"Infrastructure for an NTSC/ATSC-Supported Nationwide Data Broadcasting Service: Present and Future"

Size: px
Start display at page:

Download ""Infrastructure for an NTSC/ATSC-Supported Nationwide Data Broadcasting Service: Present and Future""

Transcription

1 "Infrastructure for an NTSC/ATSC-Supported Nationwide Broadcasting : Present and Future" David Boroughs PBS National cast Alexandria, VA Abstract This paper reviews the implementation and operation considerations to support a nationwide data broadcasting transmission architecture for non-program related data. It reviews architectures utilized by PBS National cast: VBI, dntsc and migration to DTV. The network management requirements to support the data delivery are also discussed. For over ten years, PBS National cast (NDI) has been embedding data streams into existing PBS analog broadcast signals through the use of the Vertical Blanking Interval (VBI), and has been datacasting a variety of multimedia services. Currently NDI delivers data via 260 of the total 348 TV transmitters in the PBS system. While VBI has provided a viable option in the past and continues to provide a niche for certain applications, the data environment today demands more bandwidth, and savvy users utilize multiple applications requiring varied types of data. The next step for PBS National cast (NDI) is the implementation of the Dotcast dntsc (data in NTSC video) technology. The Dotcast system uses patent-pending technologies that can inject a 4.5 Mbps digitally encoded data stream into an NTSC broadcast television signal without degrading the signal or interfering with regular TV reception. The dntsc system can make valuable use of existing NTSC assets, and provide a smooth transition path to DTV data broadcasting. This paper lays the framework for a data broadcasting architecture where multiple data services are vying for a piece of the transport stream, and local data broadcasting opportunities at the station will be competing with national opportunities for bandwidth. 1

2 NDI BACKGROUND The notion of data broadcasting has been around for a while, long before the capability became a critical element with the advent of Digital TV. For over ten years, PBS National cast (NDI) has been embedding data streams into existing PBS analog broadcast signals through the use of the Vertical Blanking Interval (VBI), and has been datacasting a variety of multimedia services. PBS National cast is a for-profit subsidiary of PBS and offers real-time, nationwide data broadcasting services through a partnership with participating PBS member stations, reaching up to 99% of television households in the United States. Profits of NDI are shared by the participating stations, thereby helping the stations to achieve their financial goals, through the use of otherwise unused capacity. Currently NDI delivers data via 260 of the total 348 TV transmitters in the PBS system. broadcasting can be either program-related, or non-program related. Each type has its own unique, but related requirements for transmission. NDI primarily provides a network for the nonprogram related data, which does not require a close synchronization with TV programming that may be transmitted at the same time as the VBI data. VBI: THE FIRST DATA BROADCASTING NETWORK TRANSMISSION ARCHITECTURE TO SUPPORT NATIONWIDE REQUIREMENTS The PBS network distributes via satellite to its member stations over a dozen video programs at one time. Each member station can pick and choose from those programs to record for later airplay, or to pass it through in real time. For VBI data delivery, this is the first challenge that must be overcome: how to bridge data from the network feed, and insert it into the local program actually going out over the air, so real-time data delivery can be achieved. The solution for this is to place a databridge at each station inserted between the national and local video feeds. The present NDI VBI data broadcasting architecture for nationwide delivery evolved from a totally analog environment of the early 90 s, where the national feed was analog video and VBI rode video the entire way. But, driven by the evolution of the PBS transmission architecture to digital video feeds, the transition to the hybrid network was necessary. Figure 1 shows the architecture in place today to support VBI data broadcasting. Digital data is delivered to the PBS station over a Motorola (formally General Instrument) DigiCipher II (DC-II) isochronous data stream fed by satellite, and at the PBS station, the data stream is output from a Motorola DSR4000 IRD. At the headend PBS Technical Operations Center (TOC) in Alexandria, VA, data received by the customer is formatted into frame relay packets for a composite 256kbps synchronous data stream, which is input to a DC-II encoder, along with digital video. The composite data stream is then transported via microwave radio to PBS s Satellite Operations Center (SOC) for uplink to the GE-3 satellite. At the station, the databridge receives the data stream, and extracts the data from the isochronous stream, sorting it by frame relay address. A VBI line is associated for each frame relay address, and the data is then inserted into the local program video. At the headend delivery point in Alexandria, the customer (content provider) supplies 2

3 the data to be transmitted via internet, leased line, or even dial-up. Each frame relay packet has a length equal to a NABTS packet (36 bytes, including synchronization bytes, header overhead, and data payload), which is the VBI packet format primarily used in the network. The databridge basically strips off the frame relay envelope, and inserts a ready-made NABTS packet on the VBI line. The databridge also has the capability to allow a station to locally insert serial data directly on a VBI line. In this case the serial data stream bypasses the frame relay demultiplexing stage. At the receive location, VBI decoder cards are necessary to receive the analog TV signal, look for a specified address in the VBI packet header, and then strip the VBI data. The recovered data is generally sent as an asynchronous serial data stream to an application resident on a PC or settop box. INTERNET, OR LEASED LINE Line 1 Lie 2 INFORMATION PROVIDERS GI DSR-4000 Stream In/VBI out 256K sync bridge Frame Relay 19.2K async channel RS422 In Monitor Module FR Demux/ insert Backplane Bus FR Demux/ insert FR Demux/ insert... Local Station 19.2 Kbps Asynchronous Insertion Serial Inserter Video Keyer DATA DIST AMP DATA PROCESSOR PBS DATA DIST AMP 19.2 kbps Async channel for EPG Frame Relay Mux Network Management Center TOC/SOC 256K ISOC CH DC-II Encoder m/w Link GI DSR-4000 Reporting From Network Monitoring Elements Reporting To Network Management Center Local Video Source PBS STATION Off-Air/Cable Subscriber Premise NTSC TV PC local EPG Processor Local Video + VBI FIGURE 1: VBI Broadcasting Architecture In a video signal, theoretically there are 10 VBI lines available to insert data - lines 10 through 18, and 20. Line 19 is reserved for a Ghost Canceling Reference (GCR) Signal, and Line 21 reserved for Closed Captioned Format (CCF) services. In reality, all of the 10 lines may not be available at a station for national access; some VBI lines may be used for local applications or test signals. Each VBI line can support a raw bit rate of 16 kbps (264 information bits per line (33 Bytes times 60 fields per second), but with the NABTS format, there may be 28 Bytes available for actual data payload. Actual effective throughput may range anywhere from 12 to 16 kbps, depending on the format of the data as it is packetized, which is a function of header information and Forward Error Correction (FEC) used. 3

4 The capability exists to either treat each VBI line as a separate data service, or multiplex several lines together to increase throughput. However, the net throughput achieved through VBI is slow compared to today s internet delivery capability, but comparative to a dial-up line. Throughput can be increased through multiplexing ( ganging ) of VBI lines together. There has also been some experimentation in utilizing some compression techniques that may provide higher speeds on a single VBI line. If 10 VBI lines were to be available, anywhere from 120 to 170 kbps may possibly be achieved, which is comparable to a dial-up or IN, but not as good as DSL. However, a dial-up return path is still required. Reliability of transmission is traded off with throughput the more FEC and less compression utilized, the more reliable the delivery, but at the expense of throughput. CUSTOMER APPLICATIONS AND REQUIREMENTS The NDI customers are the content aggregators that provide rich content that drive specific applications and deliver a data stream to NDI for network transmission. The users of the data (at receive locations) are typically the customers of the content aggregators. Thus NDI can be viewed as the network carrier. The nature of the VBI transmission sets the stage for the advantages and characteristics of data broadcasting that have become recognized for DTV applications, but at lower data delivery speeds. But VBI delivery does lend itself to a niche in certain content services such as: News, weather, sports Stock quotes Music and video samplers Software updates to home PC users Electronic Guides (EPG) Web page downloads These types of applications do not require massive data pipes, and can fit nicely into data rates that can be supplied by VBI. The nature of VBI receivers has essentially been tuner/decoder cards that plug into a slot in the PC. Several vendors have supplied such cards, including Hauppague, ATI, and Norpak. A specific application takes the received data and formats it into a useable form. EPGs such as Gemstar have evolved from a standalone settop box dedicated to the function, to software inherent in multifunction settop boxes or TV sets. External VBI decoders have also been available, where the TV signal is input and the output is a serial data stream that connects to a COM port on the PC. Basic software exists to allow software downloads or text delivery in the simplest and economical form. Some applications allow top level web pages to be downloaded to a PC, with hot links to more information that can be accessed via the telco connection. This allows a basic level of managed content. STANDARDS TO SUPPORT VBI DATACASTING Figure 2 shows the two VBI standards used in the NDI data broadcasting network that defines the physical layer of data transmission. These standards include EIA-516 for full-rate VBI transmission, and EIA-608, which defines Closed Captioned format (CCF). EIA-608 actually defines Closed Captioning for Line 21, however the same data format can be used on other 4

