Lab #6: Combinational Circuits Design

Size: px
Start display at page:

Download "Lab #6: Combinational Circuits Design"

Transcription

1 Lab #6: Combinational Circuits Design PURPOSE: The purpose of this laboratory assignment is to investigate the design of combinational circuits using SSI circuits. The combinational circuits being implemented in this lab are a BCD-to-7 segment decoder, a Binary-to-BCD converter, and a -bit Binary Adder. Upon completion of this lab you should be able to: Understand the use of Boolean laws in implementing real circuits. Understand the behavior of a display decoder. Understand the behavior of a combinational code converter Understand the behavior of a binary adder. Understand the concept of time multiplexing. Appreciate the concept of design decomposition and integration. MATERIALS: ICs: 70 (-input NOT), 783 (-bit Adder with fast Carry), 757 (quad -to- Multiplexer ), and 77(BCD-to-7 Segment Decoder). DC Power Supply DVM (Digital Volt Meter or Multimeter) Function Generator Oscilloscope

2 PRELAB P. BCD-to-7 Segment Decoder A BCD to seven-segment decoder is to be designed to create the numeric digit display patterns shown in Figure. Figure. Pin diagram of the 7-segment display. The display element is of the common anode variety. The decoder receives its BCD input on lines D 3 D D D 0, D 3 being the MSB

3 a) Complete the following truth table of the decoder. D3 D D D0 Seg_a Seg_b Seg_c Seg_d Seg_e Seg_f Seg_g Binary code of any number > 9 (Display OFF) b) Use Boolean laws to find the minimum expressions of all the outputs. P. Binary-to-BCD Decoder A Binary-to-BCD code converter is a combinational circuit that takes a binary code of n bits and convert it into a BCD code of m digits. We want to design a -bit Binary-to-BCD code converter. The block diagram of the circuit is given as follows (Figure ): 3

4 BCD_3 A (MSB) BCD_ BCD_ B BCD_0 C -bit Binary-to BCD Code Converter BCD0_3 D (LSB) BCD0- BCD0_ BCD0_ (Always 0, not to be considered for a -bit input code converter) Figure. Logic block diagram of a Binary-to-BCD Code Converter.

5 a) Complete the following truth table of the code converter INPUTS OUTPUTS # Binary Code BCD BCD0 Numb. A B C D BCD_3 BCD_ BCD_ BCD_0 BCD0_3 BCD0_ BCD0_ BCD0_ b) Because BCD_3 = BCD_ = BCD_ = 0, we consider them as non existing (for the time being), therefore the number of outputs is reduced to 5. Use Boolean laws to find the minimum expressions of BCD0_3, BCD0_, BCD0_, and BCD0_ (show all the workings). c) Draw the logic circuit implementation of BCD_0 using available logic 73 and 7 gates. EXPERIMENTS The 7LS7 is an IC that does the BCD-to-7 segment conversion. The connection diagram for the 7LS7 is shown in Figure, and the connection diagram for the 7-segment display is shown in Figure. Because of the way the 7-segment display is designed, a current-limiting resistor must be inserted between each output from the 7LS7 and the corresponding input of the display. Since handling so many individual resistors is unwieldy, you will use a 6R resistor network device. This device consists simply of eight resistors in a single package, as shown in Figure 5. 5

6 Figure. Pin diagram of the 7LS7 BCD to 7-segment decoder integrated circuit. Figure 5. Pin diagram of the 6R resistor network (the value of each resistor is 70 Ohms). The decoder an display module is shown in figure , 3 Figure 6. Decoder and display circuit. 6

