# MITOCW max_min_second_der_512kb-mp4

Size: px
Start display at page:

Transcription

1 MITOCW max_min_second_der_512kb-mp4 PROFESSOR: Hi. Well, I hope you're ready for second derivatives. We don't go higher than that in many problems, but the second derivative is an important-- the derivative of the derivative is an important thing to know, especially in problems with maximum and minimum, which is the big application of derivatives, to locate a maximum or a minimum, and to decide which one it is. And I can tell you right away, locating a maximum, minimum, is the first derivative's job. The first derivative is 0. If I have a maximum or a minimum, and we'll have pictures, somewhere in the middle of my function I'll recognize by derivative equals 0. Slope equals 0, that the function is leveling off, either bending down or bending up, maximum or minimum. OK, and it's the second derivative that tells me which it is. The second derivative tells me the bending of the graph. OK, so we now will have three generations. The big picture of calculus started with two functions: the distance and the speed. And we discussed in detail the connection between them. How to recover the speed if we know the distance, take the derivative. Now comes the derivative of the speed, which in that language, in the distance-speed-time language, the second derivative is the acceleration, the rate at which your speed is changing, the rate at which you're speeding up or slowing down. And this is the way I would write that. If the speed is the first derivative-- df dt-- this is the way you write the second derivative, and you say d second f dt squared. d second f dt squared. OK, so that's you could say the physics example: distance, speed, acceleration. And I say physics because, of course, acceleration is the a in Newton's Law f equals ma. For a graph, like these graphs here, I won't especially use those physics words. I'll use graph words. So I would say function one would be the height of the graph. And in this case, that height is y equals x squared, so it's a simple parabola. Here would be the slope. I would use the word "slope" for the second function. And the slope of y equals x squared we know is 2x, so we see the slope increasing. And you see on this picture the slope is increasing. As x increases, I'm going up more steeply. Now, it's the second derivative. And what shall I call that? Bending. Bending is the natural word for the second derivative on a graph. And what do I-- the derivative of 2x is 2, a constant, a positive constant, and that positive constant tells me that the slope is going upwards and that the curve is bending upwards. So in this simple case, we connect these three descriptions of our function. It's positive. It's slope is positive. And its second derivative-- bending-- is positive. And that gives us a function that goes like that. Now, let me go to a different function. Let me take a second example now, an example where not everything is

2 positive. But let's make it familiar. Take sine x. So sine x starts out like that. So this is a graph of sine x up to 90 degrees, pi over 2, so that's y equals sine x. OK, what do you think about its slope? We know the derivative of sine x, but before we write it down, look at the graph. The slope is positive, right? But the slope actually starts out at 1. Better make it look a little more realistic. That's a slope of 1 there. So the slope starts at 1 and the slope drops to a slope of 0 up there. So a slope of 1. I see here is a 1. Here I'm graphing y prime. dy dx I sometimes write as y prime, just because it's shorter, and particularly, it'll be shorter for a second derivative. So y prime, we know the derivative of sine x is cos x, which is pretty neat actually, that we start with a familiar function, and then we get its twin, its other half. And the cosine is the slope of the sine curve, and it starts at 1, a slope of 1, and it comes down to 0, as we know the cosine does. So that's a graph of the cosine. And now, of course, we have three generations. I'm going to graph y double prime. Let me put it up here. y double prime, the second derivative, the derivative of the cosine of x is minus sine x. OK, let's just-- from the picture, what am I seeing here? I'm seeing a slope of 0. I'm taking now the slope of the slope. So here it starts at 0. The slope is downwards, so the second derivative is going to be negative. Oh, and it is negative, minus sign x. So the slope starts at 0 and ends at minus 1 because that now comes down at a negative slope. The slope is negative. I'm going downhill, and that's a graph of the second derivative. And which way is our function bending? It's bending down. As I go along, the slope is dropping. And I see that in the slope curve. It's falling. And I see it in the bending curve because I'm below 0 here. This is bending down, where that one was bending up. I could introduce the word convex for something that bends upwards, and bending down, I could introduce the word concave. But those are just words. The graphs are telling us much more than the words do. OK, so do you see that picture bending down, but going up? So the slope is positive here, but the second derivative, the slope is dropping. So the second derivative-- and you have to pay attention to keep them straight. The second derivative is telling us that the original one is bending down. OK, let me continue these graphs just a little beyond 90 degrees, pi over 2, because you'll see something interesting. So what happens in the next part of the graph? So this is going-- the sine curve, of course, continues on its way downwards. So the slope is going negative, as I know the cosine curve will do, as the cosine curve will come like that. The slope down to minus 1, the slope-- do you see here? The slope is negative, so on this slope graph, I'm below 0. And the slope is 0. Let me put a little mark at these points here, at these three points.

