities: Resistive wall instability Ion related instability Resonance mode of cavity like structure Mastered by increasing the chromaticity and/or active feedbacks The active transverse feedback can relax on chromaticity and increase the dynamic aperture Longitudinal Instabilities: Longitudinal Coupled Bunch Instabilities (LCBI) driven by cavity like Higher Order Modes (HOM) for I beam > threshold current Mastered by active feedbacks 35

36 Feedbacks Bunch-by-bunch Feedback Bunch Phase or Transverse Oscillation Detector Support: Transverse feedback, Longitudinal feedback, & Various diagnostics are also supported Beam Position Monitor Feedback Processor (FPGA Based) Back-End Electronics or Power Amplifier Transverse Kicker Longitudinal Kicker 36

37 Stability Issues Measures to maintain long term stability Ground settlement and diffusion Environment control => Sophisticated (routine) girder alignment scheme => Beam based alignment => Precision environment control Measures to keep short-term stability Carefully designed girder Carefully designed cooling water channel, air flow Carefully control of impedance budget Orbit feedback Bunch-by-bunch feedback 37

38 Summary Adopt up-to-date and mature technology to design the system Innovation are still possible for various subsystems Various measures to ensure beam stability Thoroughly ground motion investigation Reduce ground motion is one of the important goal of civil engineering design Good environmental control Carefully design of various technical systems Sophisticated feedback system Reliability of the accelerator system is a key design issues 38

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

SPEAR 3: Operations Update and Impact of Top-Off Injection

SPEAR 3: Operations Update and Impact of Top-Off Injection SPEAR 3: Operations Update and Impact of Top-Off Injection R. Hettel for the SSRL ASD 2005 SSRL Users Meeting October 18, 2005 SPEAR 3 Operations Update and Development Plans Highlights of 2005 SPEAR 3

More information

Status of Elettra, top-up and other upgrades

Status of Elettra, top-up and other upgrades Status of Elettra, top-up and other upgrades Emanuel Karantzoulis ELETTRA / Trieste, Italy / 2010 November 25-26 Past and Present Configurations 1994-2007 From 2008 No full energy injection Full energy

More information

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The basic parameters of the pre-injector are listed in the Table below. 100 MeV 3.3 The Pre-injector The high design brightness of the SLS requires very high phase space density of the stored electrons, leading to a comparatively short lifetime of the beam in the storage ring. This,

More information

Status of SOLARIS Arkadiusz Kisiel

Status of SOLARIS Arkadiusz Kisiel Status of SOLARIS Arkadiusz Kisiel Solaris National Synchrotron Light Source Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl Arkadiusz.Kisiel@uj.edu.pl On behalf of SOLARIS

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

Top-Up Experience at SPEAR3

Top-Up Experience at SPEAR3 Top-Up Experience at SPEAR3 Contents SPEAR 3 and the injector Top-up requirements Hardware systems and modifications Safety systems & injected beam tracking Interlocks & Diagnostics SPEAR3 Accelerator

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

NSLS2 Diagnostic System Commissioning and Measurements

NSLS2 Diagnostic System Commissioning and Measurements NSLS2 Diagnostic System Commissioning and Measurements Weixing Cheng, on behalf of NSLS2 diagnostic group and commissioning team 3 rd International Beam Instrumentation Conference Monterey, California,

More information

PEP II STATUS AND PLANS *

PEP II STATUS AND PLANS * PEP II STATUS AND PLANS * John T. Seeman + Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA The PEP II B-Factory 1 project is an e + e - colliding beam storage ring complex

More information

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems LCLS RF Reference and Control R. Akre Last Update 5-19-04 Sector 0 RF and Timing Systems The reference system for the RF and timing starts at the 476MHz Master Oscillator, figure 1. Figure 1. Front end

