A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2

Size: px
Start display at page:

Download "A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2"

Transcription

1 A DELAY EFFICIENT LOW POWER SHIFT REGISTER BY MEANS OF PULSED LATCHES J.VIJAYA SAGAR 1, T.VIJAYA NIRMALA 2 1 M.Tech., VLSISD, Dept. of ECE, AITS, Kadapa, A.P., India, vijayasagarsadhu@gmail.com 2 Asst. Professor, Dept. of ECE, AITS, Kadapa, A.P., India, aitsnirmala@gmail.com stract--this paper proposes a Delay efficient low power shift register by means of pulsed latches. The delay and Power consumption are decreased by restored flip-flops with pulsed fastener. The timing problem among pulsed latches are resolved during various non-overlap postponed pulsed clock Signal in its place of straight signal pulsed clock signal. The shift register utilize A small quantity of the pulsed clock signals by alignment the latches to various sub shifter registers and by means of other temporary storage latches. A 256-bit shift register by means of pulsed latches was fictional through COMS 180NMTechnology of a 0.18 µm CMOS process with VDD = 1.8V. The core area is 6600µm². The power consumption is 1.2mW at a 100 MHz clock frequency. The projected shift register Saves 30% area and setback will be decrease than conservative method 44% power saves as associated to the conventional shift register with flip-flops. Keywords low power,edge triggered flip-flop, pulsed clock, pulsed latch, shift register. pulsed latch may be apply in a shift register since I.INTRODUCTION of timing problem among pulsed latches. Shift register are memory devices, which stores the digital data. Shift register which shift data as both left and right Shifts.IN VLSI circuits shift registers are plays very important role.are commonly used in many applications, such as digital filters, communication receivers,and image processing ICs. Recently, as the size of the image data continues to increase since of high demand for high quality image data, the word length of The shifter register increases to procedure tremendous photo data in picture processing ICs. An pictureextraction and vector new release VLSI chip uses a 4K-bit shift register. A sixteen-megapixel CMOS snapshot sensor uses a 45K-bit shift register. As the word size of the shifter register is propotional to the field and vigor consumption. The architecture of shift register is quite simple. A N-bit shift register is composed by series connected of N data Flip-flops.IN VLSI circuit are and power reduction is very important so that to choose the smallest flip-flop is suitable for the shift register to reduce the area and power.in shift register to maintain the certain level edge triggered by master slave flip-flop. But it is large size.recently, flipflops are replaced by pulsedlatches should restored flip-flop in various applications, since a pulsed latch is more slighter than a flip-flop. But the Fig. 1. (a) Master-slave flip-flop. (b) Pulsed latch. IN shift register timing problems are solved by multiple non-overlap postponed pulsed clock signals rather than the conventional single pulsed clock signal. The several non-ovelap signals are produced by belated pulse clock generator. II. CONVENTIONAL SHIFT REGISTER A master-slave flip-flop by means of two latches in Fig. 1(a) can be restore by a pulsed latch remaining of a latch and a pulsed clock signal in Fig. 1(b). Allpulsed latches share the pulse production circuit for the pulsed clock signal. Accordingly, the area and power utilization of the pulsed handle among roughly half of those the master-slave flip-flop. All pulsed latches share the pulse new release circuit for the pulsed clock sign. For this reason,

2 the field and energy consumption of the pulsed latch grow to be virtually half of of those of the grasp-slave flip-flop. The pulsed latch is an appealing resolution for small area and low vigour consumption. Through pulsed latches can t be used on the grounds that of timing issues will be occurred. Shown in Fig 2.. The shift register in Fig. 2(a) consists of several latches and a pulsed clock signal (CLK_pulse). The operation waveforms in Fig. 2(b) show the timing concern in the shifter register. The output sign of the first latch (Q1) changes properly on account that the enter signal of the primary latch (IN) is steady for the period of the clock pulse width. Through the second latch has an unsure output signal (Q2) in view that its enter sign (Q1) changes for the duration of the clock pulse width. Fig. 2. Shift register with latches and a pulsed clock signal. (a) Schematic. (b) Waveforms Those timing problems are reduced by adding the delay circuits in among the latches. Which is shown in Fig. 3(a). The latch output signal is postponed and it will be reaches to input of next latch after the clock pulse. As shown in Fig. 3(b) the first and second latches output signals(q1 and Q2) change during the clock pulse width, but the second and third latches input signals (D2 and D3) become the same as the the first and second latches outputs (Q1 and Q2) after the clock pulse. As a result, All latches have regular enter indicators for the duration of the clock pulse and no timing hindrance occurs among the latches. Through, the prolong circuits intent large area and vigour overheads. Fig. 3. Shift register with latches, delay circuits, and a pulsed clock signal. (a) Schematic. (b) Waveforms Another solution is to use multiple non-overlap postponed pulsed clock signals, as shown in Fig. 4(a). The postponed pulsed clock signals are produced while a pulsed clock signal goes through delay circuits. Every latch uses a pulsed clock signal that is belated from the pulsed clock signal used in its next latch. Therefore, each latch updates the data after its next latch updates the data. Hence, every latch steady input in the course of its clock pulse and no timing quandary in among the latches. Through, this resolution also requires many extend circuits. Fig. 4. Shift register with latches and postponed pulsed clock signals. (a) Schematic. (b) Waveforms The delays occurred when the out put of the first latch and to input of second one as well as the succession of latchs,is given Fig 5. IN conservative shift register although flip-flops are replaced by pulsed latch, are is increased by