3 Those are important points. In fact, that is a maximum, of course. The sine curve hits its maximum at 1. At that point when it hits its maximum, what's its slope? When you hit a maximum, you're not going up anymore. You haven't started down. The slope is 0 right there. What's the second derivative? What's the bending at a maximum? The bending tells you that the slope is going down, so the bending is negative. The bending is negative at a maximum. Good. OK, now I'm going to continue this sine curve for another 90 degrees, the cosine curve, and I'll continue the bending curve, so I have minus sine x, which will go back up. OK, now what? Now what? And then, of course, it would continue along. OK, there's something interesting happening at 180 degrees, at pi. Can I identify that point? So there's 180 degrees. Something's happening there. I don't see-- I don't quite know how to say what yet, but something's happening there. It's got to show up here, and it has to show up here. So whatever is happening is showing up by a point where y double prime, the second derivative, is 0. That's my new little observation, not as big a deal as maximum or minimum. This was a max here. And we identified it as a max because the second derivative was negative. Now I'm interested in this point. Can you see what's happening at this point as far as bending goes? This curve is bending down. But when I continue, the bending changes to up. This is a point where the bending changes. The second derivative changes sign, and we see it here. Up to this square point, the bending is below 0. The bending is downwards as I come to here. But then there's something rather special that-- you see, can I try to blow that point up? Here the bending is down, and there it turns to up, and right in there with the-- this is called-- so this is my final word to introduce-- inflection point. Don't ask me why. An inflection point is a point where the second derivative is 0. And what does that mean? That means at that moment, it stopped bending down, and it's going to start bending up. The second derivative is passing through 0. The sign of bending is changing. It's changing from concave here to convex there. That's a significant point on the graph. Not as big a thing as the max or the min that we had over there. So let me draw one more example and identify all these different points. OK, so here we go. I drew it ahead of time because it's got a few loops, and I wanted to get it in good form. OK, here it is. This is my function: x cubed minus x squared. Well, before I look at the picture, what would be the first calculus thing I do? I take the derivative. y prime is the derivative of x cubed, is three x squared minus the derivative of x squared, which is 2x.

4 And now today, I take the derivative of that. I take the second derivative, y double prime. So the second derivative is the derivative of this. x squared is going to give me 2x, and I have a 3, so it's all together 6x. And minus 2x, the slope of that is minus 2, right? Cubic, quadratic, linear, and if I cared about y triple prime, which I don't, constant. And then the fourth derivatives and all the rest would be 0 for this case. OK, now somehow, those derivatives, those formulas for y, y prime, y double prime should tell me details about this graph. And the first thing I'm interested in and the most important thing is max and min. So let me set y prime to be-- which is 3x squared minus 2x. I'll set it to be 0 because I want to look for max, or min. And I look for both at the same time by setting y prime equals 0, and then I find out which I've got by looking at y double prime. So let me set y prime to be 0. What are the solutions? Where are the points on the curve where it's stationary? It's not climbing and it's not dropping? Well, I see them on the curve here. That is a point where the slope is 0. And I see one down here. There is a point where the slope is 0, but I can find them with algebra. I solve 3x squared equals to 2x, and I see it's a quadratic equation. I expect to find two roots. One of them is x equals 0, and the other one is what? If I cancel those x's to find a non-zero, canceling those x's leaves me with 3x equals 2 or x equals 2/3. Yeah, and that's what our graph shows. OK, now we can see on the graph which is a max and which is a min. And by the way, let me just notice, of course, this is the max. But let me just notice that it's what I would call a local maximum. It's not the absolute top of the function because the function later on is climbing off to infinity. This would be way a maximum in its neighborhood, so a maximum, and it's only a local max. And what do I expect to see at a maximum at x equals 0? I expect to see the slope 0 at x equals 0, which it is. Check. And at a maximum, I need to know the second derivative. OK, here's my formula. At x equals 0, I see y double prime if x is 0 is minus 2. Good. Negative second derivative tells me I'm bending down, as the graph confirms, and the place where the slope is 0 is a maximum and not a minimum. What about the other one? What about at x equals 2/3? At that point, y double prime, looking at my formula here for y double prime, is what? 6 times 2/3 is 4 minus 2 is plus 2. 4 minus 2 is 2. So this will be-- this is positive, so I'm expecting a min. At x equals 2/3, I'm expecting a min. And, of course, it is. And again, it's only a local minimum. The derivative can only tell you what's happening very, very close to that point. The derivative doesn't know that over here the function is going further down. So this is a min, and again, a local min. OK, those are maximum and minimum when we know the function. Oh yeah, I better do the inflection point. Do you remember what the inflection point is? The inflection point is when the bending changes from-- up to here I see that bending down. From here, I see it bending up. So I will not be surprised if that's the point where the

5 bending is changing, and 1/3 is the inflection point. And now how do we find an inflection point? How do we identify this point? Well, y double prime was negative. y double prime was positive. At that point, y double prime is 0. This is an inflection point. And it is. At x equals to 1/3, I do have 6 times 1/3. 2 subtract 2, I have 0. So that is truly an inflection point. And now I know all the essential points about the curve. And these are the quantities-- oh! Say you're an economist. You're looking now at the statistics for the US economy or the world economy. OK, I suppose we're in a-- we had a local maximum there, a happy time a little while ago, but it went downhill, right? If y is, say, the gross product for the world or gross national product, it started down. The slope of that curve was negative. The bending was even negative. It was going down faster all the time. Now, at a certain moment, the economy kept going down, but you could see some sign of hope. And what was the sign of hope? It was the fact that it started bending up. And probably that's where we are as I'm making this video. I suspect we're still going down, but we're bending up. And at some point, hopefully tomorrow, we'll hit minimum and start really up. So I don't know. I would guess we're somewhere in there, and I don't know where. If I knew where, mathematics would be even more useful than it is, which would be hard to do. OK, so that's an example of how the second derivative comes in. Now, I started by giving this lecture the title Max and Min and saying those are the biggest applications of the derivative. Set the derivative to 0 and solve. Locate maximum points, minimum points. That's what calculus is most-- many of the word problems, most of the ones I see in use, involve derivative equals 0. OK, so let me take a particular example. So these were graphs, simple functions which I chose: sine x, x squared, x cubed minus x squared. Now let me tell you the problem because this is how math really comes. Let me tell you the problem, and let's create the function. OK, so much it's the problem I faced this morning and every morning. I live here. So OK, so here's home. And there is a-- the Mass Pike is the fast road to MIT. So let me put in the Mass Pike here, and let's say that's MIT, and I'm trying to get there as fast as possible. OK, so for part of the time, I'm going to have to drive on city streets. I do have to drive on city streets, and then I get to go on the Mass Pike, which is, let's say, twice as fast. The question is should I go directly over to the fast road and then take off? Let's take off on a good morning. The Mass Pike could be twice as slow, but let's assume twice as fast. Should I go straight over? Probably not. That's not the best way. I should probably pick up the Mass Pike on some road. I could go directly to MIT on the city streets at the slow rate, say 30 miles an hour or 30