5 lines to reliably transmit applications having low speed data requirements, such as an Electronic Guide. EIA-516 EIA-516 defines the NABTS format for a VBI packet, and the format is shown in Figure 2(a). The NABTS packet is a 36-byte packet. The overhead bytes include: The 2-byte clock synchronization and one-byte sync at the beginning of every VBI line used to synchronize the decoding sampling rate and byte timing. The 3-byte packet address hamming encoded with 4 data bits per byte provides up 4096 possible addresses. These addresses are used to distinguish related services originating from the same source. This is necessary for the receiver to determine which packets are related, and part of the same service. The one byte continuity index incremented by one for each subsequent packet of a given packet address. The value of the CI sequences from 0 to 15 and increments by 1 each time a packet is transmitted. This allows the decoder to determine if packets were lost during transmission. A one-byte packet structure field, which contains information about the structure of the remaining portions of the packet. For a raw transmission, 28 bytes remain for user data. The use of FEC at the NABTS level will decrease throughput, and throughput is traded off with the robustness offered by the FEC scheme used. Figure 2(a): EIA-516 VBI Full-Rate Line Structure COLOR BURST CLOCK SYNC (16 bits) P 1 PREFIX P 2 P 3 C I P S OPTIONAL S DATA BLOCK BYTE 5 BYTES 28 BYTES SYNC (8 bits) DATA PACKET DATA LINE TV LINE 0, 1, 2, OR 28 BYTES Figure 2(b): EIA-608 VBI CCF Line Structure CHARACTER ONE CHARACTER TWO COLOR BURST CLOCK RUN-IN START BITS (3 bits) 2 BYTES DATA PACKET DATA LINE TV LINE EIA-608 5

6 While NABTS is the full rate data format, the Closed Caption Format (CCF) may also be used for services that do not need higher data rates. The TV Electronic Guide (EPG) is a typical application in this category. The data packet is formatted following EIA-608 for Line 21 data services, but is applied on the other VBI lines as desired. The use of CCF provides a greater degree of reliability. The symbol time for a CCF bit is on the order of 2 microseconds, which is approximately 10 times longer than a NABTS bit. Thus there is more time for a decoder to capture the CCF bit under varying conditions. RFC 2728 RFC 2728 describes the transmission of IP over the VBI, and allows further compatibility with the type of internet (IP multicast) delivery schemes that users are now more accustomed. Figure 3 shows the protocol stack. Each layer has no knowledge of the data it encapsulates. IP datagrams are fragmented and spread over multiple VBI packets, utilizing an IP header compression scheme. Application UDP IP SLIP-style encapsulation FEC IP NABTS NTSC/Other Cable, off-air, etc. FIGURE 3: Protocol Stack for IP over VBI CONSIDERATIONS FOR VBI DATACASTING Bandwidth Supporting the media rich applications available over the internet today can be accomplished within certain types of applications. Non-program related data typically includes real-time delivery of information such as stock quotes, news, etc.; streaming media requires as much VBI bandwidth as possible, requiring the ganging of several VBI lines together. 6

7 Cable Carriage The rights to carriage of certain types of VBI data over cable systems is a gray area, and cable systems in some instances have demanded compensation for carriage. It s the question of who has the rights to the signal and its contents along the transmission path to its destination. VBI Receivers VBI receivers with applications software must also be available at a price point that is not outrageous. This has typically been in the range of well below $200. External devices that plug into the PC have been found to be more acceptable than a PC card that requires a user to pop the hood of his/her PC and install it. That just sets the stage for continuing problems. Today, the thrust of the manufacturers efforts is gearing toward DTV receivers. Transition to Digital Many stations are converting their plant to SMPTE 601 digital in anticipation of simultaneous transmission of their NTSC and DTV signals; the NTSC signal is digitized and included in the digital stream from the source at the studio, over the STL, up to the transmitter. At the NTSC transmitter, the digital video is converted to NTSC for transmission over the analog RF channel. Unfortunately, the full-rate VBI necessary to convey a full data service cannot be encoded efficiently; since the data is changing every second, it cannot be compressed reliably with a reasonable number of bits, without impacting other services, including video. While some equipment may be able to encode the VBI in a 270 Mbps data stream, the VBI reliability falls apart when the composite digital data stream is compressed to a transport stream that is formatted for transport over terrestrial STL facilities, such as digital microwave radio. The only solution found so far is to extend the data stream delivered from the network to the transmitter site, and place the databridge at the transmitter site for VBI insertion at the point where the digital video is converted to NTSC. The search for the better vendor solution continues NETWORK MANAGEMENT REQUIREMENTS OF A DATA BROADCASTING NETWORK To make this an effective service for customers, a given level of performance must be maintained, to allow reliability of delivery, and a consistent service. Just like any other telecommunications network, a level of performance guarantee has to structured; this allows the content providers to determine their application level requirements for FEC, carrousel, and retransmission, and the impact on effective throughput, and design the delivery systems likewise. To accomplish the goal of meeting customer performance expectations, a network management system (NMS) must be in place. The NMS has two primary purposes: (1) to manage a costeffective and efficient process to deliver data throughout the network, and (2) to verify that the network is performing to a predetermined level of performance (network availability) that the customer expects, for the money being paid. Additionally, the system must also be designed to minimize the workload of the TV station engineer, who has a higher priority of maintaining the video signal. The network management requirements discussed in this section will apply to the current as well as future data broadcasting network architectures. The management issues are consistent, regardless of the technology being employed. Network Management Requirements 7

8 To accomplish the first goal, the NMC should have the following capabilities to monitor and manage the data. REAL-TIME STATUS MONITORING. Report events in real time-when an event occurs that affects the network availability, it must be reported ASAP to minimize the downtime. Figure 1 also shows some critical sampling points that are monitored in a nationwide data distribution network that provide feedback on network operation status. DIAGNOSTIC CAPABILITIES. Diagnostics must be as automatic as possible. This will minimize the time to troubleshoot and isolate problems, and will not require the TV station engineering resources; important if the engineer is working on other issues at the station at the time. To do this the remote station network equipment must have a high degree of "smarts"- to isolate the problem, and send the appropriate alarm informing of the exact problem. CONFIGURATION/ACCOUNTING/BILLING MANAGEMENT. The NMS should have a way to store information on network inventory of equipment and configurations, customer and station contact people, and all the administrative information and provide the information on demand when such information is needed. When required, the system should provide accounting charges, and billing information based on a per packet, data segment, or other measurable unit of usage for each customer using the network. CONFIGURATION CONTROL. Once again, to minimize having to take up a lot of the station engineers time, configuration changes to be made for any existing or new customer should be as automatic as possible at any site, allowing everything to be done remotely from the NMS. Network Availability To accomplish the second goal, to verify the network is at a given level of performance, calculation of network availability is the best measurement tool. Network availability is defined as the time that the network is available to the user, generally falling under 2 criteria: 1) the network allows data to be received at the user destination, and 2) the data that is received meets or exceeds a certain BER threshold. If either of these 2 criteria is not met, the network is down to the customer/user. To determine if network availability is being met, a means to collect statistics on performance needs to be in place. To be able to react in real time, a network monitoring/alarm reporting system must be operational to alert a Network Management Center (NMC). A Daily summary of network availability for each VBI service and the databridge should be provided, taking into account downtimes due to absence of VBI data and critical/majors alarms that would occur to prevent data delivery. These types of reports give the network manager feedback on how the network is operating, and the tools to improve it. Shown in Figure 4 are network availability figures for certain segments of the data distribution path. The data broadcasting network availability should be comparable to the industry for similar service (I.e. streaming media over landlines). Measurement is performed over a given time period, such as month. Typical objectives are in the range of 99%, end to end. 8

