POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES

Size: px
Start display at page:

Download "POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES"

Transcription

1 Volume 115 No , ISSN: (printed version); ISSN: (on-line version) url: ijpam.eu POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES K Hari Kishore 1, Fazal Noor Basha 2, V Krishna Priya 3, G Prashanth Kumar 4,NLV Krishna Rao 5 1,2,3,4,5 Department of ECE, K L University, Vaddeswaram, Guntur, A.P, India 1 Kakarla.harikishore@kluniversity.in, 3 krishnapriya.varanasi95@gmail.com, 4 prasanthkumar7 93@gmail.com, 5 leelaveerakrishna369@gmail.com. Abstract: The following paper deals with power and area efficient LFSR with pulsed latches. The LFSR uses a large number of flip-flops which consume high amount of power. To reduce this power consumption pulsed latches are used in the place of flipflops. The delayed pulsed clocks are used to reduce the timing issues of pulsed latches. The LFSR of higher order are divided into sub-groups for the reduction of the number of pulsed clock generators. A 4-bit LFSR and an 8-bit LFSR of 0.18um CMOS process with Vdd = 5v is designed. The power consumption and area consumption are compared between the 4-bit and 8-bit LFSR and analysis is given in this paper. Index Terms: low power, area-efficient, pulsed latch, LFSR. 1. Introduction A LSFR is an important block of VLSI circuits. It is mainly used in the testing and fault detection circuits. These are mainly used in circuit testing processes like signature analysis and test pattern generation and also random pattern generation. The LFSR has a wide range of applications which need higher order circuits which take up to 256 bit LFSR. This large size LFSR need lager number of flipflops and consumes a lot of power. The main issue of large size LFSR is powerconsumption and area efficiency. The architecture of LFSR is very simple. For any N-bit LFSR it requires N number of flip-flops and Ex-Or gates are taken as per the polynomial equation chosen for the circuit. The polynomial equation plays an important role in the pattern generation. For a large range of patterns one need to take a suitable polynomial. The Ex-Or gates are responsible for the test pattern generation. These gates are used in the feedback of the circuit. Figure 1. Master-Slave flip-flop Pulsed Latch. The following paper proposes area efficient and power efficient LFSR. For the reduction of the power consumption, pulsed latches are used in the place of flip-flops. The delayed pulsed clocks are used to reduce the timing issues of pulsed latches. The LFSR of higher order are divided into sub-groups for the reduction of the number of pulsed clock generators. The remaining paper is arranged as the following: Section 2 gives the detailed explanation of the proposed circuit architecture. Section 3 deals with calculations and comparisons of proposed circuit. Section 4 draws the conclusions. A. Proposed LFSR 2. Architecture Two latches are used by a master slave flipflop for proper working as shown in above figure 1.. This is replaced with pulsed latch with continuous latch and delayed clock signal as shown in figure 1.. In the suggested system pulsed latches would take the pulsed 447

2 clock signal from the pulsed clock generation circuit. Therefore by usage of the pulsed latch the power and area consumption becomes half which is perfect and finest solution for the necessity of the power and area optimization. The LFSR cannot use the pulsed latch because of its problem in timing analysis, which is shown in figure (2). The LFSR contains numerous latches and pulsed clock signals. The obtained response in waveform shown in figure (2) shows timing problems results in the LFSR. Since input signal for the first latch is consistent during the pulsed clock width then the output of first latch-q1 changes correctly. The output signal Q2 of the 2 nd latch is ambivalent as the input signal Q1 alters during clock pulsed width. The timing problem has only one alternative that is to add delay circuits amid the latches. The first latch output signal is delayed which then reaches next latch to the end of the clock pulse. The output signals of 1 st and 2 nd latch which are Q1 and Q2 changes along the pulsed clock width which is presented in figure 3, but 2 nd and 3 rd latches (D2 and D3) input signals remain the same as the output signals form the 1 st and 2 nd latches (Q1 and Q2) after clock pulse. Hence all the latches have continual input signals during the clock pulse, but there is no timing problem that occurs amid the latches. Figure 3. LFSR with delayed pulsed clock signal waveforms. However, delay circuits imbibe much overheads with respect to power and area. One more alternative for this problem is to utilize numerous non-overlap delayed pulsed clock signals, as shown in figure 4. The pulsed clock signals which are delayed will be produced, when clock pulse signal passes through the delayed circuits. The delayed clock pulse used in next latch is utilized by the present latch. Therefore, the data of each latch renews after updating the data by its next latch. By this, each and every latch will be having a consistent input all along its clock pulse cycle and timing problem will not be occurred amid the latches. As the size increases, the circuit requires numerous delayed circuits. In figure 4, the timing diagram shows the delayed clock pulse signal passes through the delay circuits. Each latch utilizes a clock pulse signal which has been delayed by clock pulse signal which has been utilized by its next latch. By this every latch modifies the data after its next latch renews the data. Figure 2. LFSR with pulsed clock signal waveforms. Figure 4. LFSR with delayed pulsed clock signals and latches. Schematic Waveforms. 3. Simulation results 448