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

An Overview of Beam Diagnostic and Control Systems for AREAL Linac

An Overview of Beam Diagnostic and Control Systems for AREAL Linac An Overview of Beam Diagnostic and Control Systems for AREAL Linac Presenter G. Amatuni Ultrafast Beams and Applications 04-07 July 2017, CANDLE, Armenia Contents: 1. Current status of existing diagnostic

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

SSRF Beam Diagnostics Commissioning. LENG Yongbin on behalf of SSRF BI group

SSRF Beam Diagnostics Commissioning. LENG Yongbin on behalf of SSRF BI group SSRF Beam Diagnostics Commissioning LENG Yongbin on behalf of SSRF BI group 2009.05.25 Outline Instruction of SSRF Overview of SSRF BI system Subsystem Beam position monitor Tune monitor Current & charge

More information

Fast Orbit Feedback at the SLS. Outline

Fast Orbit Feedback at the SLS. Outline Fast Orbit Feedback at the SLS 2nd Workshop on Beam Orbit Stabilisation (December4-6, 2002, SPring-8) T. Schilcher Outline Noise Sources at SLS Stability / System Requirements Fast Orbit Feedback Implementation

More information

New Filling Pattern for SLS-FEMTO

New Filling Pattern for SLS-FEMTO SLS-TME-TA-2009-0317 July 14, 2009 New Filling Pattern for SLS-FEMTO Natalia Prado de Abreu, Paul Beaud, Gerhard Ingold and Andreas Streun Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland A new

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

CONSTRUCTION AND COMMISSIONING OF BEPCII

CONSTRUCTION AND COMMISSIONING OF BEPCII Abstract CONSTRUCTION AND COMMISSIONING OF BEPCII C. Zhang, J.Q. Wang, L. Ma and G.X.Pei for the BEPCII Team, IHEP, CAS P.O.Box 918, Beijing 100049, China BEPCII is the major upgrade of BEPC (Beijing Electron-

More information

OPERATIONAL EXPERIENCE AT J-PARC

OPERATIONAL EXPERIENCE AT J-PARC OPERATIONAL EXPERIENCE AT J-PARC Hideaki Hotchi, ) for J-PARC commissioning team ), 2), ) Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 39-95 Japan, 2) High Energy Accelerator Research Organization

More information

Linac 4 Instrumentation K.Hanke CERN

Linac 4 Instrumentation K.Hanke CERN Linac 4 Instrumentation K.Hanke CERN CERN Linac 4 PS2 (2016?) SPL (2015?) Linac4 (2012) Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase

More information

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac Masanori Satoh (Acc. Lab., KEK) for the injector upgrade group 2010/9/16 1 Overview of Linac Beam Operation 2010/9/16

More information

KARA and FLUTE RF Overview/status

KARA and FLUTE RF Overview/status KARA and FLUTE RF Overview/status Nigel Smale on behalf of IBPT and LAS teams Laboratory for Applications of Synchrotron radiation (LAS) Institute for Beam Physics and Technology (IBPT) KARA KIT The Research

More information

Bunch-by-bunch feedback and LLRF at ELSA

Bunch-by-bunch feedback and LLRF at ELSA Bunch-by-bunch feedback and LLRF at ELSA Dmitry Teytelman Dimtel, Inc., San Jose, CA, USA February 9, 2010 Outline 1 Feedback Feedback basics Coupled-bunch instabilities and feedback Beam and feedback

More information

Recent APS Storage Ring Instrumentation Developments. Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010

Recent APS Storage Ring Instrumentation Developments. Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010 Recent APS Storage Ring Instrumentation Developments Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010 Ring Diagnostics Overview RF beam position monitor technology Photon beam position

More information

Beam Loss Detection for MPS at FRIB

Beam Loss Detection for MPS at FRIB Beam Loss Detection for MPS at FRIB Zhengzheng Liu Beam Diagnostics Physicist This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