6 kilometers an hour and 60, so speeds 30 and 60 as my speeds. OK, so now I should have put in some measure. Let's call that distance a, whatever it is. Maybe it's about three miles. And let me call-- so that's the direct distance. If I just went direct to the turnpike, I would go a distance a at 30 miles an hour, and then I would go a distance-- shall I call that b?-- at 60. So that's one possibility. But I think it's not the best. I think better to-- and you know better than me. I think I should probably angle over here and pick up this-- my question is where should I join the Mass Pike. And let's-- so we get a calculus problem, let's model it. Suppose that I can join it anywhere I like, not just at a couple of entrances. Anywhere. And the question is where? So calculus deals with the continuous choice of x. So that is the unknown. I could take that as the unknown x. That was a key step, of course, deciding what should be the unknown. I could also have taken this angle as an unknown, and that would be quite neat, too. But let me take that x. So this distance is then b minus x. So that's what I travel on the Mass Pike, so my time to minimize. I'm trying to minimize my time. OK, so on this Mass Pike when I travel at 60, I have distance divided by 60 is the time, right? Am I remembering correctly? Let's just remember. Distance is speed times time. That's the one we know. And then if I divide by the speed, the time is the distance divided by the speed, the distance divided by the speed on the pike. And now I have the distance on the city streets. OK, so that speed is going to be 30. So the time is going to be a bit longer for the distance, and what is that distance? OK, that was a. This was x. Pythagoras is the great leveler of mathematics. That's the distance on the city streets. And now what do I do? I've got an expression for the time. This is the quantity I'm trying to minimize. I minimize it by taking its derivative and set the derivative to 0. Take the derivative and set the derivative to 0. So now this is where I use the formulas of calculus. So the derivative, now I'm ready to write the derivative, and I'll set it to 0. So the derivative of that, b is a constant, so I have minus 1/60; is that OK? Plus whatever the derivative of this is. Well, I have 1/30. I always take the constant first. Now I have to deal with that expression. That is some quantity square root. The square root is the 1/2 power, so I have 1/2 times this quantity to one lower power. That's the minus 1/2 power. That means that I still have a square root, but now it's a minus 1/2 power. It's down here. And then the chain rule says don't forget the derivative of what's inside, which is 2x.

7 OK, depending on what order you've seen these videos and read text, you know the chain rule, or you see it now. It's a very, very valuable rule to find derivatives as the function gets complicated. And the thing to remember, there will be a proper discussion of the chain rule. It's so important. But you're seeing it here that the thing to remember is take also the derivative of what's inside the a squared plus x squared, and the derivative of the x squared is the 2x. OK, and that I have to set to 0. And, of course, I'm going to cancel the 2's, and I'll set it to 0. What does that mean "set to zero"? Here's something minus. Here's something plus. I guess what I really want is to make them equal. When the 1/60 equals this messier expression, at that point the minus term cancels the plus term. I get 0 for the derivative, so I'm looking for derivative equals 0. That's my equation now. OK, now I just have to solve it. All right, let's see. If I wanted to solve that, I would probably multiply through by 60. Can I do this? I'll multiply both sides by 60. That will cancel the 30 and leave an extra 2, so I'll have a 2x here. And let me multiply also by this miserable square root that's in the denominator to get it up there. I think that's what I've got. That's the same equation as this one, just simplified. Multiply through by 60. Multiply through by square root of a squared plus x squared, and it's looking good. All right, how am I going to solve that? Well, the only mess up is the square root. Get rid of that by squaring both sides. So now I square both sides, and I get a squared plus x squared, and the square of 2x is 4x squared. All right, now I have an equation that's way better. In fact, even better if I subtract x squared from both sides. My equation is telling me that a squared should be 3x squared. In other words, this good x is-- now I'm ready to take the square root and find x itself. So put the 3 here. Take the square root. I'm getting a over the square root of 3. So there is a word problem, a minimum problem, where we had to create the function to minimize, which was the time, trying to get to work as quickly as possible. After naming the key quantity x, then taking the derivative, then simplifying, that's where the little work of calculus comes in, in the end getting something nice, solving it, and getting the answer a over square root of 3. So we now know what to do driving in if there's an entrance where we want to get it. And actually, it is a beautiful answer. If this is a over the square root of 3, this will turn out to be 30 degrees, pi over 6-- I think. Yeah, I think that's right. So that's the conclusion from calculus. Drive at a 30-degree angle. Hope that there's a road going that way-- sorry about that point-- and join the turnpike. And probably the reason for that nice answer, 30 degrees, came-- I can't help but imagine that because I chose 30 and 60 here, a ratio of 1:2, and then somehow the fact that the sine of 30 degrees is 1/2, those two facts have got to be connected. So I change these 30 and 60 numbers, I'll change my answer, but basically, the picture won't change much. And there's another little point to make to really complete this problem. It could have happened that the distance