3 The following results are the simulation results obtained by implementing the circuit using Tanner EDA tool. The simulation is carried on 4-bit LFSR and 8- bit LFSR. The power calculations are done through tanner tool and area calculations are done by Verilog HDL. A. 4-Bit Linear Feedback Shift Register Figure 7. Power consumption of 4-bit LFSR using flip-flop pulsed latches The 4-bit LFSR is simulated by using both flip-flop and pulsed latches. The power consumed by both the circuits throughout the simulation is plotted and the average of the power consumption is calculated. B. 8-Bit Linear Feedback Shift Register Figure 5. 4-Bit LSFR using Flip-flops Pulsed latches Figure 6. 8-Bit LSFR using Flip-flops Pulsed latches 449

4 Figure 8. Power consumption of 8-bit LFSR using flip-flop pulsed latches Table 1:performance comparison of LFSRs results are between conventional LFSRs and proposed LFSRs. References [1] A 10-bit column-driver IC with parasitic-insensitive iterative charge-sharing based capacitor-string interpolation for mobile active-matrix LCDs, IEEE J. Solid- State Circuits, vol. 49, no.3, pp , Mar-2014 by H.S.Kim, J.H.Yang, S.H.Park, S.T.Ryu, and G.H.Cho. [2] Flow-through latch and edge-triggered flip-flop hybrid elements, IEEE Int. Solid- State Circuits Conference. (ISSCC) Dig. Tech. Papers, pp , Feb-1996 by H.Partovi. [3] Conditional push-pull pulsed latch with 726 fjops energy delay product in 65 nm CMOS, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, Feb-2012, pp by E.Consoli, M.Alioto, G.Palumbo, and J.Rabaey. The 8-bit LFSR is simulated by using both flip-flop and pulsed latches. The power consumed by both the circuits throughout the simulation is plotted and the average of the power consumption is calculated. 4. Conclusion This paper suggested an area and power efficient LFSR by utilizing pulsed latches. The LFSR lessens the power and area consumption by utilizing the pulsed latches instead of flip-flops which is used in present existing system. The timing problem amid the pulsed latches is resolved utilizing numerous nonoverlapped delayed pulsed clock signals using as an alternative for a single pulsed clock signal. As the size of the LFSR increases the power consumption can be reduced but the area consumption is not much decreased. The simulation results are theoretical and they can alter when simulated practically. These comparative [4] Comparative analysis of master-slave latches and flip-flops for high-performance and low-power systems, in IEEE J. Solid- State Circuits, volume. 34, no.4, pp in Apr-1999 by V.Stojanovic and V.Oklobdzija. [5] A 9.7 mw AAC-decoding, 620 mw H p 60fps decoding, 8-core media processor with embedded forward bodybiasing and power-gating circuit in 65 nm CMOS technology, in IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, Feb-2008, pp by S. Nomura. [6] 6.33 mw MPEG audio decoding on a multimedia processor, in IEEE Int. Solid- StateCircuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp by Y. Ueda. [7] Conditional-capture flip-flop for statistical power reduction, IEEE J. Solid- State Circuits, vol. 36, pp , Aug. 450