Beam Instrumentation for CTF3 and CLIC

Beam Instrumentation for CTF3 and CLIC Beam Instrumentation for CTF3 and CLIC Beam loss - Beam halo monitoring developments CLIC diagnostic Common developments with other projects Specific requirements for CLIC Beam Loss and Beam Halo measurement

More information

PEP-II STATUS REPORT *

PEP-II STATUS REPORT * PEP-II STATUS REPORT * Jonathan Dorfan Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA For the SLAC, LBNL, LLNL PEP-II group Abstract The main design features of the PEP-II

More information

ALBA. Libera Workshop 16 A. Olmos

ALBA. Libera Workshop 16 A. Olmos LIBERAs @ ALBA Libera Workshop 16 A. Olmos Content Fast Orbit Feedback At a glance Equipments Implementation Limitations In operation Bunch-by- Bunch system At a glance Ported Software Status What else

More information

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 1 BROOKHAVEN SCIENCE ASSOCIATES Introduction Linac RF cavities and klystrons Booster Cavity-Transmitter Storage Ring 500 MHz SRF cavity

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

Photo cathode RF gun -

Photo cathode RF gun - Photo cathode RF gun - *),,, ( 05 Nov. 2004 Spring8 UTNL Linac & Mg Photocathode RF Gun Mg photocathode NERL, 18 MeV Linac and the RF gun Electron Beam Mg photocathode Mg photocathode RF gun of SPring8

More information

Production of quasi-monochromatic MeV photon in a synchrotron radiation facility

Production of quasi-monochromatic MeV photon in a synchrotron radiation facility Production of quasi-monochromatic MeV photon in a synchrotron radiation facility Presentation at University of Saskatchewan April 22-23, 2010 Yoshitaka Kawashima Brookhaven National Laboratory NSLS-II,

More information

EPJ Web of Conferences 95,

EPJ Web of Conferences 95, EPJ Web of Conferences 95, 04012 (2015) DOI: 10.1051/ epjconf/ 20159504012 C Owned by the authors, published by EDP Sciences, 2015 The ELENA (Extra Low Energy Antiproton) project is a small size (30.4

More information

COMMISSIONING RESULTS OF BEAM DIAGNOSTICS FOR THE PETRA III LIGHT SOURCE

COMMISSIONING RESULTS OF BEAM DIAGNOSTICS FOR THE PETRA III LIGHT SOURCE Proceedings of DIPAC9, Basel, Switzerland MOOB2 COMMISSIONING RESULTS OF BEAM DIAGNOSTICS FOR THE PETRA III LIGHT SOURCE K. Balewski #, G. Kube, K. Wittenburg, A. Brenger, H.-T. Duhme, V. Gharibyan, J.

More information

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske.

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. ANKA Status Report N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. KIT - University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

More information

Requirements for the Beam Abort Magnet and Dump

Requirements for the Beam Abort Magnet and Dump Requirements for the Beam Abort Magnet and Dump A beam abort kicker (pulsed dipole magnet) and dump are required upbeam of the LCLS undulator in order to protect the undulator from mis-steered and poor

More information

Proton Engineering Frontier Project

Proton Engineering Frontier Project Proton Engineering Frontier Project OECD Nuclear Energy Agency Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators (HPPA5) (6-9 May 2007, Mol, Belgium) Yong-Sub

More information

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach.

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. ANKA Status Report N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. Institute for Synchrotron Radiation KIT - University of the State of Baden-Wuerttemberg and

More information

ILC Damping Ring Lattice Status Report. Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007

ILC Damping Ring Lattice Status Report. Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007 Status Report Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007 Outline New 8-fold symmetric lattice on ILC Cornell wiki pages, as of 12/18/2007 Separated

More information

Upgrading LHC Luminosity

Upgrading LHC Luminosity 1 Upgrading LHC Luminosity 2 Luminosity (cm -2 s -1 ) Present (2011) ~2 x10 33 Beam intensity @ injection (*) Nominal (2015?) 1 x 10 34 1.1 x10 11 Upgraded (2021?) ~5 x10 34 ~2.4 x10 11 (*) protons per

