Beam-based Feedback Systems

Size: px
Start display at page:

Download "Beam-based Feedback Systems"

Transcription

1 Beam-based Feedback Systems Philip Burrows Queen Mary, University of London

2 ILC Beam-based Feedback/Feedforward Systems Intra-train (bunch-bunch) feedback at IP: 3 MHz Pulse-pulse feedback at IP: 5 Hz Orbit feedbacks upstream in BDS + in linac: < 1Hz Corrections to beam position and/or angle IP FBs: most critical in vertical dimension in order to make nanometre-sized beams collide Feed-forwards: DR linac, linac IP

3 Critical Feedback/Feedforward Components BPMs BPM signal processor Feedback processor Amplifier Kicker Intra-train FB at IP:

4 IP Intra-train Beam Feedback For BPM (say) 4m downstream of IP: for beam offsets < 50 sigma_y beam position signal < c. 1mm BPM resolution of order 10 microns is adequate stripline or cavity BPMs ok Kicker needs to provide up to 100 nanoradian deflections cavity BPM needs <<300ns time resolution amplifier power < 100W

5 Intra-train Feedback Performance (White) 3 x 1034 Luminosity / cm -2 s -1 1 seed: post-bba + GM + wakes 2 1 y position FB: restore collisions within 100 bunches y position scan: optimise signal in pair monitor y angle scan Bunch # 10 5 OPTIMAL LUMINOSITY µ = ± Fractional Lumi Change After IP FB 15 5 ILC IR1 (20 mrad) µ = ± Fractional Lumi Change After ANG FB

6 FONT Prototype Intra-train Analogue Feedback Systems NLCTA: 65 MeV beam, 170ns train, 87ps bunch spacing FONT1 (2001-2): First demonstration of closed-loop FB: latency 67ns 10/1 beam position correction FONT2 (2003-4): Improved demonstration of FB: latency 54ns real time charge normalisation with logarithmic amplifiers beam flattener to straighten train profile solid-state amplifier ATF: 1.3 GeV beam, 56ns train, 2.8ns bunch spacing FONT3 (2004-5): Ultra-fast demonstration of FB: latency 23 ns 3 stripline BPMs high-power solid-state amplifier

7 FONT: kicker driver amplifiers FONT1 3-stage tube amplifier FONT3 PCB amplifer + FB Same drive power as needed for ILC

8 FONT3 outline Adjustable-gap kicker BPM ML11X BPM ML12X BPM ML13X Superfast amplifier Superfast BPM processor Aim: Feedback TOTAL latency < 20 ns

9 FONT3: BPM processor + amplifier/feedback installation in ATF beamline BPM processor board FEATHER kicker Amplifier/FB board BPM

10 FONT3: latency budget Time of flight kicker BPM: 4ns Signal return time BPM kicker: 6ns Irreducible latency: 10ns BPM processor: 5ns Amplifier + FB: 5ns Electronics latency: 10ns Total latency budget: 20ns Will allow 56/20 = 2.8 periods during bunchtrain

11 FONT3: BPM processor tests (Molloy) (single-bunch, December 2004 beam tests)

12 FONT3: BPM processor latency measurement (single bunch, March beam tests) latency Distribution of latency: processor output raw signal Latency 4.3 ns

13 FONT3: BPM scale calibration using correctors (20-bunch data, March beam tests) BPM12 BPM11 BPM13

14 FONT3: BPM position resolution (20-bunch data, March beam tests) Distributions of residuals (240 beam pulses): BPM11 BPM12 BPM13 Resolution: 3-5 um

15 FONT3: Results (June ) 40 pulses per position setting

16 FONT3: Average over 40 Pulses 56ns bunchtrain 200um FB on 23ns FB + delay loop on

17 FONT3: Summary Demonstrated feedback with delay loop Ultra-fast system: total latency 23 ns Varied main gain, delay loop length, delay loop gain - system behaves as expected Beam quality + limited time (6 shifts) did not allow detailed optimisation of system parameters

18 FONT1,2,3: Summary 67 ns 54 ns 23 ns Even fast enough for CLIC intra-train FB!

19 FONT4: Digital FB Processor Module (Dabiri Khah) JTAG connector JTAG circuit RAM Flash/ EEPROM DAC AOUT2 DAC AOUT1 Serial connector UART circuit FPGA ADC Differential To single AIN4 USB connector IN Power Jack & switch USB circuit 5v 3.3v 2.5v? v Clock circuit Clk IN ADC ADC ADC Differential To single Differential To single Differential To single AIN3 AIN2 AIN1 Latency goal 100ns