5 2001 by B.-S. Kong, S.-S. Kim, and Y.-H. Jun. [8] Implementation of Pulsed Latch and PulsedRegister Circuits to Minimize Clocking Power, /11/$26.00, 2011 by Seungwhun Paik, GiJoon Nam,Youngsoo Shin. [9] Design and Analysis of a Linear Feedback Shift Register with Reduced Leakage Power International Journal of Computer Applications ( ) Volume 56 No.14, Oct-2012 by ] M. Janaki Rani,S. Malarkkan. [10] New Protection Techniques against SEUs formoving Average Filters in a Radiation Environment IEEE transactions on Nuclear science by P. Reyes, P. Reviriego. [11] Front end Design of shift registers using latches, International Research Journal ofengineering and Technology (IRJET) Volume: 03 Issue no: 05, May by N.Nikitha, Pramod Mutalik. [12] T. Padmapriya and V. Saminadan, Priority based fair resource allocation and Admission Control Technique for Multi-user Multi-class downlink Traffic in LTE- Advanced Networks, International Journal of Advanced Research, vol.5, no.1, pp , January

6 452

An FPGA Implementation of Shift Register Using Pulsed Latches

An FPGA Implementation of Shift Register Using Pulsed Latches An FPGA Implementation of Shift Register Using Pulsed Latches Shiny Panimalar.S, T.Nisha Priscilla, Associate Professor, Department of ECE, MAMCET, Tiruchirappalli, India PG Scholar, Department of ECE,

More information

Reduction of Area and Power of Shift Register Using Pulsed Latches

Reduction of Area and Power of Shift Register Using Pulsed Latches I J C T A, 9(13) 2016, pp. 6229-6238 International Science Press Reduction of Area and Power of Shift Register Using Pulsed Latches Md Asad Eqbal * & S. Yuvaraj ** ABSTRACT The timing element and clock

More information

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18532-18540 Pulsed Latches Methodology to Attain Reduced Power and Area Based

More information

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH 1 Kalaivani.S, 2 Sathyabama.R 1 PG Scholar, 2 Professor/HOD Department of ECE, Government College of Technology Coimbatore,

More information

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems IJECT Vo l. 7, Is s u e 2, Ap r i l - Ju n e 2016 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power

More information

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

Low-Power and Area-Efficient Shift Register Using Pulsed Latches Low-Power and Area-Efficient Shift Register Using Pulsed Latches G.Sunitha M.Tech, TKR CET. P.Venkatlavanya, M.Tech Associate Professor, TKR CET. Abstract: This paper proposes a low-power and area-efficient

More information

ISSN Vol.08,Issue.24, December-2016, Pages:

ISSN Vol.08,Issue.24, December-2016, Pages: ISSN 2348 2370 Vol.08,Issue.24, December-2016, Pages:4666-4671 www.ijatir.org Design and Analysis of Shift Register using Pulse Triggered Latches N. NEELUFER 1, S. RAMANJI NAIK 2, B. SURESH BABU 3 1 PG

More information

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register International Journal for Modern Trends in Science and Technology Volume: 02, Issue No: 10, October 2016 http://www.ijmtst.com ISSN: 2455-3778 Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift

More information

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Low Power and Area Efficient 256-bit Shift Register based on Pulsed es K.V.Janardhan 1,

More information

Design of Low Power and Area Efficient 64 Bits Shift Register Using Pulsed Latches

Design of Low Power and Area Efficient 64 Bits Shift Register Using Pulsed Latches Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 11, Number 7 (2018) pp. 555-560 Research India Publications http://www.ripublication.com Design of Low Power and Area Efficient 64

More information

Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner

Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner Mr. T. Immanuel 1 Sudhakara Babu Oja 2 1Associate Professor, Department of ECE, SVR Engineering College, Nandyal. 2PG Scholar, Department

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 440-448 Open Access Journal Design of 8-Bit Shift

More information

LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES

LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES Mr. Nat Raj M.Tech., (Ph.D) Associate Professor ECE Department ST.Mary s College Of Engineering and Technology(Formerly ASEC),Patancheru

More information

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Divya shree.m 1, H. Venkatesh kumar 2 PG Student, Dept. of ECE, Nagarjuna College of Engineering

More information

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online:

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online: LOW POWER SHIFT REGISTERS USING CLOCK GATING TECHNIQUE #1 G.SHIREESHA, M.Tech student, #2 T.NAGESWARRAO, Assistant Professor, #3 S.NAGESWARA RAO, Assistant Professor, Dept of ECE, SRI VENKATESWARA ENGINEERING

More information

SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION

SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION Muthusuriya.M 1, Shantha Devi.P 2, Poongodi.M 3 Gayathiri.G 4 1 PG Scholar, Department of ECE, Theni Kammavar