7 Experiment Seven-segment displays are now widely used in almost all microprocessor-based instruments. A single seven-segment display can display the digits from 0 to 9 and the hex digits A to F. Each display is composed of seven LEDs that are arranged in a way to allow the display of different digits using different combinations of LEDs (figure ). Since the display is composed of LEDs, which need high current to drive them, power consumption is very critical. Consider a panel with displays and the number to be displayed is 88. Each LED needs 0 ma. So we need a current of 0x7x = 80 ma. That s a lot of current compared to the current consumed by the microprocessor. Another problem is the number of components and output bits that are needed to connect the displays to the processor. We need at least x7 = 8 resistors and output bits for the displays. Is there a solution for these problems? Yes, there is, it s called MULTIPLEXING! This connection scheme creates a multiplexed display, where driving the anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession can create the appearance of a fourdigit display. Each of the four digits will appear bright and continuously illuminated if the digit enable signals are driven low once every to 6ms (for a refresh frequency of khz to 60Hz). For example, in a 60Hz refresh scheme, each digit would be illuminated for one quarter of the refresh cycle, or ms. The controller must assure that the correct cathode pattern is present when the corresponding anode signal is driven (figure 7). Refresh Period = ms to 6 ms Cathodes BCD0 BCD Fig. 7. Time Multiplexing of the display. 7

8 a 8, Multiplexer V 7 6 8, 3 a B CD0_3 B CD0_ B CD0_ B CD0_0 B CD_0 0 From the Binary-to-BCD Code Converter (Fig. ) 70 o a Square-Wave Signal Generator a Figure 8. Time-multiplexing circuit of the -bit Binary-to-BCD a) Completely build, test, and demonstrate the operation of this circuit to the lab instructor. The frequency of the square must be set to 800 Hz. b) What happens on the display when the frequency of the square wave signal is in the range of 0 to 0 Hz or.5 khz to 00 khz? c) What happens to display module when the maximum amplitude of the square wave is set to V peak to Peak without any DC component? Explain your observation. Experiment We want evaluate the behavior of a -bit Adder IC (783). The circuit to be implemented combines the circuit of figures 8 and 9. 8

9 A, B, C,and D are the inputs of the Binary -to-bcd Code converter Carry Out A B C D 5V 0 Ohms LED C Sum Sum3 Sum Sum Vcc GND 3 C0 A A3 A A B B3 B B bit input A -bit input B Figure 9. -bit Adder to be connected to the circuit diagram of figure 9. a) Implement the circuit on your proto board. Complete the following table by changing the values of A and B. Value of A Value of B Display Display Led status b) What are the status of the display and the LED when the numbers present at A and B have their sum greater than 5 (for instance A = 0 and B = 0)? c) In order to have a correct representation of the addition of -bit numbers we have to consider C as an output (MSB of the Adder) with the other outputs A, B, C, and D (LSB). Show how the circuit of figure 7 can be modified to accommodate this new configuration. LAB REPORT Use the template lab report available on the course web site. 9

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X 8. Objectives : Experiment (6) Decoders / Encoders To study the basic operation and design of both decoder and encoder circuits. To describe the concept of active low and active-high logic signals. To

More information

LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display

LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display LAB OBJECTIVES 1. Design a more complex state machine 2. Design a larger combination logic solution on a PLD 3. Integrate two designs

More information

Physics 323. Experiment # 10 - Digital Circuits

Physics 323. Experiment # 10 - Digital Circuits Physics 323 Experiment # 10 - Digital Circuits Purpose This is a brief introduction to digital (logic) circuits using both combinational and sequential logic. The basic building blocks will be the Transistor

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICL INSTITUTE ECE 270 Experiment #8 DIGITL CIRCUITS Prelab 1. Draw the truth table for the S-R Flip-Flop as shown in the textbook. Draw the truth table for Figure 7. 2.

More information

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH CPE 200L LABORATORY 3: SEUENTIAL LOGIC CIRCUITS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Learn to use Function Generator and Oscilloscope on the breadboard.

More information

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output ECE 201 - Lab 5 MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output PURPOSE To familiarize students with Medium Scale Integration (MSI) technology, specifically adders. The student should also

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017 University of Texas at El Paso Electrical and Computer Engineering Department EE 2169 Laboratory for Digital Systems Design I Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift

More information

NAND/NOR Implementation of Logic Functions

NAND/NOR Implementation of Logic Functions NAND/NOR Implementation of Logic Functions By: Dr. A. D. Johnson Lab Assignment #6 EECS: 1100 Digital Logic Design The University of Toledo 1. Objectives - implementing logic functions expressed in nonstandard

