Level and edge-sensitive behaviour

Size: px
Start display at page:

Download "Level and edge-sensitive behaviour"

Transcription

1 Level and edge-sensitive behaviour Asynchronous set/reset is level-sensitive Include set/reset in sensitivity list Put level-sensitive behaviour first: process (clock, reset) is begin if reset = '0' then Q <= '0'; elsif rising_edge (clock) then Q <= D; end if; end process;

2 Combinational Logic If a process is not edge-sensitive and it's not a latch (all executions of a process have an assignment to a signal or variable), it must be combinational logic Process sensitivity list must include all signals on the RHS of assignments or referenced in if or case statements But many synthesis tools correct this Can cause differences between simulated and synthesised behaviour Tristate logic generated by explicit assignments of 'Z'

3 Concurrent Statements Combinational logic can be modelled with concurrent statements: y <= '0' when x = '1' else '1'; Particularly useful for tristates: y <= '0' when x = '1' else 'Z'; What does this model? Q <= D when E = '1'; Or this? Q <= D when E = '1' else Q; Why is this a bad idea?

4 Synthesis Constraints Specify Design Objectives in terms of e.g. Area Clock speed Delay Constraints are (usually) not part of VHDL but are vendor-specific Use separate constraints file

5 Constraints All optimisation, in terms of meeting constraints, assumes that there is more than one way to implement a function: A B C D E C D A B D E Smaller, slower Faster, larger

6 Area Constraints Primary constraint is choice of device! Can define overall objective of synthesis to be area minimisation. This can also be done per module: define_sharing full_adder on The compiler would attempt to share resources (e.g. gates) in the full_adder.

7 State Encoding The state encoding can be specified in the VHDL: type state is (s0, s1, s2, s3); attribute enum_encoding of state: type is " "; Or as an attribute passed to the synthesis tool

8 Predefined Modules We might wish to leave parts of a design untouched by synthesis, because they are predefined modules. We can do this with: define_black_box full_adder true I/O buffers can be similarly defined

9 Clock Speed The maximum clock speed is defined by the choice of device. The desired clock speed can be set as a design objective: define_clock CLK1 -freq 20.0 Defines 20 MHz clock Objective for Synthesis AND Place and Route

10 Timing Constraints Delay 1 ns D Q Q Comb Logic Setup 1 ns D Q Q Clock Frequency is 20 MHz, Clock period is 50 ns, Max delay through Comb Logic is 48 ns

11 Timing Constraints D Q D Q Input logic Q Q Output logic External Input and Output delays can be specified: define_input_delay In Thus the maximum delay through the input logic is 39 ns

12 Delay Constraints In this (Synplify) example, the external delay of the sum signal is modelled to have a delay of 8 ns. entity four_bit_adder is port (sum: out std_logic_vector (0 to 3); co : out std_logic; a, b : in std_logic_vector (0 to 3); ci : in std_logic); end four_bit_adder; We state an objective of trying to improve this by 2 ns by optimising the input logic. define_output_delay sum 8.0 -improve 2.0 This objective is not passed to the place and route tool

13 Routing Delays Optimisation by the synthesis tool is based on statistics After place and route, design may not meet timing objectives Resynthesise to improve by 3.8 ns: define_output_delay sum route 3.8

14 Multiple Clock Cycles The specification of a clock speed assumes that in a synchronous design all combinational operations are completed within the clock period If an operation takes more than one cycle, this can be flagged: define_multicycle_path q true

15 Technology FPGAs vs ASICs FPGAs have fixed resources, ASICs are more flexible Mapping to cells is different, therefore the backend of synthesis tools is different FPGAs have a limited number (maybe none) of tristate buffers Synthesis tool may need to map tristate assignments to "standard" logic Each gate has a limited fanout May need to insert buffers

16 State Assignment Design has 10 states - how many flipflops? "One Hot" assignment (e.g. Synplify) One flip-flop per state. Exactly one flip-flop is asserted in each state: s s s etc Good for FPGAs (that have lots of flipflops) as next state logic is simple

17 Clock trees, DfT etc ASICs may need complex clock trees Generated separately Scan paths, BIST in ASICs Inserted pre- or post-layout Not necessarily part of the standard synthesis process Physical synthesis Estimate delays due to layout prior to full place and route "State of the Art" in ASIC synthesis