More information

2. Conventional method 1 Shift register using PPCFF

2. Conventional method 1 Shift register using PPCFF proposed method is compared with the two conventional methods of shift registers. In one of the conventional metho designed by using PPCFF (Power-PC style flip-flop).the flip-flop based shift register

More information

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch 1 D. Sandhya Rani, 2 Maddana, 1 PG Scholar, Dept of VLSI System Design, Geetanjali college of engineering & technology, 2 Hod

More information

ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION

ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION Nandhini.G.S 1, PG Student, Dept. of ECE, Shree Venkateshwara Hi-Tech Engineering College,

More information

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY 2 G.SRIHARI 1 ajaymunagala.ajay@gmail.com 2 srihari.nan@gmail.com 1 PG Scholar,Dept of ECE, Sreenivasa Institute of Technology and Management

More information

Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area

Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area Nandhini.N 1,Murugasami.R 2 1 PG Scholar,Nandha Engineering college,erode,india 2 Associate Professor,Nandha Engineering

More information

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop 1 S.Mounika & 2 P.Dhaneef Kumar 1 M.Tech, VLSIES, GVIC college, Madanapalli, mounikarani3333@gmail.com

More information

Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches

Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches Syed Zaheer Ahamed VLSI (M.Tech), VIF College of Engineering & Technology. ABSTRACT: This paper proposes a low-power and area-efficient

More information

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications N.KIRAN 1, K.AMARNATH 2 1 P.G Student, VRS & YRN College of Engineering & Technology, Vodarevu Road, Chirala 2 HOD & Professor,

More information

ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES

ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES #1G.N.P.JYOTHI,PG Scholar, Dept of ECE (VLSID), Sri Sunflower College of Engineering and Technology, Lankapalli, (A.P),INDIA.

More information

A Power Efficient Flip Flop by using 90nm Technology

A Power Efficient Flip Flop by using 90nm Technology A Power Efficient Flip Flop by using 90nm Technology Mrs. Y. Lavanya Associate Professor, ECE Department, Ramachandra College of Engineering, Eluru, W.G (Dt.), A.P, India. Email: lavanya.rcee@gmail.com

More information

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

data and is used in digital networks and storage devices. CRC s are easy to implement in binary Introduction Cyclic redundancy check (CRC) is an error detecting code designed to detect changes in transmitted data and is used in digital networks and storage devices. CRC s are easy to implement in

More information

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS NINU ABRAHAM 1, VINOJ P.G 2 1 P.G Student [VLSI & ES], SCMS School of Engineering & Technology, Cochin,

More information

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE OI: 10.21917/ijme.2018.0088 LOW POWER AN HIGH PERFORMANCE SHIFT REGISTERS USING PULSE LATCH TECHNIUE Vandana Niranjan epartment of Electronics and Communication Engineering, Indira Gandhi elhi Technical

More information

Design of Shift Register Using Pulse Triggered Flip Flop

Design of Shift Register Using Pulse Triggered Flip Flop Design of Shift Register Using Pulse Triggered Flip Flop Kuchanpally Mounika M.Tech [VLSI], CMR Institute of Technology, Kandlakoya, Medchal, Hyderabad, India. G.Archana Devi Assistant Professor, CMR Institute

More information

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 6, Ver. II (Nov - Dec.2015), PP 40-50 www.iosrjournals.org Design of a Low Power

More information

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops A.Abinaya *1 and V.Priya #2 * M.E VLSI Design, ECE Dept, M.Kumarasamy College of Engineering, Karur, Tamilnadu, India # M.E VLSI

More information

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop Sumant Kumar et al. 2016, Volume 4 Issue 1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Improve Performance of Low-Power

More information

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance Novel Low Power and Low Transistor Count Flip-Flop Design with High Performance Imran Ahmed Khan*, Dr. Mirza Tariq Beg Department of Electronics and Communication, Jamia Millia Islamia, New Delhi, India

More information

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique Priyanka

More information

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online:

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online: ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING PULSED LATCH #1 GUNTI SUMANJALI, M.Tech Student, #2 V.SRIDHAR, Assistant Professor, Dept of ECE, MOTHER THERESSA COLLEGE OF ENGINEERING &