9 The local station has control to a point right outside the transmitting antenna; the user receive location has too many variables to be committed by the broadcaster. A level of service can be assumed in the Grade A contour, for example (based on signal level calculations), but not guaranteed (no control over a nearby building at a receive location that causes multipath). The lowest network availability has been assigned at the broadcast station level to account for nonredundant plant at the station (i.e. varying availability of spare satellite receivers or full-power standby transmitter that automatically switches inline upon the primary transmitter failure). There would also be a demarcation point between the NDI headend and the customer (data content provider) to define the boundaries for troubleshooting responsibility. Methodology for Network Monitoring and Validation The network monitoring system must be capable of global monitoring, as well as local monitoring, as depicted by the necessary sampling points in Figure 1. A global outage is obviously critical from a network availability standpoint, since it is the product of an outage duration, multiplied by the number of stations affected. Fault isolation ability is key this can be accomplished by locating data and signal sampling points along the transmission path, that feed back into a master controller/processor from the process of elimination, the section of plant can be identified where the data signal becomes absent. At the local station a monitor module resides on the databridge to act as the network management agent to collect key information, and report back to the NMC. The NMC must have a way to collect statistics, and generate the results in a user-friendly report that can be provided to customers or to operations center personnel. There are 4 categories: Network Outage times: The time stamps of alarms are used to define network outage and down time. It must have the capability to collect the information on a total network, station specific, or customer specific basis. To gather information for network availability calculations, the NMC should have the capability to get timestamps when a point is "down" and when it returns to an "up" status, so that an elapsed downtime can be calculated. can be considered down either when (1) there is a loss of video that carries the data, or (2) when data is absent from the video signal. 9

10 Microwave radio Content Provider Internet or Leased Transmission Facilities 99.9% Isochronous Digicipher II Encoder Stream Transmission Interface PBS TOC Network Video Microwave radio 99.99% PBS SOC HPA % Network Feed from NDI Alexandria IRD 256 kbps PBS Member Station Broadcast Studio Local NTSC Video bridge Local NTSC Audio STL/ TSL % 99.0% Video/Audio + NTSC Broadcast Transmitter Audio STL/ TSL Video % FIGURE 4: End-to-End Network Availability Throughput: Capability to collect data for the network capacity planning function to determine if network "bottlenecks" are being approached. This is more critical in applications where multiple customers share a VBI line, and access it on demand. Network design then becomes more akin to the classic traffic engineering that the telephone engineers have to worry about. Typical information to be collected for each VBI service would include: No. of packets sent No. of packets missed/replaced (FEC efficiency) No. of Bytes sent No. of Bytes in error Bit-Error-Rate Average throughput Alarms: Collected and summarized by total network, per station or group of station, or per customer basis. Important to be able to identify trends or occurrences that suggest corrective actions are needed in the network, before a catastrophic event actually occurs. 10

11 Typical types of alarms may include different categories, denoting the severity of their impact on network performance. Below are typical alarm categories and alarm types. I. Catastrophic Alarms -any event that causes a loss of all data to the local stations II. Critical Alarms -bridge hardware failure that affects service integrity -loss of program video output from the databridge -loss of program video input coming into the databridge -loss of AC input power (assumes monitoring function has a battery backup) -loss of all data from video III. Major Alarms -loss of any VBI line from video -loss of data from any input to the databridge -BER has exceeded bit error threshold BER: Bit-error-rate (BER) statistics, like alarms, are also collected and summarized to be able to identify trends or suggested areas of network performance degradation. At the local station, a monitor module can perform a bit by bit comparison of data that is sent, vs what is received back to determine a true bit-error-rate (BER). The statistic is recorded for each packet, and reported on a periodic basic back to the NMC. BER statistics can also include FEC additional information to determine the amount of FEC correction taking place, to determine signal quality. Often, it is also handy to establish a benchmark VBI data test pattern to test system integrity when a customer s data delivery is in question. A benchmark BERT pattern is also sent out as a baseline data signal to measure its quality compared to operational data. The BERT pattern is a known pattern, such as a 2047 (a known ordered string of 2047 ones and zeros) and can provide a baseline to performance. Implementation of monitors for this type of data can be more efficient and economical that actual monitoring of each customer s data, and provides a reliable and representative snapshot of system operation. A benchmark monitoring location that gives a representative signal for evaluation is typically the studio location of a station, since it is generally 10 to 15 miles away from the transmitter, and can receive a good representative air sample. Other Considerations for Network Operation The broadcaster must also have the capability to monitor the content of the data being broadcast. As stated in the FCC rules, the broadcaster has the responsibility for the content that is delivered over the air to receivers; thus a means to monitor the content or application being broadcast is important. Typically, a decoder and PC are set up at the station running the application, allowing the station personnel to experience the same events and information that a typical consumer would get. If multiple applications are being broadcast, then a PC/decoder for each application may be necessary. Another important aspect of network management and service level agreements is making provisions for disaster recovery. There is a trade-off required for a level of redundancy, given a probability of occurrence, versus the cost of adding the plant. All of this is weighed 11

12 against the cost of the downtime - the lost revenue opportunity that is realized due to the absence of the data delivery for the time period of being down. dntsc: USE OF NTSC VIDEO TO SUPPORT HIGHER THROUGHPUT SUMMARY OF TECHNOLOGY AND APPLICATIONS While VBI has provided a viable option in the past, the data environment today demands more bandwidth, and savvy users utilize multiple applications requiring varied types of data. The next step for PBS National cast (NDI) is the implementation of the Dotcast dntsc (data in NTSC video) technology. The Dotcast system uses patent-pending technologies that can inject a 4.5 Mbps digitally encoded data stream into an NTSC broadcast television signal without degrading the signal or interfering with regular TV reception. The dntsc system is an RF process, and achieves the 4.5 Mbps data rate by injecting: 3 Mbps into the visual carrier of the signal using Quadrature Phase Shift Keying (QPSK) modulation in conjunction with a proprietary abatement circuit to negate distortion. The dntsc visual data is a data envelope combined additively, in quadrature, with the visual carrier. 1.5 Mbps into the aural carrier, using eight level negative amplitude modulation, applied directly to the FM aural carrier. The system is designed for modularity, and is inserted between the transmitter exciter and final stages. It does not interfere with VBI; thus both services can operate simultaneously. The combined dntsc process adds about 1% power to the overall NTSC signal, which is within the FCC required transmitter power variation of +-5%. Dotcast has identified nine configurations of transmitters for which the dntsc will be compatible and is in the process of developing the system utilizing state-of-the art digital signal processing (DSP) technology. The transmission model for PBS does not rely on cable carriage, and is designed for reliable over-the-air reception utilizing state-of-the art wireless data reception techniques. The bandwidth provided by the Dotcast dntsc system opens up entirely new market opportunities from the limiting throughput that is offered by VBI. It maximizes bandwidth, including fast downloads, immediate access to rich media and electronic commerce options and direct access to applications service providers. It will also enable PBS and its member stations to participate in delivery of the new digital services that provide additional value and information to homes, businesses, government, and schools. Operation Figure 5 shows the signal flow of the dntsc system over the PBS network. Dotcast will provide to NDI a data stream containing the content to be distributed over the data broadcasting network. From NDI/PBS TOC in Alexandria, a high-speed data stream is fed over a DigiCipher II encoding system to the participating stations, to a server which will generally be located at the local PBS station studio. The server is also connected to a local internet connection, and also has a port to allow the local station to utilize some of the capacity to distribute its own information. The output of the server is at 4.5 Mbps which must be fed to the transmitter site, via an STL or other means. At the transmitter, the 4.5 Mbps data stream is input into the transmitter injection equipment, where it is segmented into the separate aural and visual data streams. 12

13 At the receive location, the dotbox contains a hard drive, which is expected to be up to 100 GB to capture the transmitted information off-air. is distributed to the user s PC depending on predefined preferences and subscribed services. TRANSMISSION REQUIREMENTS TO SUPPORT NATIONWIDE REQUIREMENTS The dntsc system allows the PBS data broadcasting network a graceful way to proceed toward data broadcasting in the DTV domain. The Dotcast 4.5 Mbps data stream with the managed content is packaged to support the MPEG-2 format, and can be transported through the station plant via T1 formatted lines. At the transmitter, the data stream is modulated on to the analog RF via the dntsc encoder. At the receiving end, the consumer uses an off-air antenna connected to a Dotbox that can receive either NTSC or ATSC signals. Thus all the elements are in place for the DTV transition. At the time to convert to DTV, the Dotcast data stream can merely be redirected to a DTV multiplex for inclusion in the 19 Mbps transport stream-accommodated by fixed or opportunistic data transmission schemes. At the consumer end it should remain transparent the off-air antenna is already in place, and the Dotbox will retune to the DTV channel with the data. This is an important attribute in providing a data service transition make it as seamless as possible to the users! The STL between the studio and transmitter provides the biggest area of consideration-how to transport 4.5 Mbps to the transmitter for injection into the RF. The goal is to determine the most cost effective way to add digital capacity: either by upgrading the existing STL, adding a second RF channel, utilization of fiber or leased facilities, or even direct downlink to the transmitter. Each station will be a case-by-case basis. 13