More information

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Bingxin Yang, Alex H. Lumpkin, Katherine Harkay, Louis Emery, Michael Borland, and Frank Lenkszus Advanced

More information

Beam Instrumentation for X-ray FELs

Beam Instrumentation for X-ray FELs Beam Instrumentation for X-ray FELs 05/16/2011 1 1 Outline X-ray FEL overview Diagnostics requirements for X-ray FELs Transverse Diagnostics Longitudinal Diagnostics Summary 2 2 X-ray FEL Overview 100

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

Status of CTF3. G.Geschonke CERN, AB

Status of CTF3. G.Geschonke CERN, AB Status of CTF3 G.Geschonke CERN, AB CTF3 layout CTF3 - Test of Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 Drive Beam Injector ~ 50 m 3.5 A - 2100 b of 2.33 nc 150 MeV - 1.4

More information

PRESENT STATUS OF J-PARC

PRESENT STATUS OF J-PARC PRESENT STATUS OF J-PARC # F. Naito, KEK, Tsukuba, Japan Abstract Japan Proton Accelerator Research Complex (J-PARC) is the scientific facility with the high-intensity proton accelerator aiming to realize

More information

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Outline Situation/Rationale Requirements Synchrotron choice Functions

More information

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX T. Koseki, M. Ikegami, M. Tomizawa, Accelerator Laboratory, KEK, Tsukuba, Japan F. Noda, JAEA, Tokai, Japan Abstract The J-PARC (Japan Proton

More information

ANKA RF System - Upgrade Strategies

ANKA RF System - Upgrade Strategies ANKA RF System - Upgrade Strategies Vitali Judin ANKA Synchrotron Radiation Facility 2014-09 - 17 KIT University of the State Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

LLRF at SSRF. Yubin Zhao

LLRF at SSRF. Yubin Zhao LLRF at SSRF Yubin Zhao 2017.10.16 contents SSRF RF operation status Proton therapy LLRF Third harmonic cavity LLRF Three LINAC LLRF Hard X FEL LLRF (future project ) Trip statistics of RF system Trip

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

Linac-Beam Characterizations at 600 MeV Using Optical Transition Radiation Diagnostics *

Linac-Beam Characterizations at 600 MeV Using Optical Transition Radiation Diagnostics * Linac-Beam Characterizations at 6 MeV Using Optical Transition Radiation Diagnostics * A. H. Lumpkin, W. J. Berg, B. X. Yang, and M. White Advanced Photon Source, Argonne National Laboratory 97 South Cass

More information

LIGHT PROTON THERAPY PROJECT

LIGHT PROTON THERAPY PROJECT 17 th of MAY 2018 LIGHT PROTON THERAPY PROJECT Yevgeniy Ivanisenko on behalf of ADAM team FORM-01040-A AVO-ADAM Advanced Oncotherapy (AVO) is a public company ADAM is R&D center of AVO ~ 100 employees

More information

PEP II Status and Plans

PEP II Status and Plans SLAC-PUB-6854 September 1998 PEP II Status and Plans By John T. Seeman Invited talk presented at the 16th IEEE Particle Accelerator Conference (PAC 95) and International Conference on High Energy Accelerators,

More information

Summary report on synchronization, diagnostics and instrumentation

Summary report on synchronization, diagnostics and instrumentation Summary report on synchronization, diagnostics and instrumentation A.P. Freyberger and G.A. Krafft Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA. 23606 Abstract The proceedings of Working Group

More information

Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

Beam Diagnostics for the BNL Energy Recovery Linac Test Facility Beam Diagnostics for the BNL Energy Recovery Linac Test Facility Peter Cameron, Ilan Ben-Zvi, Michael Blaskiewicz, Michael Brennan, Roger Connolly, William Dawson, Chris Degen, Al DellaPenna, David Gassner,