More information

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register Design of Low Power and Area Efficient Pulsed Latch Based Shift Register 1 ANUSHA KORE, 2 Dr. S.A.MUZEER Department of ECE Megha Institute of Engineering & Technology For women s Edulabad, Ghatkesar mandal,

More information

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME Mr.N.Vetriselvan, Assistant Professor, Dhirajlal Gandhi College of Technology Mr.P.N.Palanisamy,

More information

Power Optimization of Linear Feedback Shift Register (LFSR) using Power Gating

Power Optimization of Linear Feedback Shift Register (LFSR) using Power Gating Power Optimization of Linear Feedback Shift Register (LFSR) using Rebecca Angela Fernandes 1, Niju Rajan 2 1Student, Dept. of E&C Engineering, N.M.A.M Institute of Technology, Karnataka, India 2Assistant

More information

Power Optimization by Using Multi-Bit Flip-Flops

Power Optimization by Using Multi-Bit Flip-Flops Volume-4, Issue-5, October-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Page Number: 194-198 Power Optimization by Using Multi-Bit Flip-Flops D. Hazinayab 1, K.

More information

Modified Ultra-Low Power NAND Based Multiplexer and Flip-Flop

Modified Ultra-Low Power NAND Based Multiplexer and Flip-Flop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 06 December 2015 ISSN (online): 2349-784X Modified Ultra-Low Power NAND Based Multiplexer and Flip-Flop Amit Saraswat Chanpreet

More information

Design of an Efficient Low Power Multi Modulus Prescaler

Design of an Efficient Low Power Multi Modulus Prescaler International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 6, Issue 3 (March 2013), PP. 15-22 Design of an Efficient Low Power Multi Modulus

More information

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. Ajay, 2 G.Srihari, 1 PG Scholar,Dept of ECE, Sreenivasa Institute of Technology and Management Studies (Autonomous) Murkambattu, Chittoor,

More information

Low Power D Flip Flop Using Static Pass Transistor Logic

Low Power D Flip Flop Using Static Pass Transistor Logic Low Power D Flip Flop Using Static Pass Transistor Logic 1 T.SURIYA PRABA, 2 R.MURUGASAMI PG SCHOLAR, NANDHA ENGINEERING COLLEGE, ERODE, INDIA Abstract: Minimizing power consumption is vitally important

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 5, May 2014, pg.210

More information

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Figure.1 Clock signal II. SYSTEM ANALYSIS

Figure.1 Clock signal II. SYSTEM ANALYSIS International Journal of Advances in Engineering, 2015, 1(4), 518-522 ISSN: 2394-9260 (printed version); ISSN: 2394-9279 (online version); url:http://www.ijae.in RESEARCH ARTICLE Multi bit Flip-Flop Grouping

More information

Minimization of Power for the Design of an Optimal Flip Flop

Minimization of Power for the Design of an Optimal Flip Flop Minimization of Power for the Design of an Optimal Flip Flop Kahkashan Ali #1, Tarana Afrin Chandel #2 #1 M.TECH Student, #2 Associate Professor, 1,2 Department of ECE, Integral University, Lucknow, INDIA

More information

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP S.BANUPRIYA 1, R.GOWSALYA 2, M.KALEESWARI 3, B.DHANAM 4 1, 2, 3 UG Scholar, 4 Asst.Professor/ECE 1, 2, 3, 4 P.S.R.RENGASAMY

More information

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY Ms. Chaitali V. Matey 1, Ms. Shraddha K. Mendhe 2, Mr. Sandip A.

More information

Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme

Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme Ch.Sreedhar 1, K Mariya Priyadarshini 2. Abstract: Flip-flops are the basic storage elements used extensively

More information

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP 1 R.Ramya, 2 C.Hamsaveni 1,2 PG Scholar, Department of ECE, Hindusthan Institute Of Technology,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 917 The Power Optimization of Linear Feedback Shift Register Using Fault Coverage Circuits K.YARRAYYA1, K CHITAMBARA

More information

A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2

A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2 A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2 1 M.Tech., VLSISD, Dept. of ECE, AITS, Kadapa, A.P., India, vijayasagarsadhu@gmail.com 2 Asst.