20 FONT4: Prototype Digital Feedback System ATF/(ATF2): 1.3 GeV beam, 3 bunches with spacing c. 150ns FONT4 (2005-6): modified FONT3 BPM front-end signal processor digital FB processor modified FONT2 solid-state amplifier: 300ns long o/p pulse FEATHER adjustable-gap kicker Aiming for first demonstration of FB w. ILC-like bunches: latency 100ns (electronics) stabilisation of 3 rd bunch at um level Possible first component tests at ATF December 2005/March 2006

21 5-Hz Integrated Feedback Simulations (Linda Hendrickson) Linac feedback distribution: 5 distributed loops per beam, each with 4 horizontal and 4 vertical dipole correctors, and 8 BPMs (X&Y). LJH simulations. BDS feedback distribution: 1 BDS loop per beam, 9 BPMs and 9 dipole correctors, both horizontal and vertical. Based on NLC simulations by Seryi. Linac and BDS feedbacks Cascaded system of 6 loops per beam: loops don t overcompensate beam perturbations, but can be independently disabled for operational convenience. SLC-style single cascade (each loop communicates beam information to single adjacent downstream loop). Linac and BDS loops have exponential response of 36 5-Hz pulses. IP deflection (X&Y), not cascaded, exponential 6 pulses (like SLC). Matlab/liar/dimad/guinea-pig platform. Upgraded liar/dimad for energy and current jitter, and dispersion measurements. KEK-model ground motion (noisy site).

22 Feedback Simulations (Linda Hendrickson) BPM readings after 30 minutes ground motion Emittance growth in linac 5 distributed linac loops ~100% after 30 min KEK ground motion + jitter for 10 seeds, 6% with feedback (3% with feedback without jitter). 1 BDS loop IP loop

23 Feedback Simulations (Linda Hendrickson) Banana-bunch shape is seen at end of LINAC after 30 minutes of K ground motion. Fixed with feedback.

24 Single-beam studies of beamsize growth, with 5-hz feedback in LINAC and BDS. Perfect initially, add 30 minutes KEK ground motion, let feedback converge -> 5% beamsize growth (380% without feedback). Increase energy spread for undulator (.15% end of linac; this effect needs more study!) -> 14%. Beamsize growth effects, with feedback (Hendrickson) 30 min ground. + Undulator + Component jitter + 5 Hz ground. + Kicker, current, energy jitter, BPM resol. Add component jitter (25 nm BDS, 50 nm linac) -> 15%. Add 5-Hz KEK ground motion -> 18%. Add kicker jitter (.1 sigma), current jitter (5%), energy (.5% uncorrelated amplitude on each klys, 2 degrees uncorrelated phase on each klys, 0.5 degrees correlated phase on all klystrons, BPM resolution.1 um. ->

25 2-beam Integrated Feedback Simulations (Linda Hendrickson) 2 beams, 5-Hz linac, BDS and IP deflection feedback. Perfect initially, feedback turned on after 30 minutes of KEK ground motion. 5 Hz ground motion, added component jitter, kicker, energy, current jitter. No angle feedback, no intratrain feedback. For the first ~20 seconds, IP feedback cannot keep up with large BDS steering changes. After 20 seconds, beams kept in collision but luminosity is poor (~20% in preliminary simulations, ~79% with perfect intratrain IP feedback).

26 International Fast FB Collaboration FONT: Queen Mary: Philip Burrows, Glen White, Glenn Christian, Hamid Dabiri Khah, Tony Hartin, Stephen Molloy, Christine Clarke, Christina Swinson Daresbury Lab: Alexander Kalinin, Roy Barlow, Mike Dufau Oxford: Colin Perry, Gerald Myatt SLAC: Joe Frisch, Tom Markiewicz, Marc Ross, Chris Adolphsen, Keith Jobe, Doug McCormick, Janice Nelson, Tonee Smith, Steve Smith, Andrei Seryi, Mark Woodley, Linda Hendrickson. FEATHER: KEK: Toshiaki Tauchi, Hitoshi Hayano Tokyo Met. University: Takayuki Sumiyoshi, Hiroaki Fujimoto Simulations: Nick Walker (DESY), Daniel Schulte (CERN) Eurotev (BDS, ILPS), ELAN (Instr, Bdyn), ILC WG4 (BDS)