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer 1 P a g e HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer Objectives: Develop the behavioural style VHDL code for D-Flip Flop using gated,

More information

Flip-flop and Registers

Flip-flop and Registers ECE 322 Digital Design with VHDL Flip-flop and Registers Lecture Textbook References n Sequential Logic Review Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, 2 nd or

More information

2.6 Reset Design Strategy

2.6 Reset Design Strategy 2.6 Reset esign Strategy Many design issues must be considered before choosing a reset strategy for an ASIC design, such as whether to use synchronous or asynchronous resets, will every flipflop receive

More information

ECE 263 Digital Systems, Fall 2015

ECE 263 Digital Systems, Fall 2015 ECE 263 Digital Systems, Fall 2015 REVIEW: FINALS MEMORY ROM, PROM, EPROM, EEPROM, FLASH RAM, DRAM, SRAM Design of a memory cell 1. Draw circuits and write 2 differences and 2 similarities between DRAM

More information

Modeling Latches and Flip-flops

Modeling Latches and Flip-flops Lab Workbook Introduction Sequential circuits are digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs. In effect,

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN Assoc. Prof. Dr. Burak Kelleci Spring 2018 OUTLINE Synchronous Logic Circuits Latch Flip-Flop Timing Counters Shift Register Synchronous

More information

Synchronous Sequential Design

Synchronous Sequential Design Synchronous Sequential Design SMD098 Computation Structures Lecture 4 1 Synchronous sequential systems Almost all digital systems have some concept of state the outputs of a system depends on the past

More information

IE1204 Digital Design F11: Programmable Logic, VHDL for Sequential Circuits

IE1204 Digital Design F11: Programmable Logic, VHDL for Sequential Circuits IE1204 Digital Design F11: Programmable Logic, VHDL for Sequential Circuits Elena Dubrova KTH/ICT/ES dubrova@kth.se This lecture BV pp. 98-118, 418-426, 507-519 IE1204 Digital Design, HT14 2 Programmable

More information

IE1204 Digital Design. F11: Programmable Logic, VHDL for Sequential Circuits. Masoumeh (Azin) Ebrahimi

IE1204 Digital Design. F11: Programmable Logic, VHDL for Sequential Circuits. Masoumeh (Azin) Ebrahimi IE1204 Digital Design F11: Programmable Logic, VHDL for Sequential Circuits Masoumeh (Azin) Ebrahimi (masebr@kth.se) Elena Dubrova (dubrova@kth.se) KTH / ICT / ES This lecture BV pp. 98-118, 418-426, 507-519

More information

Lecture 23 Design for Testability (DFT): Full-Scan

Lecture 23 Design for Testability (DFT): Full-Scan Lecture 23 Design for Testability (DFT): Full-Scan (Lecture 19alt in the Alternative Sequence) Definition Ad-hoc methods Scan design Design rules Scan register Scan flip-flops Scan test sequences Overheads

More information

Feedback Sequential Circuits

Feedback Sequential Circuits Feedback Sequential Circuits sequential circuit output depends on 1. current inputs 2. past sequence of inputs current state feedback sequential circuit uses ordinary gates and feedback loops to create

More information

Asynchronous & Synchronous Reset Design Techniques - Part Deux

Asynchronous & Synchronous Reset Design Techniques - Part Deux Clifford E. Cummings Don Mills Steve Golson Sunburst Design, Inc. LCDM Engineering Trilobyte Systems cliffc@sunburst-design.com mills@lcdm-eng.com sgolson@trilobyte.com ABSTRACT This paper will investigate

More information

Digital System Design

Digital System Design Digital System Design by Dr. Lesley Shannon Email: lshannon@ensc.sfu.ca Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350 Simon Fraser University Slide Set: 8 Date: February 9, 2009 Timing

More information

Prototyping an ASIC with FPGAs. By Rafey Mahmud, FAE at Synplicity.