3 delay circuits and power will be decrease little bit. The delay will be reduce in a proposed Shift register. III.PROPOSED SHIFT REGISTER Proposed shift register is separated into M sub shifter registers to decrease the number of belated pulsed clock signals. IN Proposed shift register, the N-BIT shift register can be divided in to M sub shift register,then the number of postponed circuits are reduced.a 4-bit sub shifter register consists of five latches and it performs shift operations with five non-overlap postponed pulsed clock signals (CLK_pulse 1:4 and CLK_pulse T ). In the 4-bit sub shift register #1, four latches store 4-bit data (Q1-Q4) and the last latch stores 1-bit temporary data (T1) which will be stored in the first latch (Q5) of the 4-bit sub shift register #2. Fig. 5(b) shows the process waveforms. Within the proposed shift register. Five non-overlap postponed pulsed clock indicators are generated via the postponed pulsed clock generator in Fig. 6. The pulsed clock indicators is in the reverse order of the 5 latches. Firstly, the pulsed clock signal CLK_pulse T updates the latch knowledge T1 from this fall. And then, the pulsed clock signals CLK_pulse 1:four replace the four latch data from this autumn to Q1 sequentially. The latches Q2 this autumn obtain knowledge from their prior latches Q1 Q3 through the latch Q1 receives information from the shift register enter (IN). The operations of the other sub shift registers are the equal as that of the sub shift register #1 besides that the first latch receives information from the temporary storage latch within the prior sub shift register. The conservative belated pulsed clock circuits in Fig. 4 can be used to save the AND gates in the belated pulsed clock producer in Fig. 6. In the conventional postponed pulsed clock circuits, the clock pulse width must be heavy than the summation of the rising and falling times in all inverters in the delay circuits to keep the shape of the pulsed clock. Through, in the postponed pulsed clock generator in Fig. 6 the clock pulsed width can be shorter than the summation of the rising and falling times since each sharp pulsed clock signal is generated from an AND gate and two postponed signals. Therefore, the postponed pulsed clock generator is suitable for short pulsed clock signals. The number of latches and clocks pulses are changes according to the number of sub shift registers. Fig. 5. Proposed shift register. (a) Schematic. (b) Waveforms. The power is consumed mainly in latches and clock generating circuit. Each latch consumes power for data transition and clock loading. When the powers are normalized with a latch, the power consumption of a latch and a clock-pulse circuit are 1 andαp respectively. The total power consumption is also. An integer for the minimum power is selected as a divisor nearest to Fig. 6. Postponed pulsed clock generator.. In selection, the clock buffers in Fig. 6 are not considered. The total area of the clock buffers is determined by the total number clock loading of latches. Although the number of latches increases from N to N(1+1/K), the increment ratio of the clock buffers is small. The number of clock buffers is. K.As K increases, the size of a clock buffer decreases in proportion to 1/Ksince the number of latches connected to a clock buffer (M = N/K) is proportional to 1/K.. Therefore, the total size of the

4 clock buffers directly propotional to K and the effect of the clock buffers can be neglected for choosing K.. CHIP IMPLEMENTATION The area and power consumption are more important than the speed for selecting the flip-flop. The proposed shift register uses latches for reduce the area and power consumption. In chip implementation, the SSASPL (static differential sense amp shared pulse latch) in Fig. 7, which is the smallest latch, is selected. The original SSASPL with 9 transistors is modified to the SSASPL with 7 transistors in Fig. 8 by removing an inverter to generate the complementary data input (Db) from the data input (D). In the proposed shift register, the differential data inputs (D and Db) of the latch come from the differential data outputs (Q and Qb) of the previous latch. The SSASPL makes use of the much less quantity of transistors 7. And it consumes the lowest clock power on account that it has a single transistor pushed via the pulsed clock sign. The SSASPL alterations as for the information with three NMOS transistors (M1 M3).And it holds the information with four transistors in two go-coupled inverters. It requires two differential data inputs (D and Db) and a pulsed clock signal. When the pulsed clock signal is high, its data is updated. The node Q or Qb is pulled down to ground according to the input data (D and Db). The pull-down current of the NMOS transistors (M1 M3). must be larger than the pull-up current of the PMOS transistors in the inverters. The SSASPL was implemented and simulated with a 0.18µm CMOS process at VDD = 1.8 V. The sizes (W/L) of the three NMOS transistors (M1 M3) are 1µm/0.18µm. The sizes of the NMOS and PMOS transistors in the two inverters are all 0.5µm/0.18µm. The minimum clock pulse width of the SSASPL to update the data is 62 ps at a typical process simulation (TT) and ps at all process corner simulations (FF-SS). The rising and falling times of the clock pulse are approximately 100 ps. The clock pulse shape can be degraded since of wire delay, signal coupling, supply noise. The clock pulse Width ( TPULSE) of 170 ps was selected by adding the timing margin to the minimum clock pulse width at the slowest simulation case. Fig. 7. Schematic of the SSASPL Fig. 8. Simulation waveforms of a shift register with the SSASPLs driven by a pulsed clock signal. The shift registers are designed by different catagires flipflops. Different types of flip-flops and their transisters are listed by Table I shows the transistor comparison of pulsed latches and flipflops. The transmission gate pulsed latch (TGPL), hybrid latch flip-flop (HLFF), conditional pushpull pulsed latch (CP3L), Power-PC-style flip-flop (PPCFF), Strong-ARM flip-flop (SAFF), data mapping flip-flop (DMFF), conditional precharge sense-amplifier flip-flop (CPSAFF), conditional capture flip-flop (CCFF), adaptive-coupling flipflop (ACFF) are compared with the SSASPL used in the proposed shift-register. When counting the whole number of transistors in pulsed latches and flip-flops, the transistors for generating the differential clock signals and pulsed clock signals are not included since they are shared in all latches and flip-flops. The SSASPL uses 7 transistors, which is the smallest number of transistors among the pulsed latches. The PPCFF uses 16 transistors, which is the smallest number of transistors among the flip-flops.