27 Spare slides follow

28 FONT3: Averaged results (HIGH gain, nominal delay settings)

29 FONT3: Averaged results (LOW gain, nominal delay settings)

30 FONT3: Average results (variation of delay-loop settings) Delay loop length Delay loop gain

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University Development of beam-collision feedback systems for future lepton colliders P.N. Burrows 1 John Adams Institute for Accelerator Science, Oxford University Denys Wilkinson Building, Keble Rd, Oxford, OX1

More information

arxiv: v1 [physics.acc-ph] 20 Dec 2018

arxiv: v1 [physics.acc-ph] 20 Dec 2018 Design and operation of a prototype interaction point beam collision feedback system for the International Linear Collider R. J. Apsimon, D. R. Bett, N. Blaskovic Kraljevic, R. M. Bodenstein, T. Bromwich,

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

Focus of efforts. ILC 2010, Mar/27/10 A. Seryi, BDS: 2

Focus of efforts. ILC 2010, Mar/27/10 A. Seryi, BDS: 2 Beam Delivery System Updates Andrei Seryi for BDS design and ATF2 commissioning teams LCWS 2010 / ILC 2010 March 28, 2010 Plan of the program at ILC2010 Focus of efforts Work on parameter set for a possible

More information

Precision measurements of beam current, position and phase for an e+e- linear collider

Precision measurements of beam current, position and phase for an e+e- linear collider Precision measurements of beam current, position and phase for an e+e- linear collider R. Corsini on behalf of H. Braun, M. Gasior, S. Livesley, P. Odier, J. Sladen, L. Soby INTRODUCTION Commissioning

More information

Andrei Seryi, Toshiaki Tauchi. December 15-18, 2008

Andrei Seryi, Toshiaki Tauchi. December 15-18, 2008 ATF2 milestones for discussion Andrei Seryi, Toshiaki Tauchi December 15-18, 2008 7th ATF2 Project Meeting What are natural milestones for ATF2? ATF2 design: Nominal IP β y* =0.1 mm & L * =1 m this give

More information

Accelerator Instrumentation RD. Monday, July 14, 2003 Marc Ross

Accelerator Instrumentation RD. Monday, July 14, 2003 Marc Ross Monday, Marc Ross Linear Collider RD Most RD funds address the most serious cost driver energy The most serious impact of the late technology choice is the failure to adequately address luminosity RD issues

More information

Requirements for the Beam Abort Magnet and Dump

Requirements for the Beam Abort Magnet and Dump Requirements for the Beam Abort Magnet and Dump A beam abort kicker (pulsed dipole magnet) and dump are required upbeam of the LCLS undulator in order to protect the undulator from mis-steered and poor

More information

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

SLAC ILC Accelerator R&D Program

SLAC ILC Accelerator R&D Program SLAC ILC Accelerator R&D Program SLUO Meeting September 26 th, 2005 Tor Raubenheimer SLAC 2005 ILC Program NLC group was redirected towards ILC Developed a program aimed at the topics identified in the

More information

SUMMARY OF THE ILC R&D AND DESIGN

SUMMARY OF THE ILC R&D AND DESIGN SUMMARY OF THE ILC R&D AND DESIGN B. C. Barish, California Institute of Technology, USA Abstract The International Linear Collider (ILC) is a linear electron-positron collider based on 1.3 GHz superconducting

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems LCLS RF Reference and Control R. Akre Last Update 5-19-04 Sector 0 RF and Timing Systems The reference system for the RF and timing starts at the 476MHz Master Oscillator, figure 1. Figure 1. Front end

More information

Beam Position Monitor Developments at PSI

Beam Position Monitor Developments at PSI Paul Scherrer Institut V. Schlott for the PSI Diagnostics Section Wir schaffen Wissen heute für morgen Beam Position Monitor Developments at PSI Overview Motivation European XFEL BPM Systems SwissFEL BPM

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

Future Performance of the LCLS

Future Performance of the LCLS Future Performance of the LCLS J. Welch for many* SLAC National Accelerator Laboratory FLS 2010, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010. SLAC National Accelerator Laboratory,

More information

beam dump from P2 losses this morning

beam dump from P2 losses this morning beam dump from P2 losses this morning Some observations on the beam dump from P2 losses this morning 29.10.10 at 01:26:39: - single bunch intensity (average) was ~1.3e11 - significantly higher than previous