Prototyping an ASIC with FPGAs. By Rafey Mahmud, FAE at Synplicity. Prototyping an ASIC with FPGAs By Rafey Mahmud, FAE at Synplicity. With increased capacity of FPGAs and readily available off-the-shelf prototyping boards sporting multiple FPGAs, it has become feasible

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

TKK S ASIC-PIIRIEN SUUNNITTELU

TKK S ASIC-PIIRIEN SUUNNITTELU Design TKK S-88.134 ASIC-PIIRIEN SUUNNITTELU Design Flow 3.2.2005 RTL Design 10.2.2005 Implementation 7.4.2005 Contents 1. Terminology 2. RTL to Parts flow 3. Logic synthesis 4. Static Timing Analysis

More information

Chapter 8 Design for Testability

Chapter 8 Design for Testability 電機系 Chapter 8 Design for Testability 測試導向設計技術 2 Outline Introduction Ad-Hoc Approaches Full Scan Partial Scan 3 Design For Testability Definition Design For Testability (DFT) refers to those design techniques

More information

Tolerant Processor in 0.18 µm Commercial UMC Technology

Tolerant Processor in 0.18 µm Commercial UMC Technology The LEON-2 2 Fault- Tolerant Processor in 0.18 µm Commercial UMC Technology Microelectronics Presentation Days ESTEC, 4 5 February 2004 Roland Weigand European Space Agency Data Systems Division TOS-EDM

More information

Ryerson University Department of Electrical and Computer Engineering EES508 Digital Systems

Ryerson University Department of Electrical and Computer Engineering EES508 Digital Systems 1 P a g e Ryerson University Department of Electrical and Computer Engineering EES508 Digital Systems Lab 5 - VHDL for Sequential Circuits: Implementing a customized State Machine 15 Marks ( 2 weeks) Due

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 4.2.1: Learn More Liang Liu liang.liu@eit.lth.se 1 Outline Crossing clock domain Reset, synchronous or asynchronous? 2 Why two DFFs? 3 Crossing clock

More information

https://daffy1108.wordpress.com/2014/06/08/synchronizers-for-asynchronous-signals/

https://daffy1108.wordpress.com/2014/06/08/synchronizers-for-asynchronous-signals/ https://daffy1108.wordpress.com/2014/06/08/synchronizers-for-asynchronous-signals/ Synchronizers for Asynchronous Signals Asynchronous signals causes the big issue with clock domains, namely metastability.

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

Lecture 23 Design for Testability (DFT): Full-Scan (chapter14)

Lecture 23 Design for Testability (DFT): Full-Scan (chapter14) Lecture 23 Design for Testability (DFT): Full-Scan (chapter14) Definition Ad-hoc methods Scan design Design rules Scan register Scan flip-flops Scan test sequences Overheads Scan design system Summary

More information

ACS College of Engineering. Department of Biomedical Engineering. HDL pre lab questions ( ) Cycle-1

ACS College of Engineering. Department of Biomedical Engineering. HDL pre lab questions ( ) Cycle-1 ACS College of Engineering Department of Biomedical Engineering HDL pre lab questions (2015-2016) Cycle-1 1. What is truth table? 2. Which gates are called universal gates? 3. Define HDL? 4. What is the

More information

Chapter 6. sequential logic design. This is the beginning of the second part of this course, sequential logic.

Chapter 6. sequential logic design. This is the beginning of the second part of this course, sequential logic. Chapter 6. sequential logic design This is the beginning of the second part of this course, sequential logic. equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops

More information

11. Sequential Elements

11. Sequential Elements 11. Sequential Elements Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 11, 2017 ECE Department, University of Texas at Austin

More information

Sequential circuits. Same input can produce different output. Logic circuit. William Sandqvist

Sequential circuits. Same input can produce different output. Logic circuit. William Sandqvist Sequential circuits Same input can produce different output Logic circuit If the same input may produce different output signal, we have a sequential logic circuit. It must then have an internal memory

More information

Overview: Logic BIST

Overview: Logic BIST VLSI Design Verification and Testing Built-In Self-Test (BIST) - 2 Mohammad Tehranipoor Electrical and Computer Engineering University of Connecticut 23 April 2007 1 Overview: Logic BIST Motivation Built-in

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Unit 11. Latches and Flip-Flops

Unit 11. Latches and Flip-Flops Unit 11 Latches and Flip-Flops 1 Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs. For n input variables,

More information

Lab 3: VGA Bouncing Ball I

Lab 3: VGA Bouncing Ball I CpE 487 Digital Design Lab Lab 3: VGA Bouncing Ball I 1. Introduction In this lab, we will program the FPGA on the Nexys2 board to display a bouncing ball on a 640 x 480 VGA monitor connected to the VGA

More information

Modeling Latches and Flip-flops

Modeling Latches and Flip-flops Lab Workbook Introduction Sequential circuits are the digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs.