More information

TEST PATTERN GENERATION USING PSEUDORANDOM BIST

TEST PATTERN GENERATION USING PSEUDORANDOM BIST TEST PATTERN GENERATION USING PSEUDORANDOM BIST GaneshBabu.J 1, Radhika.P 2 PG Student [VLSI], Dept. of ECE, SRM University, Chennai, Tamilnadu, India 1 Assistant Professor [O.G], Dept. of ECE, SRM University,

More information

New Single Edge Triggered Flip-Flop Design with Improved Power and Power Delay Product for Low Data Activity Applications

New Single Edge Triggered Flip-Flop Design with Improved Power and Power Delay Product for Low Data Activity Applications American-Eurasian Journal of Scientific Research 8 (1): 31-37, 013 ISSN 1818-6785 IDOSI Publications, 013 DOI: 10.589/idosi.aejsr.013.8.1.8366 New Single Edge Triggered Flip-Flop Design with Improved Power

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN

More information

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current Hiroshi Kawaguchi, Ko-ichi Nose, Takayasu Sakurai University of Tokyo, Tokyo, Japan Recently, low-power requirements are

More information

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION S. Karpagambal 1 and M. S. Thaen Malar 2 1 VLSI Design, Sona College of Technology, Salem, India 2 Department of Electronics and Communication

More information

Power Optimization Techniques for Sequential Elements Using Pulse Triggered Flip-Flops with SVL Logic

Power Optimization Techniques for Sequential Elements Using Pulse Triggered Flip-Flops with SVL Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 31-36 Power Optimization Techniques for Sequential Elements Using Pulse

More information

DESIGN OF LOW POWER TEST PATTERN GENERATOR

DESIGN OF LOW POWER TEST PATTERN GENERATOR International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 4, Issue 1, Feb 2014, 59-66 TJPRC Pvt.

More information

Comparative Analysis of low area and low power D Flip-Flop for Different Logic Values

Comparative Analysis of low area and low power D Flip-Flop for Different Logic Values The International Journal Of Engineering And Science (IJES) Volume 3 Issue 8 Pages 15-19 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Comparative Analysis of low area and low power D Flip-Flop for Different

More information

Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique

Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique NAVEENASINDHU P 1, MANIKANDAN N 2 1 M.E VLSI Design, TRP Engineering College (SRM GROUP), Tiruchirappalli 621 105, India,2,

More information

Low Power Area Efficient Parallel Counter Architecture

Low Power Area Efficient Parallel Counter Architecture Low Power Area Efficient Parallel Counter Architecture Lekshmi Aravind M-Tech Student, Dept. of ECE, Mangalam College of Engineering, Kottayam, India Abstract: Counters are specialized registers and is

More information

POWER OPTIMIZED CLOCK GATED ALU FOR LOW POWER PROCESSOR DESIGN

POWER OPTIMIZED CLOCK GATED ALU FOR LOW POWER PROCESSOR DESIGN POWER OPTIMIZED CLOCK GATED ALU FOR LOW POWER PROCESSOR DESIGN 1 L.RAJA, 2 Dr.K.THANUSHKODI 1 Prof., Department of Electronics and Communication Engineeering, Angel College of Engineering and Technology,

More information

Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches

Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches T. Mounika PG Scholar, Department of ECE, SR Engineering College, Warangal, Telangana, India. G. Mahesh Kumar Assistant

More information

A Low Power Delay Buffer Using Gated Driver Tree

A Low Power Delay Buffer Using Gated Driver Tree IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 26-30 A Low Power Delay Buffer Using Gated Driver Tree Kokkilagadda

More information

Design and Implementation of Uart with Bist for Low Power Dissipation Using Lp-Tpg

Design and Implementation of Uart with Bist for Low Power Dissipation Using Lp-Tpg IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 3, Ver. II (May. -Jun. 2016), PP 26-31 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design and Implementation of

More information

Research Article Low Power 256-bit Modified Carry Select Adder

Research Article Low Power 256-bit Modified Carry Select Adder Research Journal of Applied Sciences, Engineering and Technology 8(10): 1212-1216, 2014 DOI:10.19026/rjaset.8.1086 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY

DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY 1 M.SRINIVAS, 2 K.BABULU 1 Project Associate JNTUK, 2 Professor of ECE Dept. JNTUK Email: srinivas.mattaparti@gmail.com,

More information

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Sapna Sadhwani Student, Department of ECE Lakshmi Narain College of Technology Bhopal, India srsadhwani@gmail.comm Abstract