8 on the turnpike was very small and that this was a dumb move. That 30-degree angle could be overshooting MIT if MIT was there. So that's a case in which the minimum time didn't happen where the derivative bottomed out. If MIT was here, the good idea would be go straight for it. Yeah, the extra part on the turn-- you wouldn't drive on the turnpike at all. And that's a signal that somehow in the graph, which I didn't graph this function, but if I did, then this stuff would be locating the minimum of the graph. But this extra example where you go straight for MIT would be a case in which the minimum is at the end. And, of course, that could happen. You could have a graph that just goes down, and then it ends, so the minimum is there. Even though the graph looks like it's still going down, the graph ended. What can you do? That's the best point there is. OK, so that is a-- can I recap this lecture coming first over here? So the lecture is about maximum and minimum, and we learned which it is by the second derivative. So then we had examples. There was an example of a minimum when the second derivative was positive. Here was an example of a local maximum when the second derivative was negative. Here with the sine and cosine, those are nice examples. And it takes some patience to go through them. I suggest you take another simple function, like start with cosine x. Find its maximum. Find its minimum. Find its inflection points so the inflection points are where the bending is 0 because it's changing from bending one way to bending the other way. We didn't need an inflection test-- so actually, I didn't complete the lecture, because I didn't compute the second derivative and show that this was truly a minimum. I could have done that. I would have had to take the derivative of this, which would be one level messier, and look at its sign. I wouldn't have to set it to 0. I would be looking at the sign of the second derivative. And in this problem, it would be safely come out positive sign, meaning bending upwards, meaning that this point I've identified by all these steps was truly the minimum time, not a maximum. OK, that's a big part of important calculus applications. Thanks. NARRATOR: This has been a production of MIT OpenCourseWare and Gilbert Strang. Funding for this video was provided by the Lord Foundation. To help OCW continue to provide free and open access to MIT courses, please make a donation at ocw.mit.edu/donate.

### MITOCW big_picture_integrals_512kb-mp4

MITOCW big_picture_integrals_512kb-mp4 PROFESSOR: Hi. Well, if you're ready, this will be the other big side of calculus. We still have two functions, as before. Let me call them the height and the slope:

### MITOCW ocw f08-lec19_300k

MITOCW ocw-18-085-f08-lec19_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### DIFFERENTIATE SOMETHING AT THE VERY BEGINNING THE COURSE I'LL ADD YOU QUESTIONS USING THEM. BUT PARTICULAR QUESTIONS AS YOU'LL SEE

1 MATH 16A LECTURE. OCTOBER 28, 2008. PROFESSOR: SO LET ME START WITH SOMETHING I'M SURE YOU ALL WANT TO HEAR ABOUT WHICH IS THE MIDTERM. THE NEXT MIDTERM. IT'S COMING UP, NOT THIS WEEK BUT THE NEXT WEEK.

### Note: Please use the actual date you accessed this material in your citation.

MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

### MITOCW ocw f07-lec02_300k

MITOCW ocw-18-01-f07-lec02_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### The following content is provided under a Creative Commons license. Your support

MITOCW Lecture 17 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

### MITOCW watch?v=vifkgfl1cn8

MITOCW watch?v=vifkgfl1cn8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### So just by way of a little warm up exercise, I'd like you to look at that integration problem over there. The one

MITOCW Lec-02 What we're going to talk about today, is goals. So just by way of a little warm up exercise, I'd like you to look at that integration problem over there. The one that's disappeared. So the

### Note: Please use the actual date you accessed this material in your citation.

MIT OpenCourseWare http://ocw.mit.edu 18.03 Differential Equations, Spring 2006 Please use the following citation format: Arthur Mattuck and Haynes Miller, 18.03 Differential Equations, Spring 2006. (Massachusetts

### Overview. Teacher s Manual and reproductions of student worksheets to support the following lesson objective:

Overview Lesson Plan #1 Title: Ace it! Lesson Nine Attached Supporting Documents for Plan #1: Teacher s Manual and reproductions of student worksheets to support the following lesson objective: Find products

### Transcript: Reasoning about Exponent Patterns: Growing, Growing, Growing

Transcript: Reasoning about Exponent Patterns: Growing, Growing, Growing 5.1-2 1 This transcript is the property of the Connected Mathematics Project, Michigan State University. This publication is intended

### PROFESSOR: I'd like to welcome you to this course on computer science. Actually, that's a terrible way to start.

MITOCW Lecture 1A [MUSIC PLAYING] PROFESSOR: I'd like to welcome you to this course on computer science. Actually, that's a terrible way to start. Computer science is a terrible name for this business.

### _The_Power_of_Exponentials,_Big and Small_

_The_Power_of_Exponentials,_Big and Small_ Nataly, I just hate doing this homework. I know. Exponentials are a huge drag. Yeah, well, now that you mentioned it, let me tell you a story my grandmother once

### MITOCW mit-6-00-f08-lec17_300k

MITOCW mit-6-00-f08-lec17_300k OPERATOR: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### PROFESSOR: Well, last time we talked about compound data, and there were two main points to that business.