More information

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract SLAC PUB 7246 June 996 THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Ronald D. Ruth, SLAC, Stanford, CA, USA Abstract At SLAC, we are pursuing the design of a Next Linear Collider (NLC)

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

STATUS OF THE INTERNATIONAL LINEAR COLLIDER

STATUS OF THE INTERNATIONAL LINEAR COLLIDER STATUS OF THE INTERNATIONAL LINEAR COLLIDER K. Yokoya, KEK, Tsukuba, Japan Abstract The International Linear Collider (ILC) is the nextgeneration electron-positron collider. Since the publication of the

More information

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 Low Level RF for PIP-II Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 PIP-II LLRF Team Fermilab Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah Holzbauer, Dan Klepec, Yuriy Pischalnikov,

More information

An Overview of Beam Diagnostic and Control Systems for AREAL Linac

An Overview of Beam Diagnostic and Control Systems for AREAL Linac An Overview of Beam Diagnostic and Control Systems for AREAL Linac Presenter G. Amatuni Ultrafast Beams and Applications 04-07 July 2017, CANDLE, Armenia Contents: 1. Current status of existing diagnostic

More information

Status of Elettra, top-up and other upgrades

Status of Elettra, top-up and other upgrades Status of Elettra, top-up and other upgrades Emanuel Karantzoulis ELETTRA / Trieste, Italy / 2010 November 25-26 Past and Present Configurations 1994-2007 From 2008 No full energy injection Full energy

More information

Status of SOLARIS Arkadiusz Kisiel

Status of SOLARIS Arkadiusz Kisiel Status of SOLARIS Arkadiusz Kisiel Solaris National Synchrotron Light Source Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl Arkadiusz.Kisiel@uj.edu.pl On behalf of SOLARIS

More information

Linac 4 Instrumentation K.Hanke CERN

Linac 4 Instrumentation K.Hanke CERN Linac 4 Instrumentation K.Hanke CERN CERN Linac 4 PS2 (2016?) SPL (2015?) Linac4 (2012) Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase

More information

. SLAC-P~ December 1995

. SLAC-P~ December 1995 SLAC-P~-95-7058 December 1995 BEAM-BASED ALIGNMENT OF THE FINAL FOCUS TEST BEAM * P. Tenenbaum, D. Burke, R. Helm, J. Iwin, P. Raimondi Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

LLRF at SSRF. Yubin Zhao

LLRF at SSRF. Yubin Zhao LLRF at SSRF Yubin Zhao 2017.10.16 contents SSRF RF operation status Proton therapy LLRF Third harmonic cavity LLRF Three LINAC LLRF Hard X FEL LLRF (future project ) Trip statistics of RF system Trip

More information

ATF2 project in the ATF international collaboration, including coordination issues

ATF2 project in the ATF international collaboration, including coordination issues ATF2 project in the ATF international collaboration, including coordination issues 1. Status of ATF collaboration 2. R&D items in ATF 3. Schedule 4. Expectation Junji Urakawa, KEK ATF2-IN2P3-KEK kick-off

More information

Beam Instrumentation for X-ray FELs

Beam Instrumentation for X-ray FELs Beam Instrumentation for X-ray FELs 05/16/2011 1 1 Outline X-ray FEL overview Diagnostics requirements for X-ray FELs Transverse Diagnostics Longitudinal Diagnostics Summary 2 2 X-ray FEL Overview 100

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

Status and Plans for PEP-II

Status and Plans for PEP-II Status and Plans for PEP-II John Seeman SLAC Particle and Particle-Astrophysics DOE HEPAP P5 Review April 21, 2006 Topics Luminosity records for PEP-II in October 2005 Fall shut-down upgrades Run 5b turn

More information

Summary report on synchronization, diagnostics and instrumentation

Summary report on synchronization, diagnostics and instrumentation Summary report on synchronization, diagnostics and instrumentation A.P. Freyberger and G.A. Krafft Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA. 23606 Abstract The proceedings of Working Group

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

CESR BPM System Calibration

CESR BPM System Calibration CESR BPM System Calibration Joseph Burrell Mechanical Engineering, WSU, Detroit, MI, 48202 (Dated: August 11, 2006) The Cornell Electron Storage Ring(CESR) uses beam position monitors (BPM) to determine

More information

ALBA. Libera Workshop 16 A. Olmos

ALBA. Libera Workshop 16 A. Olmos LIBERAs @ ALBA Libera Workshop 16 A. Olmos Content Fast Orbit Feedback At a glance Equipments Implementation Limitations In operation Bunch-by- Bunch system At a glance Ported Software Status What else