More information

PHYS 3322 Modern Laboratory Methods I Digital Devices

PHYS 3322 Modern Laboratory Methods I Digital Devices PHYS 3322 Modern Laboratory Methods I Digital Devices Purpose This experiment will introduce you to the basic operating principles of digital electronic devices. Background These circuits are called digital

More information

Lab 17: Building a 4-Digit 7-Segment LED Decoder

Lab 17: Building a 4-Digit 7-Segment LED Decoder Phys2303 L.A. Bumm [Basys3 1.2.1] Lab 17 (p1) Lab 17: Building a 4-Digit 7-Segment LED Decoder In this lab you will make 5 test circuits in addition to the 4-digit 7-segment decoder. The test circuits

More information

EECS 140 Laboratory Exercise 7 PLD Programming

EECS 140 Laboratory Exercise 7 PLD Programming 1. Objectives EECS 140 Laboratory Exercise 7 PLD Programming A. Become familiar with the capabilities of Programmable Logic Devices (PLDs) B. Implement a simple combinational logic circuit using a PLD.

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

Data Sheet. Electronic displays

Data Sheet. Electronic displays Data Pack F Issued November 0 029629 Data Sheet Electronic displays Three types of display are available; each has differences as far as the display appearance, operation and electrical characteristics

More information

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore)

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore) Laboratory 11 Digital Displays and Logic (modified from lab text by Alciatore) Required Components: 2x lk resistors 1x 10M resistor 3x 0.1 F capacitor 1x 555 timer 1x 7490 decade counter 1x 7447 BCD to

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

Chapter 8 Functions of Combinational Logic

Chapter 8 Functions of Combinational Logic ETEC 23 Programmable Logic Devices Chapter 8 Functions of Combinational Logic Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Basic Adders

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Engineering College. Electrical Engineering Department. Digital Electronics Lab

Engineering College. Electrical Engineering Department. Digital Electronics Lab Engineering College Electrical Engineering Department Digital Electronics Lab Prepared by: Dr. Samer Mayaleh Eng. Nuha Odeh 2009/2010-1 - CONTENTS Experiment Name Page 1- Measurement of Basic Logic Gates

More information

Digital Electronic Circuits Design & Laboratory Guideline

Digital Electronic Circuits Design & Laboratory Guideline D.2. Encoders Often we use diverse peripheral devices such as switches, numeric keypads and more in order to interface the analog world with the digital one and, along with the usage of these devices,

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Event Counter Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design E.g. Port A, Port B Used to interface with many devices Switches LEDs LCD Keypads Relays Stepper Motors Interface with digital IO requires us to connect the devices correctly and write code to interface

More information

LABORATORY # 1 LAB MANUAL. Digital Signals

LABORATORY # 1 LAB MANUAL. Digital Signals Department of Electrical Engineering University of California Riverside Laboratory #1 EE 120 A LABORATORY # 1 LAB MANUAL Digital Signals 2 Objectives Lab 1 contains 3 (three) parts and the objectives are

More information

gate symbols will appear in schematic Dierent of a circuit. Standard gate symbols have been diagram Figures 5-3 and 5-4 show standard shapes introduce

gate symbols will appear in schematic Dierent of a circuit. Standard gate symbols have been diagram Figures 5-3 and 5-4 show standard shapes introduce chapter is concerned with examples of basic This circuits including decoders, combinational xor gate and parity circuits, multiplexers, comparators, adders. Those basic building circuits frequently and

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

Digital Logic. ECE 206, Fall 2001: Lab 1. Learning Objectives. The Logic Simulator

Digital Logic. ECE 206, Fall 2001: Lab 1. Learning Objectives. The Logic Simulator Learning Objectives ECE 206, : Lab 1 Digital Logic This lab will give you practice in building and analyzing digital logic circuits. You will use a logic simulator to implement circuits and see how they

More information

VikiLABS. a g. c dp. Working with 7-segment displays. 1 Single digit displays. July 14, 2017

VikiLABS. a g. c dp. Working with 7-segment displays. 1 Single digit displays.  July 14, 2017 VikiLABS Working with 7-segment displays www.vikipedialabs.com July 14, 2017 Seven segment displays are made up of LEDs combined such that they can be used to display numbers and letters. As their name