5 TABLE I TRANSISTOR COMPARISON OF PULSED LATCHES AND FLIP-FLOPS thessaspls. The proposed shift register achieves a small area and low power consumption compared to the preavious shift register. The areas of the proposed shift registers with K = 4 and K = 8 and are 63.2% and 59.0%, respectively, compared to that of the preavious shift register. The power consumptions of the proposed shift registers with K = 4 and K = 8 are 56.3% and 56.5%, respectively, compared to that of the conventional shift register. TABLE II PERFORMANCE COMPARISONS OF THE PPCFF AND SSASPL TABLE III PERFORMANCE COMPARISONS OF SHIFT REGISTERS Fig. 9. Schematic of the PPCFF Shows Fih.9. the schematic of the PPCFF, which is a typical master-slave flip-flop composed of two latches. The PPCFF consists of 16 transistors and has 8 transistors driven by clock signals. For a fair comparison, it uses the minimum size of transistors. The sizes of NMOS and PMOS transistors are 0.5µm/0.18µm and 1µm/0.18µm, respectively. Its layout was drawn compactly by sharing all possible sources and drains of transistors. All circuits were implemented with a 0.18 µm CMOS process. The powers were measured at VDD = 1.8V and fclk = 100MH. Table II shows the performance comparisons of the PPCFF and SSASPL. The SSASPL is 48.8% smaller and consumes 60.2% less power than the PPCFF. Table III shows the performance comparisons of the 256-bit shift registers. The conventional shift register by means of flip-flops was implemented with the PPCFFs. The shift register by means of pulsed latches were implemented with Fig. 10. Area and power consumption of the proposed 256-bit shift registeraccording to K at fclk = 100MH.

6 IV. RESULTS IN this paper, the shift register designed by the Pulsed latchs. To obtained the delay efficient Low power shifter register by means of the pulsed latches. The d latch which is total voltage source Power dissipate the µW. SSASPL latch is the compose by 7 transister, small are low power and delay will be reduced simple.the total voltage source power dissipation of SSASPL is µw,and average power is E-06. Fig.11.Simmulation of Pulsed Latch Fig.14.Delays of shift register with latches and Pulsed clock signal THE Proposed shifter register wich is designed by pulsed latches,which is low power applilication. which is total voltage source power Dissipation of mw and average power is E-04. Fig.12.Simmulation of SSASPL Fig.13.Simmulation PCFF The PCFF flip-flop is composed by 16 transister and which is total voltage source power dissipation of µw and average power is E-04. Fig.15. PROPOSED SHIFT REGISTER V.CONCLUSION This paper proposed A lengthen efficient low energy shift register by means of pulsed latches. The field and extend vigour consumption of shift register lowered with the aid of pulsed latches. The timing problem took place in among pulsed latches these are solved by means of by way of more than one non-overlap postponed pulsed clock signals rather than a single pulsed clock sign. A small number of the pulsed clock signals is utilized by aligning the latches to a number of sub shifter

7 registers and by way of further temporary storage latches. A 256-bit shift register was fabricated by means of a 0.18µm CMOS process with VDD = 1.8V. Its core area is6600µm². It consumes 1.2 mw at a 100 MHz clock frequency. The proposed shift register saves 37% area and 44% power compared to the conventional shift register with flip-flops. ACKNOWLEDGMENT The chip fabrication was supported by the IC Design Education Center (IDEC). REFERENCES [1] P. Reyes, P. Reviriego, J. A. Maestro, and O. Ruano, New protection techniques against SEUs for moving average filters in a radiation environment, IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp , Aug [2] M. Hatamian et al., Design considerations for gigabit ethernet 1000 base-t twisted pair transceivers, Proc. IEEE Custom Integr. CircuitsConf., pp , [3] H. Yamasaki and T. Shibata, A real-time image-feature-extraction and vector-generation vlsi employing arrayed shift register architecture, IEEE J. Solid-State Circuits, vol. 42, no. 9, pp , Sep [4] H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, and G.-H. Cho, A 10-bit column-driver IC with parasitic-insensitive iterative charge-sharing based capacitor-string interpolation for mobile active-matrix LCDs, IEEE J. Solid-State Circuits, vol. 49, no. 3, pp , Mar [8] H. Partovi et al., Flow-through latch and edgetriggered flip-flop hybrid elements, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp , Feb [9] E. Consoli, M. Alioto, G. Palumbo, and J. Rabaey, Conditional push-pull pulsed latch with 726 fjops energy delay product in 65 nm CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp [10] V. Stojanovic and V. Oklobdzija, Comparative analysis of masterslave latches and flip-flops for high-performance and low-power systems, IEEE J. Solid-State Circuits, vol. 34, no. 4, pp , Apr J. VIJAYA SAGAR has received his B.Tech Degree in Electronics &Communication Engineering from JNTU University, Kakinada, India. Presently pursuing M.Tech(VLSI System Design) from Annamacharya Institute of Technology & Sciences, Kadapa, A.P., India. His research interest include VLSI, Digital Signal Processing. T. VIJAYA NIRMALA, has received her M.Tech Degree from JNTU Anantapur, She is working as Assistant Professor in the Department of Electronics & Communication Engineering, Annamacharya Institute of Technology & Science, Kadapa, A.P., India. Her areas of interests are VLSI, Digital Image Processing and Communication Systems. [5] S.-H. W. Chiang and S. Kleinfelder, Scaling and design of a 16-megapixel CMOS image sensor for electron microscopy, in Proc. IEEE Nucl. Sci. Symp. Conf. Record (NSS/MIC), 2009, pp [6] S. Heo, R. Krashinsky, and K. Asanovic, Activity-sensitive flip-flop and latch selection for reduced energy, IEEE Trans. Very Large ScaleIntegr. (VLSI) Syst., vol. 15, no. 9, pp , Sep [7] S. Naffziger and G. Hammond, The implementation of the nextgeneration 64 b itanium microprocessor, in IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp

8

9 ..