More information

Laboratory Exercise 7

Laboratory Exercise 7 Laboratory Exercise 7 Finite State Machines This is an exercise in using finite state machines. Part I We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied

More information

EE178 Spring 2018 Lecture Module 5. Eric Crabill

EE178 Spring 2018 Lecture Module 5. Eric Crabill EE178 Spring 2018 Lecture Module 5 Eric Crabill Goals Considerations for synchronizing signals Clocks Resets Considerations for asynchronous inputs Methods for crossing clock domains Clocks The academic

More information

Sequential Circuit Design: Principle

Sequential Circuit Design: Principle Sequential Circuit Design: Principle modified by L.Aamodt 1 Outline 1. 2. 3. 4. 5. 6. 7. 8. Overview on sequential circuits Synchronous circuits Danger of synthesizing asynchronous circuit Inference of

More information

Using on-chip Test Pattern Compression for Full Scan SoC Designs

Using on-chip Test Pattern Compression for Full Scan SoC Designs Using on-chip Test Pattern Compression for Full Scan SoC Designs Helmut Lang Senior Staff Engineer Jens Pfeiffer CAD Engineer Jeff Maguire Principal Staff Engineer Motorola SPS, System-on-a-Chip Design

More information

Outline. CPE/EE 422/522 Advanced Logic Design L04. Review: 8421 BCD to Excess3 BCD Code Converter. Review: Mealy Sequential Networks

Outline. CPE/EE 422/522 Advanced Logic Design L04. Review: 8421 BCD to Excess3 BCD Code Converter. Review: Mealy Sequential Networks Outline PE/EE 422/522 Advanced Logic Design L4 Electrical and omputer Engineering University of Alabama in Huntsville What we know ombinational Networks Analysis, Synthesis, Simplification, Hazards, Building

More information

Universal Asynchronous Receiver- Transmitter (UART)

Universal Asynchronous Receiver- Transmitter (UART) Universal Asynchronous Receiver- Transmitter (UART) (UART) Block Diagram Four-Bit Bidirectional Shift Register Shift Register Counters Shift registers can form useful counters by recirculating a pattern

More information

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98 More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 98 Review: Bit Storage SR latch S (set) Q R (reset) Level-sensitive SR latch S S1 C R R1 Q D C S R D latch Q

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

EE 447/547 VLSI Design. Lecture 9: Sequential Circuits. VLSI Design EE 447/547 Sequential circuits 1

EE 447/547 VLSI Design. Lecture 9: Sequential Circuits. VLSI Design EE 447/547 Sequential circuits 1 EE 447/547 VLSI esign Lecture 9: Sequential Circuits Sequential circuits 1 Outline Floorplanning Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking Sequential

More information

Last time, we saw how latches can be used as memory in a circuit

Last time, we saw how latches can be used as memory in a circuit Flip-Flops Last time, we saw how latches can be used as memory in a circuit Latches introduce new problems: We need to know when to enable a latch We also need to quickly disable a latch In other words,

More information

Design for Testability

Design for Testability TDTS 01 Lecture 9 Design for Testability Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 9 The test problems Fault modeling Design for testability techniques Zebo Peng, IDA, LiTH

More information

Combinational / Sequential Logic

Combinational / Sequential Logic Digital Circuit Design and Language Combinational / Sequential Logic Chang, Ik Joon Kyunghee University Combinational Logic + The outputs are determined by the present inputs + Consist of input/output