MITOCW Lecture 3A [MUSIC PLAYING] PROFESSOR: Well, last time we talked about compound data, and there were two main points to that business. First of all, there was a methodology of data abstraction, and

### MATHEMATICAL IDOL. ( isn t that special?) NCTM Regional Conference & Exposition Kansas City October 25-26, Bill Gripentrog. Watertown, SD 57201

MATHEMATICAL IDOL ( isn t that special?) NCTM Regional Conference & Exposition Kansas City October 25-26, 2007 G-Rip Watertown High School Watertown, SD 57201 K-Dog Montrose High School Montrose, SD 57048

### MIT Alumni Books Podcast The Proof and the Pudding

MIT Alumni Books Podcast The Proof and the Pudding JOE This is the MIT Alumni Books Podcast. I'm Joe McGonegal, Director of Alumni Education. My guest, Jim Henle, Ph.D. '76, is the Myra M. Sampson Professor

### Description: PUP Math Brandon interview Location: Conover Road School Colts Neck, NJ Researcher: Professor Carolyn Maher

Page: 1 of 8 Line Time Speaker Transcript 1. Narrator When the researchers gave them the pizzas with four toppings problem, most of the students made lists of toppings and counted their combinations. But

### The following content is provided under a Creative Commons license. Your support

MITOCW Lecture 6 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation

### #029: UNDERSTAND PEOPLE WHO SPEAK ENGLISH WITH A STRONG ACCENT

#029: UNDERSTAND PEOPLE WHO SPEAK ENGLISH WITH A STRONG ACCENT "Excuse me; I don't quite understand." "Could you please say that again?" Hi, everyone! I'm Georgiana, founder of SpeakEnglishPodcast.com.

### ECO LECTURE TWENTY-THREE 1 OKAY. WE'RE GETTING TO GO ON AND TALK ABOUT THE LONG-RUN

ECO 155 750 LECTURE TWENTY-THREE 1 OKAY. WE'RE GETTING TO GO ON AND TALK ABOUT THE LONG-RUN EQUILIBRIUM FOR THE ECONOMY. BUT BEFORE WE DO, I WANT TO FINISH UP ON SOMETHING I WAS TALKING ABOUT LAST TIME.

### Our Dad is in Atlantis

Our Dad is in Atlantis by Javier Malpica Translated by Jorge Ignacio Cortiñas 4 October 2006 Characters Big Brother : an eleven year old boy Little Brother : an eight year old boy Place Mexico Time The

### MITOCW MIT7_01SCF11_track01_300k.mp4

MITOCW MIT7_01SCF11_track01_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

### MITOCW watch?v=6wud_gp5wee

MITOCW watch?v=6wud_gp5wee The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW Lec 3 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 3 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality

### Um... yes, I know that. (laugh) You don't need to introduce yourself!

Machigai Podcast Episode 023 Hello, this is Machigai English School. Hello, Tim? My name is Yukino! Um... yes, I know that. (laugh) You don't need to introduce yourself! Well, I want to make sure you know

### + b ] and um we kept going like I think I got

Page: 1 of 7 1 Stephanie And that s how you can get (inaudible) Should I keep going with that? 2 R2 Did you do that last night? 3 Stephanie Last 4 R2 Last time 5 Stephanie Um 6 R2 Did you carry it further?

### Our Story Of How It All Began

Our Story Of How It All Began This story begins on March 13, 2013 when Mark texted Kristin, "Hey, this is Mark. Glad we met tonight" Our Story Of How It All Began 1 Then Kristin replied, "Hi! Me too :)"

### Our Story Of How It All Began

Our Story Of How It All Began This story begins on March 13, 2013 when Mark texted Kristin, "Hey, this is Mark. Glad we met tonight" 1 Kristin went on, "Hi! Me too :)" Mark said, "Here's that photo of

### I M SO FRUSTRATED! CFE 3257V

I M SO FRUSTRATED! CFE 3257V OPEN CAPTIONED SUNBURST COMMUNICATIONS 1994 Grade Levels: 2-6 33 minutes 1 Instructional Graphic Enclosed DESCRIPTION Tommy is frustrated with his building blocks project;

### The Focus = C Major Scale/Progression/Formula: C D E F G A B - ( C )

Chord Progressions 101 The Major Progression Formula The Focus = C Major Scale/Progression/Formula: C D E F G A B - ( C ) The first things we need to understand are: 1. Chords come from the scale with

### AskDrCallahan Calculus 1 Teacher s Guide

AskDrCallahan Calculus 1 Teacher s Guide 3rd Edition rev 080108 Dale Callahan, Ph.D., P.E. Lea Callahan, MSEE, P.E. Copyright 2008, AskDrCallahan, LLC v3-r080108 www.askdrcallahan.com 2 Welcome to AskDrCallahan

### Dominque Silva: I'm Dominique Silva, I am a senior here at Chico State, as well as a tutor in the SLC, I tutor math up to trig, I've been here, this

Dominque Silva: I'm Dominique Silva, I am a senior here at Chico State, as well as a tutor in the SLC, I tutor math up to trig, I've been here, this now my fourth semester, I'm graduating finally in May.

### Victorian inventions - The telephone

The Victorians Victorian inventions - The telephone Written by John Tuckey It s hard to believe that I helped to make the first ever version of a device which is so much part of our lives that why - it's

### Night of the Cure. TUCKER, late 20s. ELI, mid-40s. CHRIS, mid-30s

Night of the Cure TUCKER, late 20s. ELI, mid-40s. CHRIS, mid-30s Setting: A heavy door. Above, a flickering neon sign that reads "Touche" or "Sidetrack." Something not nearly clever enough. Time: Six months

### Display Contest Submittals

Display Contest Submittals #1a ----- Original Message ----- From: Jim Horn To: rjnelsoncf@cox.net Sent: Tuesday, April 28, 2009 3:07 PM Subject: Interesting calculator display Hi, Richard Well, it takes

### This past April, Math

The Mathematics Behind xkcd A Conversation with Randall Munroe Laura Taalman This past April, Math Horizons sat down with Randall Munroe, the author of the popular webcomic xkcd, to talk about some of

### Author's Purpose WS 2 Practice Exercises. Practice 1: Ripples of Energy. Read the selection, and then answer the questions that follow.

Author's Purpose WS 2 Practice Exercises Practice 1: Ripples of Energy (1) A wave is any movement that carries energy. Some waves carry energy through water. Others carry energy through gases, like air,

### MITOCW 4. VI: The Location of Meaning

MITOCW 4. VI: The Location of Meaning The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### percents Common Core Standard 7.RP3 Use proportional relationships to solve multistep ratio and percent problems.