More information

ELEC 204 Digital System Design LABORATORY MANUAL

ELEC 204 Digital System Design LABORATORY MANUAL Elec 24: Digital System Design Laboratory ELEC 24 Digital System Design LABORATORY MANUAL : 4-bit hexadecimal Decoder & 4-bit Increment by N Circuit College of Engineering Koç University Important Note:

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

Department of Electrical Engineering University of Hail Ha il - Saudi Arabia

Department of Electrical Engineering University of Hail Ha il - Saudi Arabia Department of Electrical Engineering University of Hail Ha il - Saudi Arabia Laboratory Manual EE 200 Digital Logic Circuit Design October 2017 1 PREFACE This document is prepared to serve as a laboratory

More information

EE 210. LOGIC DESIGN LAB.

EE 210. LOGIC DESIGN LAB. College of Engineering Electrical Engineering Department EE 210. LOGIC DESIGN LAB. (1 st semester 1426-27) Dr. Messaoud Boukezzata Office: EE 11 Phone: 063 8000 50 Ext 3152 1 College of Engineering Electrical

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

EEM Digital Systems II

EEM Digital Systems II ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 334 - Digital Systems II LAB 3 FPGA HARDWARE IMPLEMENTATION Purpose In the first experiment, four bit adder design was prepared

More information

Chapter 4: Table of Contents. Decoders

Chapter 4: Table of Contents. Decoders 0/26/20 OF 7 Chapter 4: Table of Contents Decoders Table of Contents Modular Combinational Logic - Decoders... 2 The generic decoder... 2 The 7439 decoder... 3 The decoder specification sheet... 4 decoder

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Aim To investigate the basic digital circuit building blocks constructed from combinatorial logic or dedicated Integrated

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

ระบบคอมพ วเตอร และการเช อมโยง Computer Systems and Interfacing บทท 1 พ นฐานด จ ตอล

ระบบคอมพ วเตอร และการเช อมโยง Computer Systems and Interfacing บทท 1 พ นฐานด จ ตอล 04-612-307 ระบบคอมพ วเตอร และการเช อมโยง Computer Systems and Interfacing บทท 1 พ นฐานด จ ตอล สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Digital and Analog Quantities

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

Name: Date: Suggested Reading Chapter 7, Digital Systems, Principals and Applications; Tocci

Name: Date: Suggested Reading Chapter 7, Digital Systems, Principals and Applications; Tocci Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Digital Fundamentals CETT 1425 Lab 7 Asynchronous Ripple Counters Name: Date: Objectives: To

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. 1 ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE :

More information

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control Broadband frequency range from 20Mbps 18.0Gbps Minimal insertion jitter Fast rise and

More information

Combinational Logic Design

Combinational Logic Design Lab #2 Combinational Logic Design Objective: To introduce the design of some fundamental combinational logic building blocks. Preparation: Read the following experiment and complete the circuits where

More information

DIGITAL ELECTRONICS LAB MANUAL FOR 2/4 B.Tech (ECE) COURSE CODE: EC-252

DIGITAL ELECTRONICS LAB MANUAL FOR 2/4 B.Tech (ECE) COURSE CODE: EC-252 DIGITAL ELECTRONICS LAB MANUAL FOR /4 B.Tech (ECE) COURSE CODE: EC-5 PREPARED BY P.SURENDRA KUMAR M.TECH, Lecturer D.SWETHA M.TECH, Lecturer T Srinivasa Rao M.TECH, Lecturer Ch.Madhavi, Lab Assistant 009-00

More information

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EECTRICA ENGINEERING DEPARTMENT California Polytechnic State University EE 361 NAND ogic Gate, RS Flip-Flop & JK Flip-Flop Pre-lab 7 1. Draw the logic symbol and construct the truth table for a NAND gate.