More information

CAD for VLSI Design - I Lecture 38. V. Kamakoti and Shankar Balachandran

CAD for VLSI Design - I Lecture 38. V. Kamakoti and Shankar Balachandran 1 CAD for VLSI Design - I Lecture 38 V. Kamakoti and Shankar Balachandran 2 Overview Commercial FPGAs Architecture LookUp Table based Architectures Routing Architectures FPGA CAD flow revisited 3 Xilinx

More information

California State University, Bakersfield Computer & Electrical Engineering & Computer Science ECE 3220: Digital Design with VHDL Laboratory 7

California State University, Bakersfield Computer & Electrical Engineering & Computer Science ECE 3220: Digital Design with VHDL Laboratory 7 California State University, Bakersfield Computer & Electrical Engineering & Computer Science ECE 322: Digital Design with VHDL Laboratory 7 Rational: The purpose of this lab is to become familiar in using

More information

Digital Circuits and Systems

Digital Circuits and Systems Spring 2015 Week 6 Module 33 Digital Circuits and Systems Timing Sequential Circuits Shankar Balachandran* Associate Professor, CSE Department Indian Institute of Technology Madras *Currently a Visiting

More information

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited April 2, 2013 John Wawrzynek Spring 2013 EECS150 - Lec19-fsm Page 1 Finite State Machines (FSMs) FSM circuits are a type of sequential

More information

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements EECS150 - Digital Design Lecture 15 Finite State Machines October 18, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Lecture 10: Sequential Circuits

Lecture 10: Sequential Circuits Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 1 Outline Floorplanning Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time

More information

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs ECEN454 igital Integrated Circuit esign Sequential Circuits ECEN 454 Combinational logic Sequencing Output depends on current inputs Sequential logic Output depends on current and previous inputs Requires

More information

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043 EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP Due 16.05. İLKER KALYONCU, 10043 1. INTRODUCTION: In this project we are going to design a CMOS positive edge triggered master-slave

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both).

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). 1 The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop when the clock pulse occurs

More information

VHDL 4 BUILDING BLOCKS OF A COMPUTER.

VHDL 4 BUILDING BLOCKS OF A COMPUTER. 1 VHDL 4 BUILDING BLOCKS OF A COMPUTER http://www.cse.cuhk.edu.hk/~mcyang/teaching.html 2 We will learn Combinational circuit and sequential circuit Building blocks of a computer Control units are state

More information

Flip-Flops and Registers

Flip-Flops and Registers The slides included herein were taken from the materials accompanying Fundamentals of Logic Design, 6 th Edition, by Roth and Kinney, and were used with permission from Cengage Learning. Flip-Flops and

More information

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review September 1, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

EE178 Lecture Module 4. Eric Crabill SJSU / Xilinx Fall 2005

EE178 Lecture Module 4. Eric Crabill SJSU / Xilinx Fall 2005 EE178 Lecture Module 4 Eric Crabill SJSU / Xilinx Fall 2005 Lecture #9 Agenda Considerations for synchronizing signals. Clocks. Resets. Considerations for asynchronous inputs. Methods for crossing clock

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential Circuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking Clocked inverters James Morizio 1 Sequential Logic FFs

More information

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay)  CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 7 (07 Feb 2008) 1 Announcement 2 1 Combinational vs. Sequential Logic Combinational Logic Memoryless Outputs

More information

ECE 3401 Lecture 11. Sequential Circuits

ECE 3401 Lecture 11. Sequential Circuits EE 3401 Lecture 11 Sequential ircuits Overview of Sequential ircuits Storage Elements Sequential circuits Storage elements: Latches & Flip-flops Registers and counters ircuit and System Timing Sequential

More information

Lecture 11: Sequential Circuit Design

Lecture 11: Sequential Circuit Design Lecture 11: Sequential Circuit esign Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing q Two-Phase Clocking 2 Sequencing q Combinational logic output depends

More information

Lecture 6: Simple and Complex Programmable Logic Devices. EE 3610 Digital Systems

Lecture 6: Simple and Complex Programmable Logic Devices. EE 3610 Digital Systems EE 3610: Digital Systems 1 Lecture 6: Simple and Complex Programmable Logic Devices MEMORY 2 Volatile: need electrical power Nonvolatile: magnetic disk, retains its stored information after the removal

More information

D Latch (Transparent Latch)