More information

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.5, OCTOBER, 08 ISSN(Print) 598-657 https://doi.org/57/jsts.08.8.5.640 ISSN(Online) -4866 A Modified Static Contention Free Single Phase Clocked

More information

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE S.Basi Reddy* 1, K.Sreenivasa Rao 2 1 M.Tech Student, VLSI System Design, Annamacharya Institute of Technology & Sciences (Autonomous), Rajampet (A.P),

More information

A New Approach to Design Fault Coverage Circuit with Efficient Hardware Utilization for Testing Applications

A New Approach to Design Fault Coverage Circuit with Efficient Hardware Utilization for Testing Applications A New Approach to Design Fault Coverage Circuit with Efficient Hardware Utilization for Testing Applications S. Krishna Chaitanya Department of Electronics & Communication Engineering, Hyderabad Institute

More information

Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking

Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking G.Abhinaya Raja & P.Srinivas Department Of Electronics & Comm. Engineering, Nimra College of Engineering & Technology, Ibrahimpatnam,

More information

Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch

Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch Akshata G. Shete ME Student Department of E & TC (VLSI & Embedded System) D.Y.Patil College of Engineering, Akurdi, Pune. Abstract

More information

A Symmetric Differential Clock Generator for Bit-Serial Hardware

A Symmetric Differential Clock Generator for Bit-Serial Hardware A Symmetric Differential Clock Generator for Bit-Serial Hardware Mitchell J. Myjak and José G. Delgado-Frias School of Electrical Engineering and Computer Science Washington State University Pullman, WA,

More information

Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA

Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA M.V.M.Lahari 1, M.Mani Kumari 2 1,2 Department of ECE, GVPCEOW,Visakhapatnam. Abstract The increasing growth of sub-micron

More information

[Krishna*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Krishna*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND IMPLEMENTATION OF BIST TECHNIQUE IN UART SERIAL COMMUNICATION M.Hari Krishna*, P.Pavan Kumar * Electronics and Communication

More information

II. ANALYSIS I. INTRODUCTION

II. ANALYSIS I. INTRODUCTION Characterizing Dynamic and Leakage Power Behavior in Flip-Flops R. Ramanarayanan, N. Vijaykrishnan and M. J. Irwin Dept. of Computer Science and Engineering Pennsylvania State University, PA 1682 Abstract

More information

Design of Testable Reversible Toggle Flip Flop

Design of Testable Reversible Toggle Flip Flop Design of Testable Reversible Toggle Flip Flop Mahalakshmi A M.E. VLSI Design, Department of Electronics and Communication PSG college of technology Coimbatore, India Abstract In this paper, the design

More information

LFSR Counter Implementation in CMOS VLSI

LFSR Counter Implementation in CMOS VLSI LFSR Counter Implementation in CMOS VLSI Doshi N. A., Dhobale S. B., and Kakade S. R. Abstract As chip manufacturing technology is suddenly on the threshold of major evaluation, which shrinks chip in size

More information

CMOS Low Power, High Speed Dual- Modulus32/33Prescalerin sub-nanometer Technology

CMOS Low Power, High Speed Dual- Modulus32/33Prescalerin sub-nanometer Technology IJSTE International Journal of Science Technology & Engineering Vol. 1, Issue 1, July 2014 ISSN(online): 2349-784X CMOS Low Power, High Speed Dual- Modulus32/33Prescalerin sub-nanometer Technology Dabhi

More information

A Design for Improved Very Low Power Static Flip Flop Using Two Inverters and Five NORs

A Design for Improved Very Low Power Static Flip Flop Using Two Inverters and Five NORs A Design for Improved Very Low Power Static Flip Flop Using Two Inverters and Five NORs Jogi Prakash 1, G. Someswara Rao 2, Ganesan P 3, G. Ravi Kishore 4, Sandeep Chilumula 5 1 M Tech Student, 2, 4, 5

More information

Design and analysis of RCA in Subthreshold Logic Circuits Using AFE

Design and analysis of RCA in Subthreshold Logic Circuits Using AFE Design and analysis of RCA in Subthreshold Logic Circuits Using AFE 1 MAHALAKSHMI M, 2 P.THIRUVALAR SELVAN PG Student, VLSI Design, Department of ECE, TRPEC, Trichy Abstract: The present scenario of the

More information

Optimized Magnetic Flip-Flop Combined With Flash Architecture for Memory Unit Based On Sleep Transistor