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

Low-Power and Area-Efficient Shift Register Using Pulsed Latches Low-Power and Area-Efficient Shift Register Using Pulsed Latches G.Sunitha M.Tech, TKR CET. P.Venkatlavanya, M.Tech Associate Professor, TKR CET. Abstract: This paper proposes a low-power and area-efficient

More information

An FPGA Implementation of Shift Register Using Pulsed Latches

An FPGA Implementation of Shift Register Using Pulsed Latches An FPGA Implementation of Shift Register Using Pulsed Latches Shiny Panimalar.S, T.Nisha Priscilla, Associate Professor, Department of ECE, MAMCET, Tiruchirappalli, India PG Scholar, Department of ECE,

More information

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18532-18540 Pulsed Latches Methodology to Attain Reduced Power and Area Based

More information

Reduction of Area and Power of Shift Register Using Pulsed Latches

Reduction of Area and Power of Shift Register Using Pulsed Latches I J C T A, 9(13) 2016, pp. 6229-6238 International Science Press Reduction of Area and Power of Shift Register Using Pulsed Latches Md Asad Eqbal * & S. Yuvaraj ** ABSTRACT The timing element and clock

More information

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH 1 Kalaivani.S, 2 Sathyabama.R 1 PG Scholar, 2 Professor/HOD Department of ECE, Government College of Technology Coimbatore,

More information

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch 1 D. Sandhya Rani, 2 Maddana, 1 PG Scholar, Dept of VLSI System Design, Geetanjali college of engineering & technology, 2 Hod

More information

ISSN Vol.08,Issue.24, December-2016, Pages:

ISSN Vol.08,Issue.24, December-2016, Pages: ISSN 2348 2370 Vol.08,Issue.24, December-2016, Pages:4666-4671 www.ijatir.org Design and Analysis of Shift Register using Pulse Triggered Latches N. NEELUFER 1, S. RAMANJI NAIK 2, B. SURESH BABU 3 1 PG

More information

Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches

Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches Low-Power And Area-Efficient Shift Register Using Digital Pulsed Latches Syed Zaheer Ahamed VLSI (M.Tech), VIF College of Engineering & Technology. ABSTRACT: This paper proposes a low-power and area-efficient

More information

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register International Journal for Modern Trends in Science and Technology Volume: 02, Issue No: 10, October 2016 http://www.ijmtst.com ISSN: 2455-3778 Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift

More information

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems IJECT Vo l. 7, Is s u e 2, Ap r i l - Ju n e 2016 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power

More information

Optimization of Power and Area Efficient Shift Register Using Pulsed Latch

Optimization of Power and Area Efficient Shift Register Using Pulsed Latch Optimization of Power and Area Efficient Shift Register Using Pulsed Latch Lokesh B.E, M.Tech Lingaraj Appa Engineering College, Gornalli, Bidar 585403. Mrs.Sadhana Choudhari, B.E, M.Tech, (Ph.D) Associate

More information

Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch

Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch Design Low-Power and Area-Efficient Shift Register Using SSASPL Pulsed Latch Akshata G. Shete ME Student Department of E & TC (VLSI & Embedded System) D.Y.Patil College of Engineering, Akurdi, Pune. Abstract

More information

2. Conventional method 1 Shift register using PPCFF

2. Conventional method 1 Shift register using PPCFF proposed method is compared with the two conventional methods of shift registers. In one of the conventional metho designed by using PPCFF (Power-PC style flip-flop).the flip-flop based shift register

More information

Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area

Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area Design Of Pulsed Latch Based Shift Register Using Multiplexer With Reduced Power And Area Nandhini.N 1,Murugasami.R 2 1 PG Scholar,Nandha Engineering college,erode,india 2 Associate Professor,Nandha Engineering

More information

LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES

LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES LOW POWER AND AREA-EFFICIENT SHIFT REGISTER USING PULSED LATCHES Mr. Nat Raj M.Tech., (Ph.D) Associate Professor ECE Department ST.Mary s College Of Engineering and Technology(Formerly ASEC),Patancheru

More information

Design of Shift Register Using Pulse Triggered Flip Flop

Design of Shift Register Using Pulse Triggered Flip Flop Design of Shift Register Using Pulse Triggered Flip Flop Kuchanpally Mounika M.Tech [VLSI], CMR Institute of Technology, Kandlakoya, Medchal, Hyderabad, India. G.Archana Devi Assistant Professor, CMR Institute

More information

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. AJAY 2 G.SRIHARI 1 ajaymunagala.ajay@gmail.com 2 srihari.nan@gmail.com 1 PG Scholar,Dept of ECE, Sreenivasa Institute of Technology and Management

More information

Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner

Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner Area Efficient Pulsed Clocks & Pulsed Latches on Shift Register Tanner Mr. T. Immanuel 1 Sudhakara Babu Oja 2 1Associate Professor, Department of ECE, SVR Engineering College, Nandyal. 2PG Scholar, Department

More information

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Low Power and Area Efficient 256-bit Shift Register based on Pulsed es K.V.Janardhan 1,

More information

ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES

ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING DIGITAL PULSED LATCHES #1G.N.P.JYOTHI,PG Scholar, Dept of ECE (VLSID), Sri Sunflower College of Engineering and Technology, Lankapalli, (A.P),INDIA.