More information

Chapter 3: Sequential Logic Systems

Chapter 3: Sequential Logic Systems Chapter 3: Sequential Logic Systems 1. The S-R Latch Learning Objectives: At the end of this topic you should be able to: design a Set-Reset latch based on NAND gates; complete a sequential truth table

More information

TRAINING KITS ON DIGITAL ELECTRONIC EXPERIMENTS. Verify Truth table for TTL IC s AND, NOT, & NAND GATES

TRAINING KITS ON DIGITAL ELECTRONIC EXPERIMENTS. Verify Truth table for TTL IC s AND, NOT, & NAND GATES TRAINING KITS ON DIGITAL ELECTRONIC EXPERIMENTS CEE 2800 Basic Logic Gates using TTL IC's (7 in 1) To verify the truth table For TTL AND, OR. NOT, NAND,NOR, EX-OR, & EX-NOR Gates. Instrument comprises

More information

Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus. Part I

Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus. Part I Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus Part I 0. In this part of the lab you investigate the 164 a serial-in, 8-bit-parallel-out, shift register. 1. Press in (near the LEDs) a 164.

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

7 SEGMENT LED DISPLAY KIT

7 SEGMENT LED DISPLAY KIT ESSENTIAL INFORMATION BUILD INSTRUCTIONS CHECKING YOUR PCB & FAULT-FINDING MECHANICAL DETAILS HOW THE KIT WORKS CREATE YOUR OWN SCORE BOARD WITH THIS 7 SEGMENT LED DISPLAY KIT Version 2.0 Which pages of

More information

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual University of Victoria Department of Electrical and Computer Engineering CENG 290 Digital Design I Lab Manual INDEX Introduction to the labs Lab1: Digital Instrumentation Lab2: Basic Digital Components

More information

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition DIGITAL LOGIC DESIGN DIGITAL LOGIC DESIGN Press No: 42 Second Edition Qafqaz University Press Bakı - 2010 Ministry of Education of Azerbaijan Republic Institute of Educational Problems Çağ Educational

More information

COMPUTER ENGINEERING PROGRAM

COMPUTER ENGINEERING PROGRAM COMPUTER ENGINEERING PROGRAM California Polytechnic State University CPE 169 Experiment 6 Introduction to Digital System Design: Combinational Building Blocks Learning Objectives 1. Digital Design To understand

More information

Part (A) Controlling 7-Segment Displays with Pushbuttons. Part (B) Controlling 7-Segment Displays with the PIC

Part (A) Controlling 7-Segment Displays with Pushbuttons. Part (B) Controlling 7-Segment Displays with the PIC Name Name ME430 Mechatronic Systems: Lab 6: Preparing for the Line Following Robot The lab team has demonstrated the following tasks: Part (A) Controlling 7-Segment Displays with Pushbuttons Part (B) Controlling

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 37 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 0 Office Hours: BKD 360-7 Monday 9:00-0:30, :30-3:30 Tuesday 0:30-:30 Announcement HW4 posted on the course web site Chapter 5:

More information

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6. - Introductory Digital Systems Laboratory (Spring 006) Laboratory - Introduction to Digital Electronics

More information

Table of Contents Introduction

Table of Contents Introduction Page 1/9 Waveforms 2015 tutorial 3-Jan-18 Table of Contents Introduction Introduction to DAD/NAD and Waveforms 2015... 2 Digital Functions Static I/O... 2 LEDs... 2 Buttons... 2 Switches... 2 Pattern Generator...

More information

THE KENYA POLYTECHNIC

THE KENYA POLYTECHNIC THE KENYA POLYTECHNIC ELECTRICAL/ELECTRONICS ENGINEERING DEPARTMENT HIGHER DIPLOMA IN ELECTRICAL ENGINEERING END OF YEAR II EXAMINATIONS NOVEMBER 006 DIGITAL ELECTRONICS 3 HOURS INSTRUCTIONS TO CANDIDATES:

More information

Laboratory 8. Digital Circuits - Counter and LED Display

Laboratory 8. Digital Circuits - Counter and LED Display Laboratory 8 Digital Circuits - Counter and Display Required Components: 2 1k resistors 1 10M resistor 3 0.1 F capacitor 1 555 timer 1 7490 decade counter 1 7447 BCD to decoder 1 MAN 6910 or LTD-482EC

More information

Palestine Technical College. Engineering Professions Department. EEE Digital Logic Fundamentals. Experiment 2.