14 DotNOC Stream Delivered by Public Transmission Facilities Isochronous Stream Transmission Interface Digicipher II Encoder Microwave radio Network Video PBS TOC Internet Connection Receive Location Network Feed from NDI Alexandria Microwave radio PBS SOC Dot Box IRD 2 Mbps PBS Member Station Broadcast Studio Local Monitoring Station Dotcast Server Local NTSC Video/Audio Monitor Return Path 4.5 Mbps STL/ TSL Video/Audio STL/ TSL Audio NTSC Broadcast Transmitter Monitor Return Path 4.5 Mbps Video Aural Transmitter 1.5 Mbps dntsc 8-level Encoder dntsc QPSK Encoder Diplexer Power Amp Up Converter 3 Mbps Exciter/ Modulator Internet Connection FIGURE 5: dntsc Signal Flow Diagram NETWORK MANAGEMENT-MONITORING OPERATION, PERFORMANCE The dntsc system will have a Transmitter-Studio Link (TSL) that allows a return path from the transmitter to the studio, where a local monitoring point will be established at a staffed location, such as Master Control. This will allow continuous monitoring of the critical transmission parameters such as data throughput, injection levels, phase error/delay, as well as provide a means to disable the encoder should the need occur, and detect when the station is off the air. A return path can be established via the internet through the local server at the station. At NDI, the NMC will monitor the transmission path infrastructure (i.e. satellite, video status at stations. Dotcast will maintain a Network Operations Center (NOC) operating 24 hours a day, 7 days a week, that will manage content delivery, as well as the operations of their servers, dntsc encoders, and STL data links. STATUS OF DEVELOPMENT AND DEPLOYMENT The dntsc system is targeted for deployment in the PBS system in Given the DTV issues at hand, it is expected that the dntsc system will become and remain NDI s primary high speed delivery means for quite a few years! As DTV opportunities become clearer, and agreements are 14

15 worked with PBS member stations, the Dotcast dntsc can lay the groundwork for the next generation network. DATA BROADCASTING IN THE DTV ENVIRONMENT At this point in time, 26 PBS stations have signed on the air with DTV transmitters, and at least that many more are expected to turn up in PBS has two services available to its member stations for network feeds: (1) a four channel service which is interrupted by HD content when it is available, and (2) an HD loop which offers a single channel of HD service for demonstration purposes. As DTV gets geared up for service with more local programming and enhanced television experiences, data services may include interactive, program related data, as well as data that is not specifically bound to a TV program event, to deliver data to users as a more efficient means than conventional landlines. Thus, all of the data services will be vying for a piece of the DTV transport stream, not to mention TV and HDTV tradeoffs of bandwidth requirements. In addition local data broadcasting opportunities at the station will be competing with national opportunities for bandwidth. In the DTV environment, the PBS network will continue to distribute via satellite to its member stations, over a dozen digital video programs at one time. Each member station can pick and choose from those programs to record for later airplay, or to pass it through in real time. As with VBI data delivery, the challenge of how to bridge data from the network feed, and insert it into the local program actually going out over the air, for real-time data delivery will be the issue, as well as the investment requirement. In the DTV case, the databridge will be some form of MPEG2 multiplexer, capable of supporting the datastreams described in the ATSC A/90 Broadcasting ation, as well as IP multicast, of which a specification is currently being developed in the ATSC T3/S13 Committee. Non-program related data may include delivery of self-contained web sites, e-commerce, as well as the video and audio streaming media. The streaming media will require the considerations of downtime and real-time data delivery, and quick reaction to outage reports. Not so real time, like static web sites for anytime access could have a latency of even several days. The nature of the data to be delivered will drive the service level agreements that must be supported by a network management and operations system. Figure 6 shows the resource allocation of the PBS DTV feed prior to 2003, and Figure 7 shows the anticipated allocations beginning 2003 and beyond. By 2003, improvements in compression techniques will allow more efficient coding of the video, and provide more room for opportunistic types of data. The efficient utilization of spectrum saving opportunistic data could be a significant consideration as legislators warn that HDTV should continue to be the primary focus of the DTV transition and that alternative uses of the digital spectrum could be deal breakers. The bandwidth available includes a data pipe that will be a fixed, committed rate that can be guaranteed for delivery, and an opportunistic data rate that will vary from second to second, but may provide an effective throughput over time. What is envisioned is to combine the use of fixed data rates plus opportunistic data to achieve an overall data delivery scheme. Of course, to handle wide variations in the opportunistic data delivery will require considerations of buffering in a data receiver to store, hold, and smooth the data to output at a constant leak rate. A goal of NDI is 15

16 to perform some testing of opportunistic data delivery during various video programs, to develop a profile of throughput efficiency. A couple of alternatives may be available to accomplish the delivery of data from the network headend to the PBS member stations in the DTV data broadcasting environment. The first is to deliver a data channel to each station just as is done with the VBI and Dotcast architectures, and at the station, input the data stream into a local MPEG-2 multiplexer, and integrate into the local station DTV transport stream. The second is to multiplex the data with the PBS network DTV transport stream at the PBS headend (consistent with Figures 6 and 7), extract it out at the station, and then reinsert it into the local DTV stream at the PBS member station. This could become an advantage if at some point, alternate terrestrial delivery of the network DTV transport stream were to supplement or replace the satellite; the data would be part of the transport stream and a cost savings would be realized by not having separate terrestrial facilities for data. NDI will review these options as the infrastructure becomes defined. Over the migration from the VBI, to dntsc and on to DTV data broadcasting, the transmission infrastructure for national delivery is expected to remain somewhat similar in concept get the data at the headend, distribute it to the station edge servers for over-the-air last mile transmission either on-demand or at scheduled times. The network management will be the critical element in providing a level of service that can be competitive with alternative means such as IP multicast over the internet, internet delivery over wireless portable devices, or direct satellite. However, there is still the return channel issue that must be factored into the network architecture. References 1. Development and Performance of the PBS VBI Delivery System. Aderemi A. Adeyeye and Mark S. Richer. 129 th SMPTE Technical Conference paper number EIA 516: North American Basic Teletext ation (NABTS). Electronic Industries Association EIA-608: Recommended Practice for Line 21. Electronic Industries Association RFC 2728: The Transmission of IP Over the Vertical Blanking Interval of a Television Signal. The Internet Society Network Working Group. November Mbps Compatibility Transmitted in 6 MHz Analog Television. Walter S. Ciciora NCTA Convention, Atlanta, GA. 6. ATSC Standard A/90: Broadcast Standard. Advanced Television Systems Committee. July

17 FIGURE 6: 19.4 Mbps 6 MHz Channel Prior to Mbps 3-4 Mbps 3-4 Mbps HDTV 17+ Mbps Fixed 1-2 Mbps NTSC Equivalent 4-5 Mbps 3-4 Mbps Opportunistic Variable Rate Legacy Opportunistic Variable Rate Fixed 1-2 Mbps Non-Prime Time Prime Time FIGURE 7: 19.4Mbps 6 MHz Channel As Of Mbps 1-3 Mbps 1-3 Mbps NTSC Equivalent 4-5 Mbps Legacy Opportunistic Variable Rate 1-3 Mbps 1-3 Mbps HD 7-12 Mbps Fixed 1-2 Mbps 1-3 Mbps Opportunistic Variable Rate Fixed 1-2Mbps Non-Prime Time Prime Time 17

18 18

White Paper. Video-over-IP: Network Performance Analysis

White Paper. Video-over-IP: Network Performance Analysis White Paper Video-over-IP: Network Performance Analysis Video-over-IP Overview Video-over-IP delivers television content, over a managed IP network, to end user customers for personal, education, and business

More information

A LOW COST TRANSPORT STREAM (TS) GENERATOR USED IN DIGITAL VIDEO BROADCASTING EQUIPMENT MEASUREMENTS

A LOW COST TRANSPORT STREAM (TS) GENERATOR USED IN DIGITAL VIDEO BROADCASTING EQUIPMENT MEASUREMENTS A LOW COST TRANSPORT STREAM (TS) GENERATOR USED IN DIGITAL VIDEO BROADCASTING EQUIPMENT MEASUREMENTS Radu Arsinte Technical University Cluj-Napoca, Faculty of Electronics and Telecommunication, Communication

More information

MOBILE DIGITAL TELEVISION. never miss a minute

MOBILE DIGITAL TELEVISION. never miss a minute MOBILE DIGITAL TELEVISION never miss a minute About Mobile DTV The Power of Local TV on the Go Mobile Digital Television (DTV) represents a significant new revenue stream for the broadcasting industry

More information

SMPTE 334M DATA DOES HAVE A LIFE BEFORE EMISSION. JIM CARRUTHERS PhD, PEng CEO NORPAK CORPORATION. norpak corporation 19 Oct 00

SMPTE 334M DATA DOES HAVE A LIFE BEFORE EMISSION. JIM CARRUTHERS PhD, PEng CEO NORPAK CORPORATION. norpak corporation 19 Oct 00 SMPTE 334M DATA DOES HAVE A LIFE BEFORE EMISSION JIM CARRUTHERS PhD, PEng CEO NORPAK CORPORATION MY MISSION TO CONVINCE YOU THAT THE 292 VERTICAL ANCILLARY SPACE IS WHERE A LOT OF DATA SHOULD BE WHY ME?