Intro All right, welcome to class everybody I need you guys to come in, take your seat Take out everything you need Put it on top of your desk I have something real special planned for you Now make sure

### THE BENCH PRODUCTION HISTORY

THE BENCH CONTACT INFORMATION Paula Fell (310) 497-6684 paulafell@cox.net 3520 Fifth Avenue Corona del Mar, CA 92625 BIOGRAPHY My experience in the theatre includes playwriting, acting, and producing.

### Installing a Turntable and Operating it Under AI Control

Installing a Turntable and Operating it Under AI Control Turntables can be found on many railroads, from the smallest to the largest, and their ability to turn locomotives in a relatively small space makes

### MAT Practice (solutions) 1. Find an algebraic formula for a linear function that passes through the points ( 3, 7) and (6, 1).

MAT 110 - Practice (solutions) 1. Find an algebraic formula for a linear function that passes through the points ( 3, 7) and (6, 1). Answer: y = 2 3 + 5 2. Let f(x) = 8x 120 (a) What is the y intercept

### Key Maths Facts to Memorise Question and Answer

Key Maths Facts to Memorise Question and Answer Ways of using this booklet: 1) Write the questions on cards with the answers on the back and test yourself. 2) Work with a friend to take turns reading a

### Our Musical, Mathematical Brains Ideas to turn STEM to STEAM

Debbie Char, St Louis Community College at Forest Park dchar@stlcc.edu Our Musical, Mathematical Brains Ideas to turn STEM to STEAM What you heard... Seasons of Love (the musical Rent) Upside Down, Inside

### how two ex-students turned on to pure mathematics and found total happiness a mathematical novelette by D. E. Knuth SURREAL NUMBERS -A ADDISON WESLEY

how two ex-students turned on to pure mathematics and found total happiness a mathematical novelette by D. E. Knuth SURREAL NUMBERS -A ADDISON WESLEY 1 THE ROCK /..,..... A. Bill, do you think you've found

### A Children's Play. By Francis Giordano

A Children's Play By Francis Giordano Copyright Francis Giordano, 2013 The music for this piece is to be found just by moving at this very Web-Site. Please enjoy the play with the sound of silentmelodies.com.

### MR. MCGUIRE: There's a great future in plastics. Think about it. Will you think about it?

The Graduate - Clip 1-1967 US c.7 min. 06:02-13:08 Dustin Hoffman, Anne Bancroft "Plastics" & Mrs Robinson - YouTube IMDb Il Laureato - Wiki grammar points: say s.t. to you, how / how to, will, some of

### MITOCW mit-5_95j-s09-lec07_300k_pano

MITOCW mit-5_95j-s09-lec07_300k_pano The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for

### SCANNER TUNING TUTORIAL Author: Adam Burns

SCANNER TUNING TUTORIAL Author: Adam Burns Let me say first of all that nearly all the techniques mentioned in this tutorial were gleaned from watching (and listening) to Bill Benner (president of Pangolin

### ABBOTT AND COSTELLO TEN MINUTE PLAY. By Jonathan Mayer

ABBOTT AND COSTELLO TEN MINUTE PLAY By Jonathan Mayer Copyright MMIX by Jonathan Mayer All Rights Reserved Heuer Publishing LLC in association with Brooklyn Publishers, LLC The writing of plays is a means

### Conversations with Logo (as overheard by Michael Tempel)

www.logofoundation.org Conversations with Logo (as overheard by Michael Tempel) 1989 LCSI 1991 Logo Foundation You may copy and distribute this document for educational purposes provided that you do not

### TAINTED LOVE. by WALTER WYKES CHARACTERS MAN BOY GIRL. SETTING A bare stage

by WALTER WYKES CHARACTERS SETTING A bare stage CAUTION: Professionals and amateurs are hereby warned that Tainted Love is subject to a royalty. It is fully protected under the copyright laws of the United

### Look Mom, I Got a Job!

Look Mom, I Got a Job! by T. James Belich T. James Belich tjamesbelich@gmail.com www.tjamesbelich.com Look Mom, I Got a Job! by T. James Belich CHARACTERS (M), an aspiring actor with a less-than-inspiring

### I HAD TO STAY IN BED. PRINT PAGE 161. Chapter 11

PRINT PAGE 161. Chapter 11 I HAD TO STAY IN BED a whole week after that. That bugged me; I'm not the kind that can lie around looking at the ceiling all the time. I read most of the time, and drew pictures.

### Fun to Imagine. Richard P. Feynman. BBC 1983 transcript by A. Wojdyla

Fun to Imagine Richard P. Feynman BBC 1983 transcript by A. Wojdyla This is a transcript of the R.P. Feynman s Fun to imagine aired on BBC in 1983. The transcript was made by a non-native english speaker

### #034: BUSINESS ENGLISH IDIOMS EXAMPLES #2

#034: BUSINESS ENGLISH IDIOMS EXAMPLES #2 Hi, everyone! I'm Georgiana, founder of SpeakEnglishPod.com. My mission is to help YOU to speak English fluently and confidently. In today's episode: I'll talk

### Life without Library Systems?

Life without Library Systems? Written by Debby Emerson Adapted and illustrated By Christine McGinty and Elly Dawson 20 Published by Pioneer Library System 2005 Once upon a time there was a girl named Katie

### STUCK. written by. Steve Meredith

STUCK written by Steve Meredith StevenEMeredith@gmail.com Scripped scripped.com January 22, 2011 Copyright (c) 2011 Steve Meredith All Rights Reserved INT-OFFICE BUILDING-DAY A man and a woman wait for

### 1 Lesson 11: Antiderivatives of Elementary Functions

1 Lesson 11: Antiderivatives of Elementary Functions Chapter 6 Material: pages 237-252 in the textbook: The material in this lesson covers The definition of the antiderivative of a function of one variable.