More information

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac Masanori Satoh (Acc. Lab., KEK) for the injector upgrade group 2010/9/16 1 Overview of Linac Beam Operation 2010/9/16

More information

Availability and Reliability Issues for the ILC

Availability and Reliability Issues for the ILC Availability and Reliability Issues for the ILC SLAC Presented at PAC07 26 June 07 Contents Introduction and purpose of studies The availability simulation What was modeled (important assumptions) Some

More information

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003 DOE Annual Program Review SLAC April 9-11, 2003 NLC Activities for the Past Year Accelerator Design centered around ILC-TRC studies. Technology R&D focused on the RF R&D. Modulator, klystron, SLED-II,

More information

Beam Instrumentation for CTF3 and CLIC

Beam Instrumentation for CTF3 and CLIC Beam Instrumentation for CTF3 and CLIC Beam loss - Beam halo monitoring developments CLIC diagnostic Common developments with other projects Specific requirements for CLIC Beam Loss and Beam Halo measurement

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, for the CLIC/CTF3 Collaboration http://cern.ch/clic-study LINAC 10 MO303 13 Sep 2010 The Key to CLIC Efficiency NC Linac for

More information

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer The machine parameters and the luminosity goals of the ILC were discussed at the 1 st ILC Workshop. In particular, Nick Walker noted that the TESLA machine parameters had been chosen to achieve a high

More information

TWO BUNCHES WITH NS-SEPARATION WITH LCLS*

TWO BUNCHES WITH NS-SEPARATION WITH LCLS* TWO BUNCHES WITH NS-SEPARATION WITH LCLS* F.-J. Decker, S. Gilevich, Z. Huang, H. Loos, A. Marinelli, C.A. Stan, J.L. Turner, Z. van Hoover, S. Vetter, SLAC, Menlo Park, CA 94025, USA Abstract The Linac

More information

PEP II STATUS AND PLANS *

PEP II STATUS AND PLANS * PEP II STATUS AND PLANS * John T. Seeman + Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA The PEP II B-Factory 1 project is an e + e - colliding beam storage ring complex

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

SLAC ILC program, International BDS Design, ATF2 facility

SLAC ILC program, International BDS Design, ATF2 facility 1 May 3, 2005 SLAC ILC program, International BDS Design, ATF2 facility Andrei Seryi May 3, 2005 Seminar at CERN 2 May 3, 2005 Contents SLAC ILC program» following the outline given by Tor Raubenheimer

More information

Sérgio Rodrigo Marques

Sérgio Rodrigo Marques Sérgio Rodrigo Marques (on behalf of the beam diagnostics group) sergio@lnls.br Outline Introduction Stability Requirements General System Requirements FOFB Strategy Hardware Overview Performance Tests:

More information

Overview of the X-band R&D Program

Overview of the X-band R&D Program Overview of the X-band R&D Program SLAC-PUB-9442 August 2002 Abstract T.O. Raubenheimer Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 USA An electron/positron linear

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

ATF2 COMMISSIONING. IP β x/y, mm 4 / / 0.4 IP η, rad σ E, % ~0.1 ~0.1

ATF2 COMMISSIONING. IP β x/y, mm 4 / / 0.4 IP η, rad σ E, % ~0.1 ~0.1 ATF2 COMMISSIONING SLAC-PUB-13765 A. Seryi # (SLAC), G. Christian (ATOMKI, Debrecen), B. Parker (BNL), D. Schulte, J.-P. Delahaye, R. Tomas, F. Zimmermann (CERN), A. Wolski (Cockcroft Inst.), E. Elsen

More information

PEP-II longitudinal feedback and the low groupdelay. Dmitry Teytelman

PEP-II longitudinal feedback and the low groupdelay. Dmitry Teytelman PEP-II longitudinal feedback and the low groupdelay woofer Dmitry Teytelman 1 Outline I. PEP-II longitudinal feedback and the woofer channel II. Low group-delay woofer topology III. Why do we need a separate

More information

PRESENT STATUS OF J-PARC

PRESENT STATUS OF J-PARC PRESENT STATUS OF J-PARC # F. Naito, KEK, Tsukuba, Japan Abstract Japan Proton Accelerator Research Complex (J-PARC) is the scientific facility with the high-intensity proton accelerator aiming to realize

More information

TITLE PAGE. Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton. Author Affiliation: Jefferson Lab. Requested Proceedings:

TITLE PAGE. Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton. Author Affiliation: Jefferson Lab. Requested Proceedings: TITLE PAGE Title of paper: PUSH-PULL FEL, A NEW ERL CONCEPT Author: Andrew Hutton Author Affiliation: Jefferson Lab Requested Proceedings: Unique Session ID: Classification Codes: Keywords: Energy Recovery,

More information

Friday 05/03/ :00 13:00 : Establishing reference orbit golden Jorg Wenninger. Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB

Friday 05/03/ :00 13:00 : Establishing reference orbit golden Jorg Wenninger. Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB 07:00 13:00 : Establishing reference orbit golden Jorg Wenninger Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB Offset in vertical plane, ~1 mm seems real. 13:00 14: 00 : Injection oscillation

More information

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske.

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. ANKA Status Report N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. KIT - University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

A Facility for Accelerator Physics and Test Beam Experiments

A Facility for Accelerator Physics and Test Beam Experiments A Facility for Accelerator Physics and Test Beam Experiments U.S. Department of Energy Review Roger Erickson for the FACET Design Team February 20, 2008 SLAC Overview with FACET FACET consists of four

More information

P. Emma, et al. LCLS Operations Lectures

P. Emma, et al. LCLS Operations Lectures P. Emma, et al. LCLS Operations Lectures LCLS 1 LCLS Accelerator Schematic 6 MeV 135 MeV 250 MeV σ z 0.83 mm σ z 0.83 mm σ z 0.19 mm σ δ 0.05 % σ δ 0.10 % σ δ 1.6 % Linac-0 L =6 m rf gun L0-a,b Linac-1

More information

1. General principles for injection of beam into the LHC

1. General principles for injection of beam into the LHC LHC Project Note 287 2002-03-01 Jorg.Wenninger@cern.ch LHC Injection Scenarios Author(s) / Div-Group: R. Schmidt / AC, J. Wenninger / SL-OP Keywords: injection, interlocks, operation, protection Summary

More information

Status of CTF3. G.Geschonke CERN, AB

Status of CTF3. G.Geschonke CERN, AB Status of CTF3 G.Geschonke CERN, AB CTF3 layout CTF3 - Test of Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 Drive Beam Injector ~ 50 m 3.5 A - 2100 b of 2.33 nc 150 MeV - 1.4

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

Jae-Young Choi On behalf of PLS-II Linac team

Jae-Young Choi On behalf of PLS-II Linac team PLS-II Linac 2015. 4. 8. Jae-Young Choi On behalf of PLS-II Linac team Accelerators in Pohang Accelerator Laboratory XFEL (under construction) 400 M$ Machines under installation PLS-II PAL : Chronology

More information

New Filling Pattern for SLS-FEMTO

New Filling Pattern for SLS-FEMTO SLS-TME-TA-2009-0317 July 14, 2009 New Filling Pattern for SLS-FEMTO Natalia Prado de Abreu, Paul Beaud, Gerhard Ingold and Andreas Streun Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland A new

More information

BUNCH BY BUNCH FEEDBACK SYSTEMS FOR SUPERKEKB RINGS

BUNCH BY BUNCH FEEDBACK SYSTEMS FOR SUPERKEKB RINGS August 8-1, 216, Chiba, Japan PASJ216 TUOM6 BUNCH BY BUNCH FEEDBACK SYSTEMS FOR SUPERKEKB RINGS Makoto Tobiyama, John W. Flanagan, KEK Accelerator Laboratory, 1-1 Oho, Tsukuba 35-81, Japan, and Graduate

More information

Program Risks Risk Analysis Fallback Plans for the. John T. Seeman DOE PEP-II Operations Review April 26, 2006

Program Risks Risk Analysis Fallback Plans for the. John T. Seeman DOE PEP-II Operations Review April 26, 2006 Program Risks Risk Analysis Fallback Plans for the PEP-II B-FactoryB John T. Seeman DOE PEP-II Operations Review April 26, 2006 OPS Review Topics Are there any PEP-II program risks? Has the laboratory

More information

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20 ALBA RF System F. Perez RF System 1/20 ALBA Synchrotron Light Source in Barcelona (Spain) 3 GeV accelerator 30 beamlines (7 on day one) 50-50 Spanish Government Catalan Government First beam for users

More information

Top-Up Experience at SPEAR3

Top-Up Experience at SPEAR3 Top-Up Experience at SPEAR3 Contents SPEAR 3 and the injector Top-up requirements Hardware systems and modifications Safety systems & injected beam tracking Interlocks & Diagnostics SPEAR3 Accelerator