More information

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES 1 M. Ajay, 2 G.Srihari, 1 PG Scholar,Dept of ECE, Sreenivasa Institute of Technology and Management Studies (Autonomous) Murkambattu, Chittoor,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 440-448 Open Access Journal Design of 8-Bit Shift

More information

ISSN Vol.04, Issue.12, November-2016, Pages:

ISSN Vol.04, Issue.12, November-2016, Pages: ISSN 2322-0929 Vol.04, Issue.12, November-2016, Pages:1239-1243 www.ijvdcs.org Low-Power and Area-Efficient Shift Register using Pulsed Latches G.SAMPOORNA 1, D.CHANDRA PRAKASH 2 1 PG Scholar, Dept of

More information

SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION

SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION SHIFT REGISTER USING CNT FET BASED ON SENSE AMPLIFIER PULSED LATCH FOR LOW POWER APPLICATION Muthusuriya.M 1, Shantha Devi.P 2, Poongodi.M 3 Gayathiri.G 4 1 PG Scholar, Department of ECE, Theni Kammavar

More information

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online:

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online: ANALYSIS OF LOW-POWER AND AREA-EFFICIENT SHIFT REGISTERS USING PULSED LATCH #1 GUNTI SUMANJALI, M.Tech Student, #2 V.SRIDHAR, Assistant Professor, Dept of ECE, MOTHER THERESSA COLLEGE OF ENGINEERING &

More information

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register Design of Low Power and Area Efficient Pulsed Latch Based Shift Register 1 ANUSHA KORE, 2 Dr. S.A.MUZEER Department of ECE Megha Institute of Engineering & Technology For women s Edulabad, Ghatkesar mandal,

More information

A Power Efficient Flip Flop by using 90nm Technology

A Power Efficient Flip Flop by using 90nm Technology A Power Efficient Flip Flop by using 90nm Technology Mrs. Y. Lavanya Associate Professor, ECE Department, Ramachandra College of Engineering, Eluru, W.G (Dt.), A.P, India. Email: lavanya.rcee@gmail.com

More information

Design of Low Power and Area Efficient 64 Bits Shift Register Using Pulsed Latches

Design of Low Power and Area Efficient 64 Bits Shift Register Using Pulsed Latches Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 11, Number 7 (2018) pp. 555-560 Research India Publications http://www.ripublication.com Design of Low Power and Area Efficient 64

More information

POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES

POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES Volume 115 No. 7 2017, 447-452 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu POWER AND AREA EFFICIENT LFSR WITH PULSED LATCHES K Hari Kishore 1,

More information

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online:

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online: LOW POWER SHIFT REGISTERS USING CLOCK GATING TECHNIQUE #1 G.SHIREESHA, M.Tech student, #2 T.NAGESWARRAO, Assistant Professor, #3 S.NAGESWARA RAO, Assistant Professor, Dept of ECE, SRI VENKATESWARA ENGINEERING

More information

Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches

Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches Design of Low Power and Area Efficient 256 Bits Shift Register Using Pulsed Latches T. Mounika PG Scholar, Department of ECE, SR Engineering College, Warangal, Telangana, India. G. Mahesh Kumar Assistant

More information

Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking

Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking G.Abhinaya Raja & P.Srinivas Department Of Electronics & Comm. Engineering, Nimra College of Engineering & Technology, Ibrahimpatnam,

More information

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop 1 S.Mounika & 2 P.Dhaneef Kumar 1 M.Tech, VLSIES, GVIC college, Madanapalli, mounikarani3333@gmail.com

More information

PTL-AND CLOCK-PULSE CIRCUIT DRIVEN NOVEL SHIFT REGISTER ARCHITECTURE

PTL-AND CLOCK-PULSE CIRCUIT DRIVEN NOVEL SHIFT REGISTER ARCHITECTURE PTL-AND CLOCK-PULSE CIRCUIT DRIVEN NOVEL SHIFT REGISTER ARCHITECTURE Nicee Staney Department of Electronics and Communication Engineering Rajagiri School of Engineering and Technology Kakkanad, Kochi,

More information

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE OI: 10.21917/ijme.2018.0088 LOW POWER AN HIGH PERFORMANCE SHIFT REGISTERS USING PULSE LATCH TECHNIUE Vandana Niranjan epartment of Electronics and Communication Engineering, Indira Gandhi elhi Technical

More information

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 6, Ver. II (Nov - Dec.2015), PP 40-50 www.iosrjournals.org Design of a Low Power

More information

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME Mr.N.Vetriselvan, Assistant Professor, Dhirajlal Gandhi College of Technology Mr.P.N.Palanisamy,

More information

Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications

Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications Matthew Cooke, Hamid Mahmoodi-Meimand, Kaushik Roy School of Electrical and Computer Engineering, Purdue University, West

More information

ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION

ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION ANALYZE AND DESIGN OF HIGH SPEED ENERGY EFFICIENT PULSED LATCHES BASED SHIFT REGISTER FOR ALL DIGITAL APPLICATION Nandhini.G.S 1, PG Student, Dept. of ECE, Shree Venkateshwara Hi-Tech Engineering College,

More information

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP S.BANUPRIYA 1, R.GOWSALYA 2, M.KALEESWARI 3, B.DHANAM 4 1, 2, 3 UG Scholar, 4 Asst.Professor/ECE 1, 2, 3, 4 P.S.R.RENGASAMY

More information

Power Optimization Techniques for Sequential Elements Using Pulse Triggered Flip-Flops with SVL Logic