D Latch (Transparent Latch) D Latch (Transparent Latch) -One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential ircuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking locked inverters Krish hakrabarty 1 Sequential Logic FFs

More information

6.S084 Tutorial Problems L05 Sequential Circuits

6.S084 Tutorial Problems L05 Sequential Circuits Preamble: Sequential Logic Timing 6.S084 Tutorial Problems L05 Sequential Circuits In Lecture 5 we saw that for D flip-flops to work correctly, the flip-flop s input should be stable around the rising

More information

System IC Design: Timing Issues and DFT. Hung-Chih Chiang

System IC Design: Timing Issues and DFT. Hung-Chih Chiang System IC esign: Timing Issues and FT Hung-Chih Chiang Outline SoC Timing Issues Timing terminologies Synchronous vs. asynchronous design Interfaces and timing closure Clocking issues Reset esign for Testability

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 igital Circuits ECS 371 r. Prapun Suksompong prapun@siit.tu.ac.th Lecture 17 Office Hours: BK 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30 1 Announcement Reading Assignment: Chapter 7: 7-1,

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

MUX AND FLIPFLOPS/LATCHES

MUX AND FLIPFLOPS/LATCHES MUX AN FLIPFLOPS/LATCHES BY: SURESH BALPANE Multiplexers 2:1 multiplexer chooses between two inputs S 1 0 Y 0 X 0 0 0 0 0 X 1 1 1 0 X 0 1 1 X 1 1 1 S Y @BALPANECircuits and Slide 2 Gate-Level Mux esign

More information

Digital Circuit And Logic Design I. Lecture 8

Digital Circuit And Logic Design I. Lecture 8 Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Analysis Panupong Sornkhom, 2005/2

More information

VARIABLE FREQUENCY CLOCKING HARDWARE

VARIABLE FREQUENCY CLOCKING HARDWARE VARIABLE FREQUENCY CLOCKING HARDWARE Variable-Frequency Clocking Hardware Many complex digital systems have components clocked at different frequencies Reason 1: to reduce power dissipation The active

More information

Digital Circuit And Logic Design I

Digital Circuit And Logic Design I Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Panupong Sornkhom, 2005/2 2 1 Sequential

More information

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits Software Engineering 2DA4 Slides 9: Asynchronous Sequential Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) Field Programmable Gate Arrays (FPGAs) Introduction Simulations and prototyping have been a very important part of the electronics industry since a very long time now. Before heading in for the actual

More information

Section 6.8 Synthesis of Sequential Logic Page 1 of 8

Section 6.8 Synthesis of Sequential Logic Page 1 of 8 Section 6.8 Synthesis of Sequential Logic Page of 8 6.8 Synthesis of Sequential Logic Steps:. Given a description (usually in words), develop the state diagram. 2. Convert the state diagram to a next-state

More information

ECE 3401 Lecture 12. Sequential Circuits (II)

ECE 3401 Lecture 12. Sequential Circuits (II) EE 34 Lecture 2 Sequential ircuits (II) Overview of Sequential ircuits Storage Elements Sequential circuits Storage elements: Latches & Flip-flops Registers and counters ircuit and System Timing Sequential

More information

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6. - Introductory Digital Systems Laboratory (Spring 006) Laboratory - Introduction to Digital Electronics

More information

Why FPGAs? FPGA Overview. Why FPGAs?

Why FPGAs? FPGA Overview. Why FPGAs? Transistor-level Logic Circuits Positive Level-sensitive EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 28, 2003 John Wawrzynek Transistor Level clk clk clk Positive

More information

CPE/EE 427, CPE 527 VLSI Design I Sequential Circuits. Sequencing

CPE/EE 427, CPE 527 VLSI Design I Sequential Circuits. Sequencing CPE/EE 427, CPE 527 VLSI esign I Sequential Circuits epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) Combinational

More information

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M CSE-4523 Latches and Flip-flops Dr. Izadi NOR gate property: A B Z A B Z Cross coupled NOR gates: S M S R M R S M R S R S R M S S M R R S ' Gate R Gate S R S G R S R (t+) S G R Flip_flops:. S-R flip-flop

More information

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2002 4/5/02 Midterm Exam II Name: Solutions ID number:

More information

CSCB58 - Lab 4. Prelab /3 Part I (in-lab) /1 Part II (in-lab) /1 Part III (in-lab) /2 TOTAL /8

CSCB58 - Lab 4. Prelab /3 Part I (in-lab) /1 Part II (in-lab) /1 Part III (in-lab) /2 TOTAL /8 CSCB58 - Lab 4 Clocks and Counters Learning Objectives The purpose of this lab is to learn how to create counters and to be able to control when operations occur when the actual clock rate is much faster.