Palestine Technical College. Engineering Professions Department. EEE Digital Logic Fundamentals. Experiment 2. Palestine Technical ollege Engineering Professions epartment EEE - Experiment ode onverters # Student No Name Surname Sign Fall 07-0 EEE Objectives: uild a Gray code to binary converter. Use design steps

More information

University of Pennsylvania Department of Electrical and Systems Engineering. Digital Design Laboratory. Lab8 Calculator

University of Pennsylvania Department of Electrical and Systems Engineering. Digital Design Laboratory. Lab8 Calculator University of Pennsylvania Department of Electrical and Systems Engineering Digital Design Laboratory Purpose Lab Calculator The purpose of this lab is: 1. To get familiar with the use of shift registers

More information

Chapter 9 MSI Logic Circuits

Chapter 9 MSI Logic Circuits Chapter 9 MSI Logic Circuits Chapter 9 Objectives Selected areas covered in this chapter: Analyzing/using decoders & encoders in circuits. Advantages and disadvantages of LEDs and LCDs. Observation/analysis

More information

Encoders and Decoders: Details and Design Issues

Encoders and Decoders: Details and Design Issues Encoders and Decoders: Details and Design Issues Edward L. Bosworth, Ph.D. TSYS School of Computer Science Columbus State University Columbus, GA 31907 bosworth_edward@colstate.edu Slide 1 of 25 slides

More information

AIM: To study and verify the truth table of logic gates

AIM: To study and verify the truth table of logic gates EXPERIMENT: 1- LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various Logic gates and their output. COMPONENTS REQUIRED: KL-31001 Digital Logic Lab( Main

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School Course Name : : ELECTRICAL ENGINEERING 2 ND YEAR ELECTRONIC DESIGN LAB Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School of

More information

Switching Circuits & Logic Design, Fall Final Examination (1/13/2012, 3:30pm~5:20pm)

Switching Circuits & Logic Design, Fall Final Examination (1/13/2012, 3:30pm~5:20pm) Switching Circuits & Logic Design, Fall 2011 Final Examination (1/13/2012, 3:30pm~5:20pm) Problem 1: (15 points) Consider a new FF with three inputs, S, R, and T. No more than one of these inputs can be

More information

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number.

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number. CprE 281: Digital Logic Midterm 2: Friday Oct 30, 2015 Student Name: Student ID Number: Lab Section: Mon 9-12(N) Mon 12-3(P) Mon 5-8(R) Tue 11-2(U) (circle one) Tue 2-5(M) Wed 8-11(J) Wed 6-9(Y) Thur 11-2(Q)

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

OFC & VLSI SIMULATION LAB MANUAL

OFC & VLSI SIMULATION LAB MANUAL DEVBHOOMI INSTITUTE OF TECHNOLOGY FOR WOMEN, DEHRADUN - 24847 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Prepared BY: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering

More information

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201)

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) Instructor Name: Student Name: Roll Number: Semester: Batch: Year: Department:

More information

Lab #12: 4-Bit Arithmetic Logic Unit (ALU)

Lab #12: 4-Bit Arithmetic Logic Unit (ALU) Lab #12: 4-Bit Arithmetic Logic Unit (ALU) ECE/COE 0501 Date of Experiment: 4/3/2017 Report Written: 4/5/2017 Submission Date: 4/10/2017 Nicholas Haver nicholas.haver@pitt.edu 1 H a v e r PURPOSE The purpose

More information

Contents Circuits... 1

Contents Circuits... 1 Contents Circuits... 1 Categories of Circuits... 1 Description of the operations of circuits... 2 Classification of Combinational Logic... 2 1. Adder... 3 2. Decoder:... 3 Memory Address Decoder... 5 Encoder...