Power Optimization Techniques for Sequential Elements Using Pulse Triggered Flip-Flops with SVL Logic IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 31-36 Power Optimization Techniques for Sequential Elements Using Pulse

More information

An Optimized Implementation of Pulse Triggered Flip-flop Based on Single Feed-Through Scheme in FPGA Technology

An Optimized Implementation of Pulse Triggered Flip-flop Based on Single Feed-Through Scheme in FPGA Technology An Optimized Implementation of Pulse Triggered Flip-flop Based on Single Feed-Through Scheme in FPGA Technology 1 S.MANIKANTA, PG Scholar in VLSI System Design, 2 A.M. GUNA SEKHAR Assoc. Professor, HOD,

More information

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

data and is used in digital networks and storage devices. CRC s are easy to implement in binary Introduction Cyclic redundancy check (CRC) is an error detecting code designed to detect changes in transmitted data and is used in digital networks and storage devices. CRC s are easy to implement in

More information

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.5, OCTOBER, 08 ISSN(Print) 598-657 https://doi.org/57/jsts.08.8.5.640 ISSN(Online) -4866 A Modified Static Contention Free Single Phase Clocked

More information

DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY

DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY 1 M.SRINIVAS, 2 K.BABULU 1 Project Associate JNTUK, 2 Professor of ECE Dept. JNTUK Email: srinivas.mattaparti@gmail.com,

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

LOW POWER DOUBLE EDGE PULSE TRIGGERED FLIP FLOP DESIGN

LOW POWER DOUBLE EDGE PULSE TRIGGERED FLIP FLOP DESIGN INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 LOW POWER DOUBLE EDGE PULSE TRIGGERED FLIP FLOP DESIGN G.Swetha 1, T.Krishna Murthy 2 1 Student, SVEC (Autonomous),

More information

High Performance Dynamic Hybrid Flip-Flop For Pipeline Stages with Methodical Implanted Logic

High Performance Dynamic Hybrid Flip-Flop For Pipeline Stages with Methodical Implanted Logic High Performance Dynamic Hybrid Flip-Flop For Pipeline Stages with Methodical Implanted Logic K.Vajida Tabasum, K.Chandra Shekhar Abstract-In this paper we introduce a new high performance dynamic hybrid

More information

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 5, May 2014, pg.210

More information

Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique

Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique NAVEENASINDHU P 1, MANIKANDAN N 2 1 M.E VLSI Design, TRP Engineering College (SRM GROUP), Tiruchirappalli 621 105, India,2,

More information

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop Sumant Kumar et al. 2016, Volume 4 Issue 1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Improve Performance of Low-Power

More information

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Divya shree.m 1, H. Venkatesh kumar 2 PG Student, Dept. of ECE, Nagarjuna College of Engineering

More information

Low Power D Flip Flop Using Static Pass Transistor Logic

Low Power D Flip Flop Using Static Pass Transistor Logic Low Power D Flip Flop Using Static Pass Transistor Logic 1 T.SURIYA PRABA, 2 R.MURUGASAMI PG SCHOLAR, NANDHA ENGINEERING COLLEGE, ERODE, INDIA Abstract: Minimizing power consumption is vitally important

More information

Design a Low Power Flip-Flop Based on a Signal Feed-Through Scheme

Design a Low Power Flip-Flop Based on a Signal Feed-Through Scheme Design a Low Power Flip-Flop Based on a Signal Feed-Through Scheme Mayur D. Ghatole 1, Dr. M. A. Gaikwad 2 1 M.Tech, Electronics Department, Bapurao Deshmukh College of Engineering, Sewagram, Maharashtra,

More information

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications N.KIRAN 1, K.AMARNATH 2 1 P.G Student, VRS & YRN College of Engineering & Technology, Vodarevu Road, Chirala 2 HOD & Professor,

More information

Design And Analysis of Clocked Subsystem Elements Using Leakage Reduction Technique

Design And Analysis of Clocked Subsystem Elements Using Leakage Reduction Technique Design And Analysis of Clocked Subsystem Elements Using Leakage Reduction Technique Sanjay Singh, S.K. Singh, Mahesh Kumar Singh, Raj Kumar Sagar Abstract As the density and operating speed of CMOS VLSI

More information

A NOVEL APPROACH TO ACHIEVE HIGH SPEED LOW-POWER HYBRID FLIP-FLOP

A NOVEL APPROACH TO ACHIEVE HIGH SPEED LOW-POWER HYBRID FLIP-FLOP A NOVEL APPROACH TO ACHIEVE HIGH SPEED LOW-POWER HYBRID FLIP-FLOP R.Ramya 1, P.Pavithra 2, T. Marutharaj 3 1, 2 PG Scholar, 3 Assistant Professor Theni Kammavar Sangam College of Technology, Theni, Tamil

More information

Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme

Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme Ch.Sreedhar 1, K Mariya Priyadarshini 2. Abstract: Flip-flops are the basic storage elements used extensively

More information

Implementation of Shift Register Using Pulsed Latches

Implementation of Shift Register Using Pulsed Latches Implementation of Shift Register Using Pulsed Latches Ketavat Aruna Department of Electronics & Communication Engineering, Geethanjali College of Engineering & Technology, Hyderabad, Telangana, India-501301.

More information

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance Novel Low Power and Low Transistor Count Flip-Flop Design with High Performance Imran Ahmed Khan*, Dr. Mirza Tariq Beg Department of Electronics and Communication, Jamia Millia Islamia, New Delhi, India

More information

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY Ms. Chaitali V. Matey 1, Ms. Shraddha K. Mendhe 2, Mr. Sandip A.