More information

DigiPoints Volume 2. Student Workbook. Module 5 Headend Digital Video Processing

DigiPoints Volume 2. Student Workbook. Module 5 Headend Digital Video Processing Headend Digital Video Processing Page 5.1 DigiPoints Volume 2 Module 5 Headend Digital Video Processing Summary In this module, students learn engineering theory and operational information about Headend

More information

ATSC TELEVISION IN TRANSITION. Sep 20, Harmonic Inc. All rights reserved worldwide.

ATSC TELEVISION IN TRANSITION. Sep 20, Harmonic Inc. All rights reserved worldwide. Sep 20, 2016 ATSC TELEVISION IN TRANSITION ATSC 1.0 Overview The move from analog to digital 2 The ATSC 1 Digital Paradigm Shift ATSC broadcasters built systems based on the state of the art (at the time)

More information

REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS

REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS by Donald Raskin and Curtiss Smith ABSTRACT There is a clear trend toward regional aggregation of local cable television operations. Simultaneously,

More information

Introduction. Fiber Optics, technology update, applications, planning considerations

Introduction. Fiber Optics, technology update, applications, planning considerations 2012 Page 1 Introduction Fiber Optics, technology update, applications, planning considerations Page 2 L-Band Satellite Transport Coax cable and hardline (coax with an outer copper or aluminum tube) are

More information

Digital Audio Broadcast Store and Forward System Technical Description

Digital Audio Broadcast Store and Forward System Technical Description Digital Audio Broadcast Store and Forward System Technical Description International Communications Products Inc. Including the DCM-970 Multiplexer, DCR-972 DigiCeiver, And the DCR-974 DigiCeiver Original

More information

Digital Video Engineering Professional Certification Competencies

Digital Video Engineering Professional Certification Competencies Digital Video Engineering Professional Certification Competencies I. Engineering Management and Professionalism A. Demonstrate effective problem solving techniques B. Describe processes for ensuring realistic

More information

ONE-WAY DATA TRANSMISSION FOR CABLE APPLICATIONS WEGENER COMMUNICATIONS, INC.

ONE-WAY DATA TRANSMISSION FOR CABLE APPLICATIONS WEGENER COMMUNICATIONS, INC. ONE-WAY DATA TRANSMISSION FOR CABLE APPLICATIONS HEINZ W. WEGENER WEGENER COMMUNICATIONS, INC. ONE-WAY DATA TRANSMISSION FOR CABLE APPLICATIONS ABSTRACT The cable industry has created an extensive satellite

More information

ENGINEERING COMMITTEE

ENGINEERING COMMITTEE ENGINEERING COMMITTEE Energy Management Subcommittee SCTE STANDARD SCTE 211 2015 Energy Metrics for Cable Operator Access Networks Title Table of Contents Page Number NOTICE 3 1. Scope 4 2. Normative References

More information

Alcatel-Lucent 5910 Video Services Appliance. Assured and Optimized IPTV Delivery

Alcatel-Lucent 5910 Video Services Appliance. Assured and Optimized IPTV Delivery Alcatel-Lucent 5910 Video Services Appliance Assured and Optimized IPTV Delivery The Alcatel-Lucent 5910 Video Services Appliance (VSA) delivers superior Quality of Experience (QoE) to IPTV users. It prevents

More information

Proposed Standard Revision of ATSC Digital Television Standard Part 5 AC-3 Audio System Characteristics (A/53, Part 5:2007)

Proposed Standard Revision of ATSC Digital Television Standard Part 5 AC-3 Audio System Characteristics (A/53, Part 5:2007) Doc. TSG-859r6 (formerly S6-570r6) 24 May 2010 Proposed Standard Revision of ATSC Digital Television Standard Part 5 AC-3 System Characteristics (A/53, Part 5:2007) Advanced Television Systems Committee

More information

Hands-On Real Time HD and 3D IPTV Encoding and Distribution over RF and Optical Fiber

Hands-On Real Time HD and 3D IPTV Encoding and Distribution over RF and Optical Fiber Hands-On Encoding and Distribution over RF and Optical Fiber Course Description This course provides systems engineers and integrators with a technical understanding of current state of the art technology

More information

Multimedia Standards

Multimedia Standards Multimedia Standards SS 2012 Lecture 12 Prof. Dr.-Ing. Karlheinz Brandenburg Karlheinz.Brandenburg@tu-ilmenau.de Contact: Dipl.-Inf. Thomas Köllmer Dr.-Ing. Uwe Kühhirt thomas.koellmer@tu-ilmenau.de uwe.kuehhirt@idmt.fraunhofer.de

More information

DigiPoints Volume 2. Student Workbook. Module 1 Components of a Digital System

DigiPoints Volume 2. Student Workbook. Module 1 Components of a Digital System Components of a Digital System Page 1.1 DigiPoints Volume 2 Module 1 Components of a Digital System Summary The content in this module includes an overview of the functional architecture of a digital cable

More information

Technical Solution Paper

Technical Solution Paper Digital Video Broadcasting - Cable Technical Solution Paper LOGIC EASTERN INDIA PVT. LTD. B-2, Sector-31, Noida, U.P., INDIA. Ph. No. +0129-2455112/13/14, info@logiceastern.com http://www.logiceastern.com

More information

Issue 67 - NAB 2008 Special

Issue 67 - NAB 2008 Special Sensor NEWS FROM PIXELMETRIX Get Ready for Next Generation TV Issue 67 - NAB 2008 Special HIGHLIGHTS Danny Wilson to speak at two conferences New! DVStation-Mini Lab Environment for IP Video Delivery Satellite

More information

Metadata for Enhanced Electronic Program Guides

Metadata for Enhanced Electronic Program Guides Metadata for Enhanced Electronic Program Guides by Gomer Thomas An increasingly popular feature for TV viewers is an on-screen, interactive, electronic program guide (EPG). The advent of digital television

More information

Digital Television Transition in US

Digital Television Transition in US 2010/TEL41/LSG/RR/008 Session 2 Digital Television Transition in US Purpose: Information Submitted by: United States Regulatory Roundtable Chinese Taipei 7 May 2010 Digital Television Transition in the

More information

Mobile TV broadcasting in Japan

Mobile TV broadcasting in Japan Mobile TV broadcasting in Japan 23 May 2011in Hanoi, Vietnam ITU-AIBD-ABU Regional Workshop on Digital Broadcasting Yasushi Furukawa, Director for International Relations, Broadcasting Technology Division

More information

Verizon New England Inc. Application for a Compliance Order Certificate for Rhode Island Service Areas 1 and 4. Exhibit 3

Verizon New England Inc. Application for a Compliance Order Certificate for Rhode Island Service Areas 1 and 4. Exhibit 3 PROPOSED SERVICE OVERVIEW, PRODUCT OFFERS AND ARCHITECTURE Overview of Fiber to the Premises (FTTP) Deployment Service Overview Product Offer Service Delivery/Connection Method FTTP System Architecture

More information

DVB-S2 and DVB-RCS for VSAT and Direct Satellite TV Broadcasting

DVB-S2 and DVB-RCS for VSAT and Direct Satellite TV Broadcasting Hands-On DVB-S2 and DVB-RCS for VSAT and Direct Satellite TV Broadcasting Course Description This course will examine DVB-S2 and DVB-RCS for Digital Video Broadcast and the rather specialised application

More information

AMD-53-C TWIN MODULATOR / MULTIPLEXER AMD-53-C DVB-C MODULATOR / MULTIPLEXER INSTRUCTION MANUAL

AMD-53-C TWIN MODULATOR / MULTIPLEXER AMD-53-C DVB-C MODULATOR / MULTIPLEXER INSTRUCTION MANUAL AMD-53-C DVB-C MODULATOR / MULTIPLEXER INSTRUCTION MANUAL HEADEND SYSTEM H.264 TRANSCODING_DVB-S2/CABLE/_TROPHY HEADEND is the most convient and versatile for digital multichannel satellite&cable solution.