More information

P. Emma, et al. LCLS Operations Lectures

P. Emma, et al. LCLS Operations Lectures P. Emma, et al. LCLS Operations Lectures LCLS 1 LCLS Accelerator Schematic 6 MeV 135 MeV 250 MeV σ z 0.83 mm σ z 0.83 mm σ z 0.19 mm σ δ 0.05 % σ δ 0.10 % σ δ 1.6 % Linac-0 L =6 m rf gun L0-a,b Linac-1

More information

FIRST SIMULTANEOUS TOP-UP OPERATION OF THREE DIFFERENT RINGS IN KEK INJECTOR LINAC

FIRST SIMULTANEOUS TOP-UP OPERATION OF THREE DIFFERENT RINGS IN KEK INJECTOR LINAC FIRST SIMULTANEOUS TOP-UP OPERATION OF THREE DIFFERENT RINGS IN KEK INJECTOR LINAC M. Satoh #, for the IUC * Accelerator Laboratory, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba,

More information

Operational Status of PF-Ring and PF-AR after the Earthquake

Operational Status of PF-Ring and PF-AR after the Earthquake Journal of Physics: Conference Series Operational Status of PF-Ring and PF-AR after the Earthquake To cite this article: T Honda et al 2013 J. Phys.: Conf. Ser. 425 042014 Related content - Design and

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

Features of the 745T-20C: Applications of the 745T-20C: Model 745T-20C 20 Channel Digital Delay Generator

Features of the 745T-20C: Applications of the 745T-20C: Model 745T-20C 20 Channel Digital Delay Generator 20 Channel Digital Delay Generator Features of the 745T-20C: 20 Independent delay channels - 100 ps resolution - 25 ps rms jitter - 10 second range Output pulse up to 6 V/50 Ω Independent trigger for every

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

2008 JINST 3 S LHC Machine THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS. Lyndon Evans 1 and Philip Bryant (editors) 2

2008 JINST 3 S LHC Machine THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS. Lyndon Evans 1 and Philip Bryant (editors) 2 PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA RECEIVED: January 14, 2007 REVISED: June 3, 2008 ACCEPTED: June 23, 2008 PUBLISHED: August 14, 2008 THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND

More information

ASTRID2 the UV and soft x-ray synchrotron light source with the ultimate brilliance

ASTRID2 the UV and soft x-ray synchrotron light source with the ultimate brilliance ASTRID2 the UV and soft x-ray synchrotron light source with the ultimate brilliance Niels Hertel, Søren Pape Møller and Jørgen S. Nielsen / 28-07-2009 1 Introduction and general remarks... 2 2 ASTRID2

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, for the CLIC/CTF3 Collaboration http://cern.ch/clic-study LINAC 10 MO303 13 Sep 2010 The Key to CLIC Efficiency NC Linac for

More information

GFT Channel Digital Delay Generator

GFT Channel Digital Delay Generator Features 20 independent delay Channels 100 ps resolution 25 ps rms jitter 10 second range Output pulse up to 6 V/50 Ω Independent trigger for every channel Fours Triggers Three are repetitive from three

More information

A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator

A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator S. Cousineau (On behalf of the SNS project) HB2016, Sweden July 04, 2016 ORNL is managed by UT-Battelle for the US Department

More information

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20 ALBA RF System F. Perez RF System 1/20 ALBA Synchrotron Light Source in Barcelona (Spain) 3 GeV accelerator 30 beamlines (7 on day one) 50-50 Spanish Government Catalan Government First beam for users

More information

Future Performance of the LCLS

Future Performance of the LCLS Future Performance of the LCLS J. Welch for many* SLAC National Accelerator Laboratory FLS 2010, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010. SLAC National Accelerator Laboratory,