More information

New Single Edge Triggered Flip-Flop Design with Improved Power and Power Delay Product for Low Data Activity Applications

New Single Edge Triggered Flip-Flop Design with Improved Power and Power Delay Product for Low Data Activity Applications American-Eurasian Journal of Scientific Research 8 (1): 31-37, 013 ISSN 1818-6785 IDOSI Publications, 013 DOI: 10.589/idosi.aejsr.013.8.1.8366 New Single Edge Triggered Flip-Flop Design with Improved Power

More information

Load-Sensitive Flip-Flop Characterization

Load-Sensitive Flip-Flop Characterization Appears in IEEE Workshop on VLSI, Orlando, Florida, April Load-Sensitive Flip-Flop Characterization Seongmoo Heo and Krste Asanović Massachusetts Institute of Technology Laboratory for Computer Science

More information

ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5

ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5 ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5 19.5 A Clock Skew Absorbing Flip-Flop Nikola Nedovic 1,2, Vojin G. Oklobdzija 2, William W. Walker 1 1 Fujitsu Laboratories of America,

More information

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP 1 R.Ramya, 2 C.Hamsaveni 1,2 PG Scholar, Department of ECE, Hindusthan Institute Of Technology,

More information

Low Power High Speed Voltage Level Shifter for Sub- Threshold Operations

Low Power High Speed Voltage Level Shifter for Sub- Threshold Operations International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 1, Issue 5, August 2014, PP 34-41 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Low

More information

International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE) Vol 1, Issue 6, June 2015 I.

International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE) Vol 1, Issue 6, June 2015 I. Low Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Using Power Gating Techniques [1] Shaik Abdul Khadar, [2] P.Hareesh, [1] PG scholar VLSI Design Dept of E.C.E., Sir C R Reddy College of Engineering

More information

Novel Design of Static Dual-Edge Triggered (DET) Flip-Flops using Multiple C-Elements

Novel Design of Static Dual-Edge Triggered (DET) Flip-Flops using Multiple C-Elements Available online at: http://www.ijmtst.com/ncceeses2017.html Special Issue from 2 nd National Conference on Computing, Electrical, Electronics and Sustainable Energy Systems, 6 th 7 th July 2017, Rajahmundry,

More information

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION S. Karpagambal 1 and M. S. Thaen Malar 2 1 VLSI Design, Sona College of Technology, Salem, India 2 Department of Electronics and Communication

More information

Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient

Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient Ms. Sheik Shabeena 1, R.Jyothirmai 2, P.Divya 3, P.Kusuma 4, Ch.chiranjeevi 5 1 Assistant Professor, 2,3,4,5

More information

Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm

Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm Akhilesh Tiwari1 and Shyam Akashe2 1Research Scholar, ITM University, Gwalior, India antrixman75@gmail.com 2Associate

More information

DESIGN OF DOUBLE PULSE TRIGGERED FLIP-FLOP BASED ON SIGNAL FEED THROUGH SCHEME

DESIGN OF DOUBLE PULSE TRIGGERED FLIP-FLOP BASED ON SIGNAL FEED THROUGH SCHEME Scientific Journal Impact Factor (SJIF): 1.711 e-issn: 2349-9745 p-issn: 2393-8161 International Journal of Modern Trends in Engineering and Research www.ijmter.com DESIGN OF DOUBLE PULSE TRIGGERED FLIP-FLOP

More information

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043 EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP Due 16.05. İLKER KALYONCU, 10043 1. INTRODUCTION: In this project we are going to design a CMOS positive edge triggered master-slave

More information

High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique

High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique Don P John (School of Electrical Sciences, Karunya University, Coimbatore ABSTRACT Frequency synthesizer is one of the important element for

More information

Analysis of Low-Power and Area-Efficient Shift Registers using Pulsed Latch 1 P. Rahul Reddy

Analysis of Low-Power and Area-Efficient Shift Registers using Pulsed Latch 1 P. Rahul Reddy Analysis of Low-Power and Area-Efficient Shift Registers using Pulsed Latch 1 P. Rahul Reddy 1 Associate Professor, Dept of ECE, Swami RamanandaTirtha Institute of Science & Technology, Nalgonda, India

More information

Minimization of Power for the Design of an Optimal Flip Flop

Minimization of Power for the Design of an Optimal Flip Flop Minimization of Power for the Design of an Optimal Flip Flop Kahkashan Ali #1, Tarana Afrin Chandel #2 #1 M.TECH Student, #2 Associate Professor, 1,2 Department of ECE, Integral University, Lucknow, INDIA

More information

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique Priyanka

More information

Design And Analysis Of Implicit Pulsed Double Edge Triggered Clocked Latch For Low Power Applications

Design And Analysis Of Implicit Pulsed Double Edge Triggered Clocked Latch For Low Power Applications Design And Analysis Of Implicit Pulsed Double Edge Triggered Clocked Latch For Low Power Applications ¹GABARIYALA SABADINI C ²Dr. P. MANIRAJ KUMAR ³Dr. P.NAGARAJAN 1. PG scholar, VLSI design, Department

More information

Comparative study on low-power high-performance standard-cell flip-flops

Comparative study on low-power high-performance standard-cell flip-flops Comparative study on low-power high-performance standard-cell flip-flops S. Tahmasbi Oskuii, A. Alvandpour Electronic Devices, Linköping University, Linköping, Sweden ABSTRACT This paper explores the energy-delay

More information

I. INTRODUCTION. Figure 1: Explicit Data Close to Output

I. INTRODUCTION. Figure 1: Explicit Data Close to Output Low Power Shift Register Design Based on a Signal Feed Through Scheme 1 Mr. G Ayappan and 2 Ms.P Vinothini, 1 Assistant Professor (Senior Grade), 2 PG scholar, 1,2 Department of Electronics and Communication,