More information

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals International Telecommunication Union ITU-T J.381 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (09/2012) SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA

More information

APPENDIX D TECHNOLOGY. This Appendix describes the technologies included in the assessment

APPENDIX D TECHNOLOGY. This Appendix describes the technologies included in the assessment APPENDIX D TECHNOLOGY This Appendix describes the technologies included in the assessment and comments upon some of the economic factors governing their use. The technologies described are: coaxial cable

More information

DigiPoints Volume 2. Leader Guide. Module 5 Headend Digital Video Processing

DigiPoints Volume 2. Leader Guide. Module 5 Headend Digital Video Processing Headend Digital Video Processing Page 5.i DigiPoints Volume 2 Module 5 Headend Digital Video Processing Summary In this module, students will learn engineering theory and operational information about

More information

DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT

DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT Sanjay Dhar Cisco Systems, Inc Abstract The cable industry has found a perfect weapon to create a sustainable competitive

More information

Content regionalization and Targeted Ad Insertion in DTT SFN networks. Berry Eskes Regional Director EMEA North, Russia & CIS

Content regionalization and Targeted Ad Insertion in DTT SFN networks. Berry Eskes Regional Director EMEA North, Russia & CIS Content regionalization and Targeted Ad Insertion in DTT SFN networks Berry Eskes Regional Director EMEA North, Russia & CIS beskes@datacast.com Demand for regionalization is growing rapidly! Regionalization

More information

Real Time PQoS Enhancement of IP Multimedia Services Over Fading and Noisy DVB-T Channel

Real Time PQoS Enhancement of IP Multimedia Services Over Fading and Noisy DVB-T Channel Real Time PQoS Enhancement of IP Multimedia Services Over Fading and Noisy DVB-T Channel H. Koumaras (1), E. Pallis (2), G. Gardikis (1), A. Kourtis (1) (1) Institute of Informatics and Telecommunications

More information

VNP 100 application note: At home Production Workflow, REMI

VNP 100 application note: At home Production Workflow, REMI VNP 100 application note: At home Production Workflow, REMI Introduction The At home Production Workflow model improves the efficiency of the production workflow for changing remote event locations by

More information

A NEW METHOD FOR RECALCULATING THE PROGRAM CLOCK REFERENCE IN A PACKET-BASED TRANSMISSION NETWORK

A NEW METHOD FOR RECALCULATING THE PROGRAM CLOCK REFERENCE IN A PACKET-BASED TRANSMISSION NETWORK A NEW METHOD FOR RECALCULATING THE PROGRAM CLOCK REFERENCE IN A PACKET-BASED TRANSMISSION NETWORK M. ALEXANDRU 1 G.D.M. SNAE 2 M. FIORE 3 Abstract: This paper proposes and describes a novel method to be

More information

Digital Video Telemetry System

Digital Video Telemetry System Digital Video Telemetry System Item Type text; Proceedings Authors Thom, Gary A.; Snyder, Edwin Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

Digital Terrestrial HDTV Broadcasting in Europe

Digital Terrestrial HDTV Broadcasting in Europe EBU TECH 3312 The data rate capacity needed (and available) for HDTV Status: Report Geneva February 2006 1 Page intentionally left blank. This document is paginated for recto-verso printing Tech 312 Contents

More information

Telecommunication Development Sector

Telecommunication Development Sector Telecommunication Development Sector Study Groups ITU-D Study Group 1 Rapporteur Group Meetings Geneva, 4 15 April 2016 Document SG1RGQ/218-E 22 March 2016 English only DELAYED CONTRIBUTION Question 8/1:

More information

PRACTICAL PERFORMANCE MEASUREMENTS OF LTE BROADCAST (EMBMS) FOR TV APPLICATIONS

PRACTICAL PERFORMANCE MEASUREMENTS OF LTE BROADCAST (EMBMS) FOR TV APPLICATIONS PRACTICAL PERFORMANCE MEASUREMENTS OF LTE BROADCAST (EMBMS) FOR TV APPLICATIONS David Vargas*, Jordi Joan Gimenez**, Tom Ellinor*, Andrew Murphy*, Benjamin Lembke** and Khishigbayar Dushchuluun** * British

More information

Tutorial on the Grand Alliance HDTV System

Tutorial on the Grand Alliance HDTV System Tutorial on the Grand Alliance HDTV System FCC Field Operations Bureau July 27, 1994 Robert Hopkins ATSC 27 July 1994 1 Tutorial on the Grand Alliance HDTV System Background on USA HDTV Why there is a

More information

DIGITAL BROADCASTING. Implementation of new services and their position in Multimedia World

DIGITAL BROADCASTING. Implementation of new services and their position in Multimedia World DIGITAL BROADCASTING Implementation of new services and their position in Multimedia World OUTLINE Scope of the lecture Why digital Specifics of Broadcasting Transition from Analogue to Digital Broadcasting

More information

White Paper Lower Costs in Broadcasting Applications With Integration Using FPGAs

White Paper Lower Costs in Broadcasting Applications With Integration Using FPGAs Introduction White Paper Lower Costs in Broadcasting Applications With Integration Using FPGAs In broadcasting production and delivery systems, digital video data is transported using one of two serial

More information

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher.

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher. National Park Service Photo Utah 400 Series 1 Digital Routing Switcher Utah Scientific has been involved in the design and manufacture of routing switchers for audio and video signals for over thirty years.

More information

SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV

SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV First Presented at the SCTE Cable-Tec Expo 2010 John Civiletto, Executive Director of Platform Architecture. Cox Communications Ludovic Milin,

More information

Understanding IPTV "The Players - The Technology - The Industry - The Trends - The Future"

Understanding IPTV The Players - The Technology - The Industry - The Trends - The Future Understanding "The Players - The Technology - The Industry - The Trends - The Future" Course Description The course introduces you to the building blocks of. You will learn what is and what it isnt and

More information

User Requirements for Terrestrial Digital Broadcasting Services

User Requirements for Terrestrial Digital Broadcasting Services User Requirements for Terrestrial Digital Broadcasting Services DVB DOCUMENT A004 December 1994 Reproduction of the document in whole or in part without prior permission of the DVB Project Office is forbidden.

More information

Advanced Television Broadcasting In A Digital Broadband Distribution Environment

Advanced Television Broadcasting In A Digital Broadband Distribution Environment Advanced Television Broadcasting In A Digital Broadband Distribution Environment October 19, 2000 Brian Holmes Ian Oliver 142nd Technical Conference Technical Challenges maintenance of programming integrity

More information

ATSC Standard: Video Watermark Emission (A/335)

ATSC Standard: Video Watermark Emission (A/335) ATSC Standard: Video Watermark Emission (A/335) Doc. A/335:2016 20 September 2016 Advanced Television Systems Committee 1776 K Street, N.W. Washington, D.C. 20006 202-872-9160 i The Advanced Television

More information

Review of the Comcast. Fort Collins Cable System. Technical Characteristics

Review of the Comcast. Fort Collins Cable System. Technical Characteristics Review of the Comcast Fort Collins Cable System Technical Characteristics Prepared by: January 30, 2004 Dick Nielsen Senior Engineer CBG Communications, Inc. Introduction and Background CBG Communications,

More information

Cisco D9859 Advanced Receiver Transcoder

Cisco D9859 Advanced Receiver Transcoder Data Sheet Cisco D9859 Advanced Receiver Transcoder Deliver MPEG-4 high-definition (HD) services to MPEG-2 cable TV (CATV) headends with the Cisco D9859 Advanced Receiver Transcoder. The Cisco D9859 platform

More information

MediaKind RX8320 Receiver

MediaKind RX8320 Receiver MediaKind RX8320 Receiver ATSC Broadcast Design As local terrestrial broadcasters begin to phase out their analog broadcasts and transition to an all-digital environment, the need to maintain access to

More information

Australian Broadcasting Corporation Submission Digital Conversion of Self-Help Television Retransmission Sites

Australian Broadcasting Corporation Submission Digital Conversion of Self-Help Television Retransmission Sites Australian Broadcasting Corporation Submission Digital Conversion of Self-Help Television Retransmission Sites (Department of Communications, Information and the Arts) August 2007 Australian Broadcasting

More information

MIGRATION TO FULL DIGITAL CHANNEL LOADING ON A CABLE SYSTEM. Marc Ryba Motorola Broadband Communications Sector

MIGRATION TO FULL DIGITAL CHANNEL LOADING ON A CABLE SYSTEM. Marc Ryba Motorola Broadband Communications Sector MIGRATION TO FULL DIGITAL CHANNEL LOADING ON A CABLE SYSTEM Marc Ryba Motorola Broadband Communications Sector ABSTRACT Present day cable systems run a mix of both analog and digital signals. As digital

More information

Advanced Coding and Modulation Schemes for Broadband Satellite Services. Commercial Requirements

Advanced Coding and Modulation Schemes for Broadband Satellite Services. Commercial Requirements Advanced Coding and Modulation Schemes for Broadband Satellite Services Commercial Requirements DVB Document A082 July 2004 Advanced Coding and Modulation Schemes for Broadband Satellite Services Commercial

More information

Audio Watermarking (NexTracker )

Audio Watermarking (NexTracker ) Audio Watermarking Audio watermarking for TV program Identification 3Gb/s,(NexTracker HD, SD embedded domain Dolby E to PCM ) with the Synapse DAW88 module decoder with audio shuffler A A product application

More information

Abstract WHAT IS NETWORK PVR? PVR technology, also known as Digital Video Recorder (DVR) technology, is a

Abstract WHAT IS NETWORK PVR? PVR technology, also known as Digital Video Recorder (DVR) technology, is a NETWORK PVR VIDEO SERVER ARCHITECTURE Jay Schiller, Senior VP Broadband Strategy and Product Management Michael Fallon, Senior Technical Writer ncube Corporation Abstract Set-top Personal Video Recording

More information

Implementation of DTT System Software Upgrade & Terrestrial 3DTV Trial Service in Korea

Implementation of DTT System Software Upgrade & Terrestrial 3DTV Trial Service in Korea ITU-T Workshop on Bridging the Standardization Gap and Interactive Training Session (Cyberjaya, Malaysia, 29 June 1 July 2010 ) Implementation of DTT System Software Upgrade & Terrestrial 3DTV Trial Service

More information

Introduction This application note describes the XTREME-1000E 8VSB Digital Exciter and its applications.