More information

FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR

FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR BNL-94942-2011-CP FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR S. Sletskiy and N. Solyak Presented at the 2011 Particle Accelerator Conference (PAC 11) New York, NY March

More information

Synchrotron Light Facility. Operation of ALBA RF. Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo

Synchrotron Light Facility. Operation of ALBA RF. Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo Operation of ALBA RF Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo Outline ALBA RF Overview: Booster and SR RF Operation with beam Statistics of first year operation Cavities

More information

Jae-Young Choi On behalf of PLS-II Linac team

Jae-Young Choi On behalf of PLS-II Linac team PLS-II Linac 2015. 4. 8. Jae-Young Choi On behalf of PLS-II Linac team Accelerators in Pohang Accelerator Laboratory XFEL (under construction) 400 M$ Machines under installation PLS-II PAL : Chronology

More information

TRANSVERSE DAMPING AND FAST INSTABILITIES

TRANSVERSE DAMPING AND FAST INSTABILITIES TRANSVERSE DAMPING AND FAST INSTABILITIES Abstract The characteristics of the LHC beams in the SPS, protons and ions, pose stringent requirements on the SPS damper (feedback system). The boundary conditions

More information

JLab 10kW FEL Driver Beam Diagnostics

JLab 10kW FEL Driver Beam Diagnostics JLab 10kW Driver Beam Diagnostics Kevin Jordan, S. V. Benson, J. Coleman, D. Douglas, R. Evans, A. Grippo, D. Gruber, G. Krafft, W. Moore, N. Nishimori, P. Piot, D. Sexton, J. Song and S. Zhang Outline.

More information

Introduction to Synchrotron Radiation and Storage Ring Light Sources.

Introduction to Synchrotron Radiation and Storage Ring Light Sources. Introduction to Synchrotron Radiation and Storage Ring Light Sources. Monday 22 Nov 2010 at 12:15 (00h55') Primary authors : Dr. PODOBEDOV, Boris (BNL) Co-authors : Presenter : Dr. PODOBEDOV, Boris (BNL)

More information

Brilliance. Electron Beam Position Processor

Brilliance. Electron Beam Position Processor Brilliance Electron Beam Position Processor Many instruments. Many people. Working together. Stability means knowing your machine has innovative solutions. For users, stability means a machine achieving

More information

Diagnostics Development in SRRC

Diagnostics Development in SRRC Diagnostics Development in SRRC K. T. Hsu, C. H. Kuo, Jenny Chen, C. S. Chen, K. K. Lin, C. C. Kuo, Richard Sah _ Synchrotron Radiation Research Center, No. 1 R&D Road VI, Hsinchu Science-Based Industrial

More information

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement. Spear3 RF System RF Requirement Overall System High Power Components Operation and Control SPEAR 3 History 1996 Low emittance lattices explored 1996 SPEAR 3 proposed 11/97 SPEAR 3 design study team formed

More information

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team Status of SOLARIS Paweł Borowiec On behalf of Solaris Team e-mail: pawel.borowiec@uj.edu.pl XX ESLS-RF Meeting, Villingen 16-17.11.2016 Outline 1. Timeline 2. Injector 3. Storage ring 16-17.11.2016 XX

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

SUMMARY OF THE ILC R&D AND DESIGN

SUMMARY OF THE ILC R&D AND DESIGN SUMMARY OF THE ILC R&D AND DESIGN B. C. Barish, California Institute of Technology, USA Abstract The International Linear Collider (ILC) is a linear electron-positron collider based on 1.3 GHz superconducting

More information

BEAM STABILITY IN SYNCHROTRON LIGHT SOURCES*

BEAM STABILITY IN SYNCHROTRON LIGHT SOURCES* BEAM STABILITY IN SYNCHROTRON LIGHT SOURCES* Glenn Decker Advanced Photon Source, Argonne National Laboratory Argonne, IL 60439, USA Abstract Numerous third-generation light sources are now in a mature