More information

Current Mode Double Edge Triggered Flip Flop with Enable

Current Mode Double Edge Triggered Flip Flop with Enable Current Mode Double Edge Triggered Flip Flop with Enable Remil Anita.D 1, Jayasanthi.M 2 PG Student, Department of ECE, Karpagam College of Engineering, Coimbatore, India 1 Associate Professor, Department

More information

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Course Number: ECE 533 Spring 2013 University of Tennessee Knoxville Instructor: Dr. Syed Kamrul Islam Prepared by

More information

UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN

UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN Part A (2 Marks) 1. What is a BiCMOS? BiCMOS is a type of integrated circuit that uses both bipolar and CMOS technologies. 2. What are the problems

More information

Design and Analysis of Semi-Transparent Flip-Flops for high speed and Low Power Applications in Networks

Design and Analysis of Semi-Transparent Flip-Flops for high speed and Low Power Applications in Networks IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331 PP 58-64 www.iosrjournals.org Design and Analysis of Semi-Transparent Flip-Flops for high speed and

More information

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY Yogita Hiremath 1, Akalpita L. Kulkarni 2, J. S. Baligar 3 1 PG Student, Dept. of ECE, Dr.AIT, Bangalore, Karnataka,

More information

A Low-Power CMOS Flip-Flop for High Performance Processors

A Low-Power CMOS Flip-Flop for High Performance Processors A Low-Power CMOS Flip-Flop for High Performance Processors Preetisudha Meher, Kamala Kanta Mahapatra Dept. of Electronics and Telecommunication National Institute of Technology Rourkela, India Preetisudha1@gmail.com,

More information

P.Akila 1. P a g e 60

P.Akila 1. P a g e 60 Designing Clock System Using Power Optimization Techniques in Flipflop P.Akila 1 Assistant Professor-I 2 Department of Electronics and Communication Engineering PSR Rengasamy college of engineering for

More information

Lecture 21: Sequential Circuits. Review: Timing Definitions

Lecture 21: Sequential Circuits. Review: Timing Definitions Lecture 21: Sequential Circuits Setup and Hold time MS FF Power PC Pulsed FF HLFF, SFF, SAFF Source: Ch 7 J. Rabaey notes, Weste and Harris Notes Review: Timing efinitions T C : Propagation elay from Ck

More information

Area Efficient Level Sensitive Flip-Flops A Performance Comparison

Area Efficient Level Sensitive Flip-Flops A Performance Comparison Area Efficient Level Sensitive Flip-Flops A Performance Comparison Tripti Dua, K. G. Sharma*, Tripti Sharma ECE Department, FET, Mody University of Science & Technology, Lakshmangarh, Rajasthan, India

More information

Design Of Error Hardened Flip-Flop Withmultiplexer Using Transmission Gates And N-Type Pass Transistors

Design Of Error Hardened Flip-Flop Withmultiplexer Using Transmission Gates And N-Type Pass Transistors IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 5, Ver. II (Sep.-Oct.2016), PP 24-32 www.iosrjournals.org Design Of Error Hardened

More information

Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky,

Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky, Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky, tomott}@berkeley.edu Abstract With the reduction of feature sizes, more sources

More information

II. ANALYSIS I. INTRODUCTION

II. ANALYSIS I. INTRODUCTION Characterizing Dynamic and Leakage Power Behavior in Flip-Flops R. Ramanarayanan, N. Vijaykrishnan and M. J. Irwin Dept. of Computer Science and Engineering Pennsylvania State University, PA 1682 Abstract

More information

PERFORMANCE ANALYSIS OF AN EFFICIENT TIME-TO-THRESHOLD PWM ARCHIECTURE USING CMOS TECHNOLOGY

PERFORMANCE ANALYSIS OF AN EFFICIENT TIME-TO-THRESHOLD PWM ARCHIECTURE USING CMOS TECHNOLOGY PERFORMANCE ANALYSIS OF AN EFFICIENT TIME-TO-THRESHOLD PWM ARCHIECTURE USING CMOS TECHNOLOGY T. Jaya Bharathi and N. Mathan VLSI Design, Department of Electronics and Communication Engineering, Sathyabama

More information

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Sapna Sadhwani Student, Department of ECE Lakshmi Narain College of Technology Bhopal, India srsadhwani@gmail.comm Abstract

More information

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS NINU ABRAHAM 1, VINOJ P.G 2 1 P.G Student [VLSI & ES], SCMS School of Engineering & Technology, Cochin,

More information

A Reduced Clock Power Flip-Flop for Sequential Circuits

A Reduced Clock Power Flip-Flop for Sequential Circuits International Journal of Engineering and Advanced Technology (IJEAT) A Reduced Clock Power Flip-Flop for Sequential Circuits Bala Bharat, R. Ramana Reddy Abstract In most Very Large Scale Integration digital

More information

Dual Edge Adaptive Pulse Triggered Flip-Flop for a High Speed and Low Power Applications

Dual Edge Adaptive Pulse Triggered Flip-Flop for a High Speed and Low Power Applications International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 1 Dual Edge Adaptive Pulse Triggered Flip-Flop for a High Speed and Low Power Applications S. Harish*, Dr.

More information

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current Hiroshi Kawaguchi, Ko-ichi Nose, Takayasu Sakurai University of Tokyo, Tokyo, Japan Recently, low-power requirements are

More information

Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC)

Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC) Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC) Swetha Kanchimani M.Tech (VLSI Design), Mrs.Syamala Kanchimani Associate Professor, Miss.Godugu Uma Madhuri Assistant Professor, ABSTRACT:

More information