Introduction This application note describes the XTREME-1000E 8VSB Digital Exciter and its applications. Application Note DTV Exciter Model Number: Xtreme-1000E Version: 4.0 Date: Sept 27, 2007 Introduction This application note describes the XTREME-1000E Digital Exciter and its applications. Product Description

More information

Cue tone encoding and decoding with the HSI21 module. 3Gb/s, HD, SD embedded domain Dolby E to PCM decoder with audio shuffler

Cue tone encoding and decoding with the HSI21 module. 3Gb/s, HD, SD embedded domain Dolby E to PCM decoder with audio shuffler Cue encoding and decoding GEP100 - HEP100 Cue tone encoding and decoding with the HSI21 module 3Gb/s, HD, SD embedded domain Dolby E to PCM decoder with audio shuffler A A application product note COPYRIGHT

More information

B. The specified product shall be manufactured by a firm whose quality system is in compliance with the I.S./ISO 9001/EN 29001, QUALITY SYSTEM.

B. The specified product shall be manufactured by a firm whose quality system is in compliance with the I.S./ISO 9001/EN 29001, QUALITY SYSTEM. VideoJet 8000 8-Channel, MPEG-2 Encoder ARCHITECTURAL AND ENGINEERING SPECIFICATION Section 282313 Closed Circuit Video Surveillance Systems PART 2 PRODUCTS 2.01 MANUFACTURER A. Bosch Security Systems

More information

Portable TV Meter (LCD) USER S MANUAL

Portable TV Meter (LCD) USER S MANUAL 1 Portable TV Meter User Manual (LCD) Portable TV Meter (LCD) USER S MANUAL www.kvarta.net 1 / 19 2 Portable TV Meter User Manual (LCD) Contents 1. INTRODUCTION... 3 1.1. About KVARTA... 3 1.2. About DVB...

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-1 Digital Baseband Processing EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with various types of baseband processing used in digital satellite communications.

More information

Multi-CODEC 1080P IRD Platform

Multi-CODEC 1080P IRD Platform Multi-CODEC 1080P IRD Platform RD-70 The RD-70 is a 1080P multi-codec very low latency MPEG 2 and MPEG 4 AVC/H.264 high definition IRD. The ultra-low delay mode requires the use of Adtec s EN-91 1080i,

More information

ATSC Digital Television Standard: Part 6 Enhanced AC-3 Audio System Characteristics

ATSC Digital Television Standard: Part 6 Enhanced AC-3 Audio System Characteristics ATSC Digital Television Standard: Part 6 Enhanced AC-3 Audio System Characteristics Document A/53 Part 6:2010, 6 July 2010 Advanced Television Systems Committee, Inc. 1776 K Street, N.W., Suite 200 Washington,

More information

DVB-T2 modulator design supporting multiple PLP and auxiliary streams

DVB-T2 modulator design supporting multiple PLP and auxiliary streams > BMSB-2010 - mm2010-86 < 1 DVB-T2 modulator design supporting multiple PLP and auxiliary streams Correia S., Vélez M., Prieto G., Eizmendi I., Berjon-Eriz G., Fernández C., Ordiales J.L. Abstract This

More information

COMPLICATED IN THEORY, SIMPLER IN PRACTICE

COMPLICATED IN THEORY, SIMPLER IN PRACTICE COMPLICATED IN THEORY, SIMPLER IN PRACTICE Conversion To Digital Signals Can Significantly Increase Cable Capacity In CATV And SMATV Networks. Transmodulators Are Available At Prices That Are Feasible

More information

Adtec Product Line Overview and Applications

Adtec Product Line Overview and Applications Adtec Product Line Overview and Applications Edje 4111 The edje4111hd is an all new 80 gig multi format player from Adtec with scheduling software! All Adtec products are IP addressable. This unit integrates

More information

SPECIAL SPECIFICATION :1 Video (De) Mux with Data Channel

SPECIAL SPECIFICATION :1 Video (De) Mux with Data Channel 1993 Specifications CSJ 0924-06-223 SPECIAL SPECIFICATION 1160 8:1 Video (De) Mux with Data Channel 1. Description. This Item shall govern for furnishing and installing an 8 channel digital multiplexed

More information

DIGITAL BROADCAST TEST AND MONITORING SOLUTIONS

DIGITAL BROADCAST TEST AND MONITORING SOLUTIONS Acterna DTS-100 Specs Provided by www.aaatesters.com DIGITAL BROADCAST TEST AND MONITORING SOLUTIONS THE DIGITAL BROADCASTING REVOLUTION OPPORTUNITIES FOR INCREASED REVENUE AND SERVICE-DELIVERY OPTIONS

More information

Cisco D9859 Advanced Receiver Transcoder

Cisco D9859 Advanced Receiver Transcoder Deliver MPEG-4 high-definition (HD) services to MPEG-2 cable TV (CATV) headends with the Cisco D9859 Advanced Receiver Transcoder. The Cisco D9859 platform (Figures 1 and 2) extends the distribution options

More information

Understanding Compression Technologies for HD and Megapixel Surveillance

Understanding Compression Technologies for HD and Megapixel Surveillance When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance

More information

DATUM SYSTEMS Appendix A

DATUM SYSTEMS Appendix A DATUM SYSTEMS Appendix A Datum Systems PSM-4900 Satellite Modem Technical Specification PSM-4900, 4900H and 4900L VSAT / SCPC - Modem Specification Revision History Rev 1.0 6-10-2000 Preliminary Release.

More information

Ending the Multipoint Videoconferencing Compromise. Delivering a Superior Meeting Experience through Universal Connection & Encoding

Ending the Multipoint Videoconferencing Compromise. Delivering a Superior Meeting Experience through Universal Connection & Encoding Ending the Multipoint Videoconferencing Compromise Delivering a Superior Meeting Experience through Universal Connection & Encoding C Ending the Multipoint Videoconferencing Compromise Delivering a Superior

More information

Microwave PSU Broadcast DvB Streaming Network

Microwave PSU Broadcast DvB Streaming Network Microwave PSU Broadcast DvB Streaming Network Teletechnika Ltd. is in the mainstream of telecommunication since 1990 Main profile of the company Development Manufacturing Maintenance Segments Microwave

More information

AT780PCI. Digital Video Interfacing Products. Multi-standard DVB-T2/T/C Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs

AT780PCI. Digital Video Interfacing Products. Multi-standard DVB-T2/T/C Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs Digital Video Interfacing Products AT780PCI Multi-standard DVB-T2/T/C Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs Standard Features - PCI 2.2, 32 bit, 33/66MHz 3.3V. - Bus Master DMA, Scatter

More information

Wisconsin Broadcasters Clinic Madison October 28, Wayne Luplow Chairman of the ATSC Board of Directors

Wisconsin Broadcasters Clinic Madison October 28, Wayne Luplow Chairman of the ATSC Board of Directors 1 Wisconsin Broadcasters Clinic Madison October 28, 2010 Wayne Luplow Chairman of the ATSC Board of Directors 2 Agenda Overview of ATSC Mobile DTV Non Realtime ATSC 2.0 Planning Teams 3DTV Next Generation

More information

Transmission System for ISDB-S

Transmission System for ISDB-S Transmission System for ISDB-S HISAKAZU KATOH, SENIOR MEMBER, IEEE Invited Paper Broadcasting satellite (BS) digital broadcasting of HDTV in Japan is laid down by the ISDB-S international standard. Since

More information

Digital Backbone Network Applications for Inter-City and Intra-City Regionai CATV Networks