More information

EEE130 Digital Electronics I Lecture #1_2. Dr. Shahrel A. Suandi

EEE130 Digital Electronics I Lecture #1_2. Dr. Shahrel A. Suandi EEE130 Digital Electronics I Lecture #1_2 Dr. Shahrel A. Suandi 1-4 Overview of Basic Logic Functions Digital systems are generally built from combinations of NOT, AND and OR logic elements The combinations

More information

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab Experiment #5 Shift Registers, Counters, and Their Architecture 1. Introduction: In Laboratory Exercise # 4,

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Design of a Binary Number Lock (using schematic entry method) 1. Synopsis: 2. Description of the Circuit:

Design of a Binary Number Lock (using schematic entry method) 1. Synopsis: 2. Description of the Circuit: Design of a Binary Number Lock (using schematic entry method) 1. Synopsis: This lab gives you more exercise in schematic entry, state machine design using the one-hot state method, further understanding

More information

successive approximation register (SAR) Q digital estimate

successive approximation register (SAR) Q digital estimate Physics 5 Lab 4 Analog / igital Conversion The goal of this lab is to construct a successive approximation analog-to-digital converter (AC). The block diagram of such a converter is shown below. CLK comparator

More information

LAB 3 Verilog for Combinational Circuits

LAB 3 Verilog for Combinational Circuits Goals To Do LAB 3 Verilog for Combinational Circuits Learn how to implement combinational circuits using Verilog. Design and implement a simple circuit that controls the 7-segment display to show a 4-bit

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Programmable Logic Design Techniques II

Programmable Logic Design Techniques II Programmable Logic Design Techniques II. p. 1 Programmable Logic Design Techniques II Almost all digital signal processing requires that information is recorded, possibly manipulated and then stored in

More information

Lab #11: Register Files

Lab #11: Register Files Lab #11: Register Files ECE/COE 0501 Date of Experiment: 3/20/2017 Report Written: 3/22/2017 Submission Date: 3/27/2017 Nicholas Haver nicholas.haver@pitt.edu 1 H a v e r PURPOSE The purpose of this lab

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 6 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Exercise 2: D-Type Flip-Flop

Exercise 2: D-Type Flip-Flop Flip-Flops Digital Logic Fundamentals Exercise 2: D-Type Flip-Flop EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the characteristics of a D-type results with an

More information

Exercise 1-2. Digital Trunk Interface EXERCISE OBJECTIVE

Exercise 1-2. Digital Trunk Interface EXERCISE OBJECTIVE Exercise 1-2 Digital Trunk Interface EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain the role of the digital trunk interface in a central office. You will be familiar

More information

FUNCTIONS OF COMBINATIONAL LOGIC

FUNCTIONS OF COMBINATIONAL LOGIC FUNCTIONS OF COMBINATIONAL LOGIC Agenda Adders Comparators Decoders Encoders Multiplexers Demultiplexers Adders Basic Adders Adders are important in computers other types of digital systems in which numerical

More information

How smart dimming technologies can help to optimise visual impact and power consumption of new HDR TVs

How smart dimming technologies can help to optimise visual impact and power consumption of new HDR TVs How smart dimming technologies can help to optimise visual impact and power consumption of new HDR TVs David Gamperl Resolution is the most obvious battleground on which rival TV and display manufacturers

More information

Digital Circuits I and II Nov. 17, 1999

Digital Circuits I and II Nov. 17, 1999 Physics 623 Digital Circuits I and II Nov. 17, 1999 Digital Circuits I 1 Purpose To introduce the basic principles of digital circuitry. To understand the small signal response of various gates and circuits

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date:

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date: Richland College School of Engineering & Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Rev. 3 (7/2015) J. Bradbury Digital Fundamentals CETT 1425 Lab 5 Latches & Flip-Flops

More information

LAB 3 Verilog for Combinatorial Circuits

LAB 3 Verilog for Combinatorial Circuits Goals LAB 3 Verilog for Combinatorial Circuits Learn how to design combinatorial circuits using Verilog. Design a simple circuit that takes a 4-bit binary number and drives the 7-segment display so that

More information

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital Logic Full Marks: 60 + 0 + 0 Course No.: CSC Pass Marks:

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION Spring 2012 Question No: 1 ( Marks: 1 ) - Please choose one A SOP expression is equal to 1

More information

Discussion of New Equipment

Discussion of New Equipment Mission Overview Your mission is to help develop a Load Before Launch Sequencer (LBLS) for the USS Harry S. Truman (CVN-75). The purpose of the LBLS is to alert the Yellow Shirts (the people who flag the

More information