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory. National Central University

Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory. National Central University Chapter 3 Basics of VLSI Testing (2) Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory Department of Electrical Engineering National Central University Jhongli, Taiwan Outline Testing Process Fault

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

Spartan-II Development System

Spartan-II Development System 2002-May-4 Introduction Dünner Kirchweg 77 32257 Bünde Germany www.trenz-electronic.de The Spartan-II Development System is designed to provide a simple yet powerful platform for FPGA development, which

More information

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Introduction to Sequential Circuits

Introduction to Sequential Circuits Introduction to Sequential Circuits COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Introduction to Sequential Circuits Synchronous

More information

FSM Implementations. TIE Logic Synthesis Arto Perttula Tampere University of Technology Fall Output. Input. Next. State.

FSM Implementations. TIE Logic Synthesis Arto Perttula Tampere University of Technology Fall Output. Input. Next. State. FSM Implementations TIE-50206 Logic Synthesis Arto Perttula Tampere University of Technology Fall 2016 Input Next State Current state Output Moore Acknowledgements Prof. Pong P. Chu provided official slides

More information

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response nmos transistor asics of VLSI Design and Test If the gate is high, the switch is on If the gate is low, the switch is off Mohammad Tehranipoor Drain ECE495/695: Introduction to Hardware Security & Trust

More information

Sequentielle Schaltelemente

Sequentielle Schaltelemente equentielle chaltelemente Grundlagen der technischen Informatik Folien basierend auf F. Vahid und. Werner Review - Ranges for logical values Low: signal must be smaller than the upper border of the Low

More information

Registers and Counters

Registers and Counters Registers and Counters A register is a group of flip-flops which share a common clock An n-bit register consists of a group of n flip-flops capable of storing n bits of binary information May have combinational

More information

K.T. Tim Cheng 07_dft, v Testability

K.T. Tim Cheng 07_dft, v Testability K.T. Tim Cheng 07_dft, v1.0 1 Testability Is concept that deals with costs associated with testing. Increase testability of a circuit Some test cost is being reduced Test application time Test generation

More information

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43 Testability: Lecture 23 Design for Testability (DFT) Shaahin hi Hessabi Department of Computer Engineering Sharif University of Technology Adapted, with modifications, from lecture notes prepared p by

More information

COMPUTER ENGINEERING PROGRAM

COMPUTER ENGINEERING PROGRAM COMPUTER ENGINEERING PROGRAM California Polytechnic State University CPE 169 Experiment 6 Introduction to Digital System Design: Combinational Building Blocks Learning Objectives 1. Digital Design To understand

More information

0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 1 Stop bits. 11-bit Serial Data format

0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 1 Stop bits. 11-bit Serial Data format Applications of Shift Registers The major application of a shift register is to convert between parallel and serial data. Shift registers are also used as keyboard encoders. The two applications of the

More information

FPGA Design. Part I - Hardware Components. Thomas Lenzi

FPGA Design. Part I - Hardware Components. Thomas Lenzi FPGA Design Part I - Hardware Components Thomas Lenzi Approach We believe that having knowledge of the hardware components that compose an FPGA allow for better firmware design. Being able to visualise

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. Homework #8 due next Tuesday. Project Phase 3 plan due this Sat.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. Homework #8 due next Tuesday. Project Phase 3 plan due this Sat. EE141-Fall 2010 Digital Integrated Circuits Lecture 24 Timing 1 1 Announcements Homework #8 due next Tuesday Project Phase 3 plan due this Sat. Hanh-Phuc s extra office hours shifted next week Tues. 3-4pm

More information

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states.

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. 1 The length of time the clock is high before changing states is its

More information