### The Basics of Reading Music by Kevin Meixner

The Basics of Reading Music by Kevin Meixner Introduction To better understand how to read music, maybe it is best to first ask ourselves: What is music exactly? Well, according to the 1976 edition (okay

### Experiment: Real Forces acting on a Falling Body

Phy 201: Fundamentals of Physics I Lab 1 Experiment: Real Forces acting on a Falling Body Objectives: o Observe and record the motion of a falling body o Use video analysis to analyze the motion of a falling

### 1 MR. ROBERT LOPER: I have nothing. 3 THE COURT: Thank you. You're. 5 MS. BARNETT: May we approach? 7 (At the bench, off the record.

167 April Palatino - March 7, 2010 Redirect Examination by Ms. Barnett 1 MR. ROBERT LOPER: I have nothing 2 further, Judge. 3 THE COURT: Thank you. You're 4 excused. 5 MS. BARNETT: May we approach? 6 THE

### I'm kind of like... not busy, so whatever she wants to have for dinner, I have to cook. Todd: Really, you cook for her?

Sisters Santi talks about how her and her sister are so close. 1 Todd: So, Santi, we're talking about family this week and you have a sister, correct? Santi: Yes, a sister. Todd: Now, what's kind of unique

### The worst/meanest things a dentist has ever said to a dental assistant

The worst/meanest things a dentist has ever said to a dental assistant When they say nothing. "Assistants are just spit suckers." That hurt. Needless to say, I don't work for that idiot any longer. "What

### Mobile Math Teachers Circle The Return of the iclicker

Mobile Math Teachers Circle The Return of the iclicker June 20, 2016 1. Dr. Spock asked his class to solve a percent problem, Julia set up the proportion: 4/5 = x/100. She then cross-multiplied to solve

### A QUALITY IMPROVEMENT PROCESS IN, HEMLOCK DRYING

A QUALITY IMPROVEMENT PROCESS IN, HEMLOCK DRYING Neil Odegard Weyerhaeuser Corporation Snoqualmie, Washington The first thing I'd like to say is this; I'm not here to tell you what to do, or how and when

### Video - low carb for doctors (part 8)

Video - low carb for doctors (part 8) Dr. David Unwin: I'm fascinated really by the idea that so many of the modern diseases we have now are about choices that we all make, lifestyle choices. And if we

### And all that glitters is gold Only shooting stars break the mold. Gonna Be

Allstar Somebody once told me the world is gonna roll me I ain't the sharpest tool in the shed She was looking kind of dumb with her finger and her thumb In the shape of an "L" on her forehead Well the

### DOCUMENT NAME/INFORMANT: PETER CHAMBERLAIN #2 INFORMANT'S ADDRESS: INTERVIEW LOCATION: TRIBE/NATION: OOWEKEENO HISTORY PROJECT

DOCUMENT NAME/INFORMANT: PETER CHAMBERLAIN #2 INFORMANT'S ADDRESS: INTERVIEW LOCATION: TRIBE/NATION: LANGUAGE: ENGLISH DATE OF INTERVIEW: 09/3-9/76 INTERVIEWER: DAVID STEVENSON INTERPRETER: TRANSCRIBER:

### Telephone calls and the Brontosaurus Adam Atkinson

Telephone calls and the Brontosaurus Adam Atkinson (ghira@mistral.co.uk) This article provides more detail than my talk at GG with the same title. I am occasionally asked questions along the lines of When

### Bite Size Brownies. Designed by: Jonathan Thompson George Mason University, COMPLETE Math

Bite Size Brownies Designed by: Jonathan Thompson George Mason University, COMPLETE Math The Task Mr. Brown E. Pan recently opened a new business making brownies called The Brown E. Pan. On his first day

### Chapter 13: Conditionals

Chapter 13: Conditionals TRUE/FALSE The second sentence accurately describes information in the first sentence. Mark T or F. 1. If Jane hadn't stayed up late, she wouldn't be so tired. Jane stayed up late

### American violinist David Garrett perform his rock symphonies. The audience rise to their feet

msn Entertainment By Melody Oei, MSN, 01/11/2011 Violin maestro phenomenon David Garrett: I'm not a MSN Entertainment headed up North to Bangkok, Thailand to speak with and watch David Garrett rock his

### Dinosaurs. B. Answer the questions in Hebrew/Arabic. 1. How do scientists know that dinosaurs once lived? 2. Where does the name dinosaur come from?

Dinosaurs T oday everyone knows what dinosaurs are. But many years ago people didn t know about dinosaurs. Then how do people today know that dinosaurs once lived? Nobody ever saw a dinosaur! But people

### Kaytee s Contest Problem https://www.nctm.org/pows/

Pre-Algebra PoW Packet Kaytee s Contest Problem 16004 https://www.nctm.org/pows/ Welcome! This packet contains a copy of the problem, the answer check, our solutions, some teaching suggestions, and samples

### FILED: NEW YORK COUNTY CLERK 10/26/ :06 PM INDEX NO /2017 NYSCEF DOC. NO. 61 RECEIVED NYSCEF: 10/26/2018

EXHIBIT "H" PART 2 52 2 A. No. 3 Q. Did any lawyers ask you any 4 questions about your medical condition? 5 A. No. 6 Q. Did the judge ask you any 7 questions about your returning to work? 8 A. No. 9 Q.