More information

Tolerances on Magnetic Misalignments in SESAME Storage Ring

Tolerances on Magnetic Misalignments in SESAME Storage Ring Tolerances on Magnetic Misalignments in SESAME Storage Ring SES-TE-AP-TN-0003 April 20, 2014 Authored by: Reviewed by: Approved by: Access List : Maher Attal Erhard Huttle Erhard Huttle ---Internal ---------

More information

Photoinjector Laser Operation and Cathode Performance

Photoinjector Laser Operation and Cathode Performance Photoinjector Laser Operation and Cathode Performance Daniele Sertore, INFN Milano LASA Siegfried Schreiber, DESY Laser operational experience Laser beam properties Cathode performances Outlook TTF and

More information

TWO BUNCHES WITH NS-SEPARATION WITH LCLS*

TWO BUNCHES WITH NS-SEPARATION WITH LCLS* TWO BUNCHES WITH NS-SEPARATION WITH LCLS* F.-J. Decker, S. Gilevich, Z. Huang, H. Loos, A. Marinelli, C.A. Stan, J.L. Turner, Z. van Hoover, S. Vetter, SLAC, Menlo Park, CA 94025, USA Abstract The Linac

More information

Focus of efforts. ILC 2010, Mar/27/10 A. Seryi, BDS: 2

Focus of efforts. ILC 2010, Mar/27/10 A. Seryi, BDS: 2 Beam Delivery System Updates Andrei Seryi for BDS design and ATF2 commissioning teams LCWS 2010 / ILC 2010 March 28, 2010 Plan of the program at ILC2010 Focus of efforts Work on parameter set for a possible

More information

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS Marc Delrieux, CERN, BE/OP/PS CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS CERN s Proton Synchrotron (PS) complex How are we involved? Review of some diagnostics applications

More information

Precision measurements of beam current, position and phase for an e+e- linear collider

Precision measurements of beam current, position and phase for an e+e- linear collider Precision measurements of beam current, position and phase for an e+e- linear collider R. Corsini on behalf of H. Braun, M. Gasior, S. Livesley, P. Odier, J. Sladen, L. Soby INTRODUCTION Commissioning

More information

Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project

Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project 16/11/2016 20th ELS-RF Workshop Pollina JP 1 and Status of the ThomX LINAC project Operational experience with the SOLEIL

More information

LEP Status and Performance in 2000

LEP Status and Performance in 2000 LEP Status and Performance in 2 R. Assmann, SL/OP for the SL Division Outline: Operational strategy Overview on luminosity and energy performance Energy reach Luminosity performance Other issues Further

More information

arxiv: v1 [physics.acc-ph] 19 Nov 2013

arxiv: v1 [physics.acc-ph] 19 Nov 2013 Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current * arxiv:1311.4613v1 [physics.acc-ph] 19 Nov 213 XU Wei 1,2;1) LI Jing-Yi 1,2;2) HUANG

More information

Challenges in Accelerator Beam Instrumentation

Challenges in Accelerator Beam Instrumentation Proceedings of the DPF-2009 Conference, Detroit, MI, July 27-31, 2009 1 Challenges in Accelerator Beam Instrumentation M. Wendt Fermi National Accelerator Laboratory, Batavia, IL 60510, USA The challenges

More information

Hall-B Beamline Commissioning Plan for CLAS12

Hall-B Beamline Commissioning Plan for CLAS12 Hall-B Beamline Commissioning Plan for CLAS12 Version 1.5 S. Stepanyan December 19, 2017 1 Introduction The beamline for CLAS12 utilizes the existing Hall-B beamline setup with a few modifications and

More information

The Construction Status of CSNS Linac

The Construction Status of CSNS Linac The Construction Status of CSNS Linac Sheng Wang Dongguan branch, Institute of High Energy Physics, CAS Sep.2, 2014, Geneva Outline The introduction to CSNS accelerators The commissoning of ion source

More information