More information

PROJECT DESCRIPTION. Project Name. Broader Impact. Real Time Simulator for ILC RF and CryoModules

PROJECT DESCRIPTION. Project Name. Broader Impact. Real Time Simulator for ILC RF and CryoModules Project Name PROJECT DESCRIPTION Real Time Simulator for ILC RF and CryoModules Personnel and Institution(s) requesting funding Nigel Lockyer (Professor) University of Pennsylvania Anna Grassellino (1st

More information

Challenges in Accelerator Beam Instrumentation

Challenges in Accelerator Beam Instrumentation Proceedings of the DPF-2009 Conference, Detroit, MI, July 27-31, 2009 1 Challenges in Accelerator Beam Instrumentation M. Wendt Fermi National Accelerator Laboratory, Batavia, IL 60510, USA The challenges

More information

Nick Walker DESY MAC

Nick Walker DESY MAC Nick Walker DESY MAC 4.5.2006 XFEL X-Ray Free-Electron Laser DESY ILC Project Group Accelerator Experimentation Behnke, Elsen, Walker (chair) WP 15, 16 WP 4-7 Accelerator Physics and Design WP 6 High Gradient

More information

Photo cathode RF gun -

Photo cathode RF gun - Photo cathode RF gun - *),,, ( 05 Nov. 2004 Spring8 UTNL Linac & Mg Photocathode RF Gun Mg photocathode NERL, 18 MeV Linac and the RF gun Electron Beam Mg photocathode Mg photocathode RF gun of SPring8

More information

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Bingxin Yang, Alex H. Lumpkin, Katherine Harkay, Louis Emery, Michael Borland, and Frank Lenkszus Advanced

More information

PEP II Status and Plans

PEP II Status and Plans SLAC-PUB-6854 September 1998 PEP II Status and Plans By John T. Seeman Invited talk presented at the 16th IEEE Particle Accelerator Conference (PAC 95) and International Conference on High Energy Accelerators,

More information

November 5,1999. The NLC Injector UCRL-JC

November 5,1999. The NLC Injector UCRL-JC Preprint UCRL-JC-13-6450 The NLC Injector System V. Bharadwaj, J.E. Clendenin, P. Emma, J. Frisch, R.K. Jobe, T. Kotseroglou, P. Krejcik, A. V. Kulikov, Z. Li, T. Maruyama, K.K. Millage, B. McKee, G. Mulhollan,

More information

STATUS AND FUTURE PROSPECTS OF CLIC

STATUS AND FUTURE PROSPECTS OF CLIC STATUS AND FUTURE PROSPECTS OF CLIC S. Döbert, for the CLIC/CTF3 collaboration, CERN, Geneva, Switzerland Abstract The Compact Linear Collider (CLIC) is studied by a growing international collaboration.

More information

Scavenger Extraction. Karen Goldsmith Shawn Alverson

Scavenger Extraction. Karen Goldsmith Shawn Alverson Scavenger Extraction Karen Goldsmith Shawn Alverson Topics Beam line and area maps High Power Target (HPT) How to establish first beam to HPT Setting energy (configs, multiknobs, Fast Phase Shifters, etc.)

More information

Fast Orbit Feedback at the SLS. Outline

Fast Orbit Feedback at the SLS. Outline Fast Orbit Feedback at the SLS 2nd Workshop on Beam Orbit Stabilisation (December4-6, 2002, SPring-8) T. Schilcher Outline Noise Sources at SLS Stability / System Requirements Fast Orbit Feedback Implementation

More information

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs Basic rules Basic rules for the design of RF Controls in High Intensity Proton Linacs Particularities of proton linacs wrt electron linacs Non-zero synchronous phase needs reactive beam-loading compensation

More information

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Demonstrate an NLC power source Two Phases: 8-Pack Phase-1 (current): Multi-moded SLED II power compression Produce NLC baseline power: 475

More information

PEP-II IR-2 Alignment

PEP-II IR-2 Alignment SLAC-PUB-10328 January 2004 PEP-II IR-2 Alignment A. Seryi, S. Ecklund, C. Le Cocq, R. Pushor, R. Ruland, Z. Wolf SLAC, Stanford, CA 94025, USA This paper describes the first results and preliminary analysis

More information

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala) 2 Work Package and Work Unit descriptions 2.8 WP8: RF Systems (R. Ruber, Uppsala) The RF systems work package (WP) addresses the design and development of the RF power generation, control and distribution

More information

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach.