Digital Backbone Network Applications for Inter-City and Intra-City Regionai CATV Networks Digital Backbone Network Applications for Inter-City and Intra-City Regionai CATV Networks Robert W. Harris C-COR Electronics, Inc. State College, PA Abstract This paper describes five working examples

More information

There is little wonder

There is little wonder From October 2010 High Frequency Electronics Copyright 2010 Summit Technical Media, LLC Understanding EDGE Evolution and its Measurements By Ying Jiao Agilent Technolgies, Inc. There is little wonder why

More information

Experience the Difference Of Drake Digital

Experience the Difference Of Drake Digital Experience the Difference Of Drake Digital Options for Cable Delivery of Off-Air Digital Signals QUALITY With the continued increase in the number of digital off-air transmissions as the transition to

More information

Video over the Internet Can we break the Net? CBS Interactive

Video over the Internet Can we break the Net? CBS Interactive Video over the Internet Can we break the Net? Mark Kortekaas CTO CBS Interactive mkortekaas@cbs.com IP Television From Wikipedia: IPTV (Internet Protocol Television) is a system where a digital television

More information

Canadian Broadcasting Corporation Société Radio-Canada

Canadian Broadcasting Corporation Société Radio-Canada Canadian Broadcasting Corporation Société Radio-Canada To: Director General, Telecommunications Policy Branch, Industry Canada, 16th Floor, 300 Slater Street, Ottawa, Ontario, K1A 0C8 Re: CBC/Radio-Canada

More information

Satellite Digital Broadcasting Systems

Satellite Digital Broadcasting Systems Technologies and Services of Digital Broadcasting (11) Satellite Digital Broadcasting Systems "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-01162-2) is published by CORONA

More information

4400 Modular Series with 8VSB Receiver

4400 Modular Series with 8VSB Receiver 4400 Modular Series with 8VSB Receiver Receive, Demux & Protect Broadcast Feeds with Automatic Failover Between Fiber & OTA Sources Receive and stream in IP, all major and minor channels from 8VSB broadcast

More information

Data Converters and DSPs Getting Closer to Sensors

Data Converters and DSPs Getting Closer to Sensors Data Converters and DSPs Getting Closer to Sensors As the data converters used in military applications must operate faster and at greater resolution, the digital domain is moving closer to the antenna/sensor

More information

CEDAR Series. To learn more about Ogden CEDAR series signal processing platform and modular products, please visit

CEDAR Series. To learn more about Ogden CEDAR series signal processing platform and modular products, please visit CEDAR Series The CEDAR platform has been designed to address the requirements of numerous signal processing modules. Easily-installed components simplify maintenance and upgrade. To learn more about Ogden

More information

Operation and Installation Guide

Operation and Installation Guide Operation and Installation Guide HDS2800 Series Encoder Modulator High Definition (HD) Digital COFDM MPEG2 and H.264 Modulator with IP Multicast. 19 Rack Mount Revision 4.0 Firmware version Released File

More information

Reduction of operating costs

Reduction of operating costs Broadcast and media Transmitter systems TV transmitters: the best even better Thanks to their combined features, TV transmitters from Rohde & Schwarz already had a leading position worldwide, but now they

More information

New Technologies for Premium Events Contribution over High-capacity IP Networks. By Gunnar Nessa, Appear TV December 13, 2017

New Technologies for Premium Events Contribution over High-capacity IP Networks. By Gunnar Nessa, Appear TV December 13, 2017 New Technologies for Premium Events Contribution over High-capacity IP Networks By Gunnar Nessa, Appear TV December 13, 2017 1 About Us Appear TV manufactures head-end equipment for any of the following

More information

A Unified Approach for Repairing Packet Loss and Accelerating Channel Changes in Multicast IPTV

A Unified Approach for Repairing Packet Loss and Accelerating Channel Changes in Multicast IPTV A Unified Approach for Repairing Packet Loss and Accelerating Channel Changes in Multicast IPTV Ali C. Begen, Neil Glazebrook, William Ver Steeg {abegen, nglazebr, billvs}@cisco.com # of Zappings per User

More information

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0.

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0. SM06 Advanced Composite Video Interface: HD-SDI to acvi converter module User Manual Revision 0.4 1 st May 2017 Page 1 of 26 Revision History Date Revisions Version 17-07-2016 First Draft. 0.1 28-08-2016

More information

ATSC Candidate Standard: Video Watermark Emission (A/335)

ATSC Candidate Standard: Video Watermark Emission (A/335) ATSC Candidate Standard: Video Watermark Emission (A/335) Doc. S33-156r1 30 November 2015 Advanced Television Systems Committee 1776 K Street, N.W. Washington, D.C. 20006 202-872-9160 i The Advanced Television

More information

AN EXPLORATION OF THE BENEFITS OF MIGRATION TO DIGITAL BROADCASTING

AN EXPLORATION OF THE BENEFITS OF MIGRATION TO DIGITAL BROADCASTING AN EXPLORATION OF THE BENEFITS OF MIGRATION TO DIGITAL BROADCASTING Rev. Fr. Hyacinth C. Orlu-Orlu, Ph.D. Senior Lecturer, Department of Linguistics and Communication Studies, University of Port- Harcourt,

More information

For flexible advertisement insertion configurations, this receiver provides four types of outputs:

For flexible advertisement insertion configurations, this receiver provides four types of outputs: Product Overview The Cisco PowerVu Model D9850 Program Receiver (Figure 1) is designed for satellite content distribution applications requiring 4:2:0 video decoding. The receiver can receive digitally

More information

SVP. HDR Diversity Receiver. DVB-T2/T & ISDB-T Diversity 2/4/8 Receiver. Broadcast microwave FEATURES OPTIONS APPLICATIONS

SVP. HDR Diversity Receiver. DVB-T2/T & ISDB-T Diversity 2/4/8 Receiver.   Broadcast microwave FEATURES OPTIONS APPLICATIONS HDR Diversity Receiver DVB-T2/T & ISDB-T Diversity 2/4/8 Receiver The new HDR receivers perform DVB-T2, DVB-T and ISDB-T demodulations. DVB-T2 modulation outperforms DVB-T modulation and offers a much

More information

AT660PCI. Digital Video Interfacing Products. DVB-S2/S (QPSK) Satellite Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs

AT660PCI. Digital Video Interfacing Products. DVB-S2/S (QPSK) Satellite Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs Digital Video Interfacing Products AT660PCI DVB-S2/S (QPSK) Satellite Receiver & Recorder & TS Player DVB-ASI & DVB-SPI outputs Standard Features - PCI 2.2, 32 bit, 33/66MHz 3.3V. - Bus Master DMA, Scatter

More information

HEVC H.265 TV ANALYSER

HEVC H.265 TV ANALYSER INTRODUCING THE WORLD S FIRST HEVC H.265 METER & TV ANALYSER Digital terrestrial TV is at the dawn of a new transformation driven by the need to release yet further spectrum in the so called second dividend

More information

Configuring the R&S BTC for ATSC 3.0 Application Note

Configuring the R&S BTC for ATSC 3.0 Application Note Configuring the R&S BTC for ATSC 3.0 Application Note Products: R&S BTC R&S BTC-K20 R&S BTC-K520 R&S BTC-PK520 The R&S Broadcast Test Center BTC supports the new Next Generation Broadcast Standard ATSC

More information

Course Title: SE 4C03 Winter Title of Project: Cable Modems. Name of researcher: Mohammed Kadoura

Course Title: SE 4C03 Winter Title of Project: Cable Modems. Name of researcher: Mohammed Kadoura Course Title: SE 4C03 Winter 2005 Title of Project: Cable Modems Name of researcher: Mohammed Kadoura Date of last revision: Sunday, March 27, 2005 1 1) Introduction: Cable modems are used to allow the

More information

Video System Characteristics of AVC in the ATSC Digital Television System

Video System Characteristics of AVC in the ATSC Digital Television System A/72 Part 1:2014 Video and Transport Subsystem Characteristics of MVC for 3D-TVError! Reference source not found. ATSC Standard A/72 Part 1 Video System Characteristics of AVC in the ATSC Digital Television

More information

Exploiting digital terrestrial television for the support of telelearning

Exploiting digital terrestrial television for the support of telelearning Exploiting digital terrestrial television for the support of telelearning applications C. Kokkinis, N. Zotos, C. Lampraki, A. Totomi, N. Vorniotakis University of the Aegean, Information and Communication

More information

VIDEO GRABBER. DisplayPort. User Manual

VIDEO GRABBER. DisplayPort. User Manual VIDEO GRABBER DisplayPort User Manual Version Date Description Author 1.0 2016.03.02 New document MM 1.1 2016.11.02 Revised to match 1.5 device firmware version MM 1.2 2019.11.28 Drawings changes MM 2

More information