### BBC Learning English Talk about English Webcast Thursday March 29 th, 2007

BBC Learning English Webcast Thursday March 29 th, 2007 About this script Please note that this is not a word for word transcript of the programme as broadcast. In the recording process changes may have

### Lesson 25: Solving Problems in Two Ways Rates and Algebra

: Solving Problems in Two Ways Rates and Algebra Student Outcomes Students investigate a problem that can be solved by reasoning quantitatively and by creating equations in one variable. They compare the

### Famous Quotations from Alice in Wonderland

Famous Quotations from in Wonderland 1. Quotes by What is the use of a book, without pictures or conversations? Curiouser and curiouser! I wonder if I've been changed in the night? Let me think. Was I

### On the eve of the Neil Young and Crazy Horse Australian tour, he spoke with Undercover's Paul Cashmere.

Undercover Greendale (interview with poncho) Sometime in the 90's Neil Young was christened the Godfather of Grunge but the title really belonged to his band Crazy Horse. While Young has jumped through

### ************************ CAT S IN THE CRADLE. him"

CAT S IN THE CRADLE My child arrived just the other day He came to the world in the usual way But there were planes to catch and bills to pay He learned to walk while I was away And he was talkin' 'fore

### Sample Test Questions:

Sample Test Questions: 1.) All the balls are nearly the same - one is very much like. a. other b. another c. an other 2.) Those people over there are friends of. a. ours b. us c. our 3.) I'm going to France

### Cady: Hi. I don't know if anyone told you about me. I'm a new student here. My name is Cady Heron.

Mean Girls Script SCENE 1: Cady: Hi. I don't know if anyone told you about me. I'm a new student here. My name is Cady Heron. Janice: You don't wanna sit there. Kristen Hadley's boyfriend is gonna sit

Table of Contents Introduction...v About the CD-ROM...vi Standards Correlations... vii Ratios and Proportional Relationships... 1 The Number System... 10 Expressions and Equations... 23 Geometry... 27

### 1/ 19 2/17 3/23 4/23 5/18 Total/100. Please do not write in the spaces above.

1/ 19 2/17 3/23 4/23 5/18 Total/100 Please do not write in the spaces above. Directions: You have 50 minutes in which to complete this exam. Please make sure that you read through this entire exam before

### Answer the questions based on the conversation between co-workers Rhonda and Mac:

Lesson 15: Holiday Answer the questions based on the conversation between co-workers Rhonda and Mac: 1. Mac is working on... a. reports b. presentations c. sales calls 2. Mac and Rhonda have a lot of work

### Sandwich. Reuben BLT. Egg salad. Roast beef

3.2 Writing Expressions represents an unknown quantity? How can you write an expression that 1 ACTIVITY: Ordering Lunch Work with a partner. You use a \$20 bill to buy lunch at a café. You order a sandwich

### Kaytee s Contest. Problem of the Week Teacher Packet. Answer Check

Problem of the Week Teacher Packet Kaytee s Contest Farmer Kaytee brought one of her prize-winning cows to the state fair, along with its calf. In order to get people to stop and admire her cow, she thought

### Little Brother The Story of the Prodigal Son by Mary Evelyn McCurdy. Scene 1. BIG BROTHER: Why are you talking about Dad dying? That's a long way off.

Little Brother The Story of the Prodigal Son by Mary Evelyn McCurdy Cast: Big Brother Little Brother Servants (variable number, two have lines) Dad Trouble Maker Farmer Pigs (variable number) Friends and

### 2 nd Int. Conf. CiiT, Molika, Dec CHAITIN ARTICLES

2 nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 93 CHAITIN ARTICLES D. Gligoroski, A. Dimovski Institute of Informatics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, Arhimedova

### Aaah just some additional questions that-that we had and we wanted to talk to you in person, okay?

November 11, 2014 1:14 p.m. Special Agent () Federal Bureau of Investigation = AU = AU DOJ Trial Attorney = Unintelligible= Ul AU Today is Wednesday, November l2 1 h, 2014, 1:14 p.m. I am Special Agent,

### Musical Sound: A Mathematical Approach to Timbre

Sacred Heart University DigitalCommons@SHU Writing Across the Curriculum Writing Across the Curriculum (WAC) Fall 2016 Musical Sound: A Mathematical Approach to Timbre Timothy Weiss (Class of 2016) Sacred

### crazy escape film scripts realised seems strange turns into wake up

Stories Elephants, bananas and Aunty Ethel I looked at my watch and saw that it was going backwards. 'That's OK,' I was thinking. 'If my watch is going backwards, then it means that it's early, so I'm

### MOURNING IN MINIATURE (MINIATURE MYSTERIES) BY MARGARET GRACE

MOURNING IN MINIATURE (MINIATURE MYSTERIES) BY MARGARET GRACE DOWNLOAD EBOOK : MOURNING IN MINIATURE (MINIATURE MYSTERIES) BY Click link bellow and free register to download ebook: MOURNING IN MINIATURE

### Sleeping Beauty By Camille Atebe

Sleeping Beauty By Camille Atebe Characters Page Queen Constance Princess Aurora Good Fairies Bad Fairy Marlene Beatrice Prince Valiant Regina 2008 Camille Atebe Scene 1 Page Hear ye, hear ye, now enters

### Welcome Accelerated Algebra 2!

Welcome Accelerated Algebra 2! Tear-Out: Pg. 445-452 (Class notes) Pg. 461 (homework) U6H2: Pg. 390 #21-24 Pg. 448 #6-7, 9-11 Pg. 461 #6-8 Updates: U6Q1 will be February 15 th (Thursday) U6T will be March