Optimized Magnetic Flip-Flop Combined With Flash Architecture for Memory Unit Based On Sleep Transistor International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 1 (2015), pp. 73-79 International Research Publication House http://www.irphouse.com Optimized Magnetic Flip-Flop Combined

More information

IN DIGITAL transmission systems, there are always scramblers

IN DIGITAL transmission systems, there are always scramblers 558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 7, JULY 2006 Parallel Scrambler for High-Speed Applications Chih-Hsien Lin, Chih-Ning Chen, You-Jiun Wang, Ju-Yuan Hsiao,

More information

Design of Fault Coverage Test Pattern Generator Using LFSR

Design of Fault Coverage Test Pattern Generator Using LFSR Design of Fault Coverage Test Pattern Generator Using LFSR B.Saritha M.Tech Student, Department of ECE, Dhruva Institue of Engineering & Technology. Abstract: A new fault coverage test pattern generator

More information

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops International Journal of Emerging Engineering Research and Technology Volume 2, Issue 4, July 2014, PP 250-254 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Gated Driver Tree Based Power Optimized Multi-Bit

More information

Optimization of Power and Area Efficient Shift Register Using Pulsed Latch

Optimization of Power and Area Efficient Shift Register Using Pulsed Latch Optimization of Power and Area Efficient Shift Register Using Pulsed Latch Lokesh B.E, M.Tech Lingaraj Appa Engineering College, Gornalli, Bidar 585403. Mrs.Sadhana Choudhari, B.E, M.Tech, (Ph.D) Associate

More information

A Novel Approach for Auto Clock Gating of Flip-Flops

A Novel Approach for Auto Clock Gating of Flip-Flops A Novel Approach for Auto Clock Gating of Flip-Flops Kakarla Sandhya Rani 1, Krishna Prasad Satamraju 2 1 P.G Scholar, Department of ECE, Vasireddy Venkatadri Institute of Technology, Nambur, Guntur (dt),

More information

Weighted Random and Transition Density Patterns For Scan-BIST

Weighted Random and Transition Density Patterns For Scan-BIST Weighted Random and Transition Density Patterns For Scan-BIST Farhana Rashid Intel Corporation 1501 S. Mo-Pac Expressway, Suite 400 Austin, TX 78746 USA Email: farhana.rashid@intel.com Vishwani Agrawal

More information

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY Yogita Hiremath 1, Akalpita L. Kulkarni 2, J. S. Baligar 3 1 PG Student, Dept. of ECE, Dr.AIT, Bangalore, Karnataka,

More information

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 3, Issue 1 (Sep. Oct. 2013), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Modifying the Scan Chains in Sequential Circuit to Reduce Leakage

More information

Design of Low Power Efficient Viterbi Decoder

Design of Low Power Efficient Viterbi Decoder International Journal of Research Studies in Electrical and Electronics Engineering (IJRSEEE) Volume 2, Issue 2, 2016, PP 1-7 ISSN 2454-9436 (Online) DOI: http://dx.doi.org/10.20431/2454-9436.0202001 www.arcjournals.org

More information

DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC

DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC ARCHITA SRIVASTAVA Integrated B.tech(ECE) M.tech(VLSI) Scholar, Jayoti Vidyapeeth Women s University, Rajasthan, India, Email:

More information

LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP

LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP Rahul Yadav 1, Rahul Shrivastava 2, Vijay Yadav 3 1 M.Tech Scholar, 2 Asst. Prof., 3 Asst. Prof Department of Electronics and Communication Engineering,

More information

Design Of Error Hardened Flip-Flop Withmultiplexer Using Transmission Gates And N-Type Pass Transistors

Design Of Error Hardened Flip-Flop Withmultiplexer Using Transmission Gates And N-Type Pass Transistors IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 5, Ver. II (Sep.-Oct.2016), PP 24-32 www.iosrjournals.org Design Of Error Hardened

More information

Dual Slope ADC Design from Power, Speed and Area Perspectives

Dual Slope ADC Design from Power, Speed and Area Perspectives Dual Slope ADC Design from Power, Speed and Area Perspectives Isaac Macwan, Xingguo Xiong, Lawrence Hmurcik Department of Electrical & Computer Engineering, University of Bridgeport, Bridgeport, CT 06604

More information