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. ANKA Status Report N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. Institute for Synchrotron Radiation KIT - University of the State of Baden-Wuerttemberg and

More information

COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM

COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM A. Olmos, J. Moldes, R. Petrocelli, Z. Martí, D. Yepez, S. Blanch, X. Serra, G. Cuni, S. Rubio, ALBA-CELLS, Barcelona, Spain Abstract The ALBA Fast

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, KVI Groningen 20 Sep 2011 The Key to CLIC Efficiency NC Linac for 1.5 TeV/beam accelerating gradient: 100 MV/m RF frequency:

More information

Recent APS Storage Ring Instrumentation Developments. Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010

Recent APS Storage Ring Instrumentation Developments. Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010 Recent APS Storage Ring Instrumentation Developments Glenn Decker Advanced Photon Source Beam Diagnostics March 1, 2010 Ring Diagnostics Overview RF beam position monitor technology Photon beam position

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

Overview of NLC/JLC Collaboration *

Overview of NLC/JLC Collaboration * SLAC PUB 10117 August 2002 Overview of NLC/JLC Collaboration * K. Takata KEK, Oho, Tsukuba-shi 305-0801, JAPAN On behalf of the NLC Group Stanford Linear Accelerator Center, Stanford, California 94309,

More information

Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department. Darius Gray

Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department. Darius Gray SLAC-TN-10-007 Field Programmable Gate Array (FPGA) Based Trigger System for the Klystron Department Darius Gray Office of Science, Science Undergraduate Laboratory Internship Program Texas A&M University,

More information

LIGHT PROTON THERAPY PROJECT

LIGHT PROTON THERAPY PROJECT 17 th of MAY 2018 LIGHT PROTON THERAPY PROJECT Yevgeniy Ivanisenko on behalf of ADAM team FORM-01040-A AVO-ADAM Advanced Oncotherapy (AVO) is a public company ADAM is R&D center of AVO ~ 100 employees

More information

CMS Tracker Synchronization

CMS Tracker Synchronization CMS Tracker Synchronization K. Gill CERN EP/CME B. Trocme, L. Mirabito Institut de Physique Nucleaire de Lyon Outline Timing issues in CMS Tracker Synchronization method Relative synchronization Synchronization

More information

Demonstra*on of Two- color XFEL Opera*on and Autocorrela*on Measurement at SACLA

Demonstra*on of Two- color XFEL Opera*on and Autocorrela*on Measurement at SACLA Demonstra*on of Two- color XFEL Opera*on and Autocorrela*on Measurement at SACLA Toru Hara, Yuichi Inubushi, Tetsuya Ishikawa, Takahiro Sato, Hitoshi Tanaka, Takashi Tanaka, Kazuaki Togawa, Makina Yabashi

More information

FEL TEST PLAN WORKSHEET

FEL TEST PLAN WORKSHEET FEL TEST PLAN WORKSHEET PROGRAM DEPUTY APPROVAL FEL Exp Coordinator Signoff: Date: PI Reviewer Signoff: Date: Expiration Date (max. 90 days from approval): Presentation Required? yes no COMPLETION INFORMATION

More information

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX T. Koseki, M. Ikegami, M. Tomizawa, Accelerator Laboratory, KEK, Tsukuba, Japan F. Noda, JAEA, Tokai, Japan Abstract The J-PARC (Japan Proton

More information

Libera Hadron: demonstration at SPS (CERN)

Libera Hadron: demonstration at SPS (CERN) Creation date: 07.10.2011 Last modification: 14.10.2010 Libera Hadron: demonstration at SPS (CERN) Borut Baričevič, Matjaž Žnidarčič Introduction Libera Hadron has been demonstrated at CERN. The demonstration

More information

The Backlog The Scope The Approach The Trends

The Backlog The Scope The Approach The Trends BPM Development at Instrumentation Technologies Rok Hrovatin, Borut Baričevič, Tomaž Beltram, Matej Kenda 8th DITANET workshop on BPMs, Januar 202 rok.hrovatin@i-tech.si The Backlog The Scope The Approach

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The basic parameters of the pre-injector are listed in the Table below. 100 MeV 3.3 The Pre-injector The high design brightness of the SLS requires very high phase space density of the stored electrons, leading to a comparatively short lifetime of the beam in the storage ring. This,

More information