Menu. 68HC12 Timer Block Diagram EEL 3744 EEL Input Capture (IC)

Size: px
Start display at page:

Download "Menu. 68HC12 Timer Block Diagram EEL 3744 EEL Input Capture (IC)"

Transcription

1 Intro to Input Capture Input Capture Programming Example >Measure the Elapsed time between Events Another Input Capture Programming Example >Detect a Signal Pattern XMEGA Input Capture Menu Look into my... See docs/examples on web-site: doc8331 (Sec 14-15), doc8385 (Sec 16-17), doc8045 IC3.asm, IC5_Det.asm 1 68HC12 Timer Block Diagram Tech: Fig

2 68HC12 Main Timer System S&HE: Fig 10.1 shown and HC12 TIOS: Timer Input Capture/Output Compare Select Register & DDRT TIOS - Timer Input Capture/Output Compare Select Register $0080 RESET >0 = IC; 1= OC IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS DDRT - Data Direction Register for Port T >0 = Input; 1 = Output $00AF DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT RESET

3 $0084 RESET $0085 RESET 68HC12 TCNT and TSCR Bit Bit 8 TCNT High Bit Bit 0 TCNT Low $0086 RESET TEN (Timer Enable) in TSCR: >0 = disable >1 = enable TEN TSWAI TSBCK TFFCA TSCR Block Diagram of Input Capture 68HC12 Input Capture Block Diagram ICx Interrupt Line ICx Flag S&HE: Fig 10.4 ICx Interrupt Enable Free-running Counter TCx Register In TCTL3 or TCTL4 EDGxB EDGxA Edge Control 00 Disabled 01 Rising Edge 10 Falling Edge 11 Any Edge Pin Tech: Tab

4 68HC12 Input Capture / Output Compare Registers TCx - Timer Input Capture / Output Compare x $0090 Bit Bit 8 TC0 $0091 Bit Bit 0 $0092 Bit Bit 8 TC1 $0093 Bit Bit 0 $009C Bit Bit 8 TC6 $009D Bit Bit 0 $009E Bit Bit 8 TC7 $009F Bit Bit 0 RESET = $ HC12 TCTL3 & TCTL4: Time Control Registers TCTL3 & TCTL4- Timer Control Registers >Edge B (falling edge) and Edge A (rising edge) $008A RESET Edg7B Edg7A Edg6B Edg6A Edg5B Edg5A Edg4B Edg4A TCTL $008B RESET Edg3B Edg3A Edg2B Edg2A Edg1B Edg1A Edg0B Edg0A TCTL Disabled 01 Rising Edge 10 Falling Edge 11 Any Edge Tech: Tab

5 $008C RESET 68HC12 TMSK1: Timer Interrupt Mask 1 TFLG1: Timer Interrupt Flag 1 TMSK1: Timer Interrupt Mask 1 (for IC/OC) >0 = Interrupt disabled; 1 = Interrupt enabled C7I C6I C5I C4I C3I C2I C1I C0I TMSK TFLG1: Timer Interrupt Flag 1 (for IC/OC) > 0 = No interrupt (or interrupt cleared); 1 = Interrupt has occurred $008E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1 RESET CxF Flag: Automatically set each time specified IC edge detected To clear, write a 1 to the flag bit 9 68HC12 Measuring Elapsed Time: IC Programming Example Measure the Elapsed time between Events using Input Capture Elapsed time Programming Example: Measure Elapsed Time Between Events using IC3 IC3.asm With simulator, use the signal generator > Select square wave with frequency of (10kHz) For f=10khz, T=100 s If E=0.125 s (simulator), then T = 800 E-clocks If E=0.5 s (our UF board), T = 200 E-clocks Can you send the time in units of s to an LCD? 10 5

6 68HC12 Best and Worst Case for IC Best Case vs. Worst Case of Input Capture Elapsed time > Interrupt Latency How long do we wait to get to the interrupt service routine? Does this effect the pin action of the ICx feature? Definition: M&M: Sec 8.8 Latency -- the time that elapses between a stimulus and the response to it [synonyms: reaction time, response time] 11 68HC12 Signal Detection: Another IC Programming Example Detect a Signal Pattern using Input Capture T (Period) T (Period) T (Period) T (Period) Time Unit: E-cycles IC5_Det.asm 12 6

7 See doc8045: Section 6 describes several similar examples of how to complete tasks. XMEGA Input Capture Example Task: Configure TCC0 with Input Capture Channel A enabled. The Input Capture is triggered by the falling edge of PC0 See doc8045: Sec Configure PC0 for input, triggered on falling edge 2. Select PC0 as multiplexer input for event channel 0 3. Configure TCC0 for input capture by setting event source and event action to Input capture in CTRLD 4. Enable input capture channel A by setting the CCAEN bit in CTRLB 5. Start the TC by selecting a clock source (CLKSEL in CTRLA) 6. Wait for Input Capture Interrupt Flag A in INTFLAGS to be set 7. Read input capture value from the CCA[H:L] register 8. Go to step 4 13 See doc8331, Sec 14 & doc8385, Sec 16 doc8045 XMEGA Input Capture Input Capture available > Input capture with noise cancelling > Frequency capture > Pulse width capture > 32-bit capture One compare match or input capture interrupt/event per CC channel Not possible to use the same TC module for both input capture and compare match at the same time Input capture can be used to time stamp events > I.e., measure waveform parameters like frequency or duty cycle 14 7

8 See doc8331: Figure XMEGA Input Capture Select the input capture event action to allow the interrupt flags to be set and indicate that there are valid capture results in the corresponding CC register Two timer/counters can be used together to enable 32-bit input capture The Capture X results are put in a CC register 15 EEL 3744 Sec 3-5 XMEGA CCx The compare/capture channels consist of a set of 16-bit registers named CCx[H:L], where x indicates the channel >Timer0, with 4 channels, has CCA[H:L], CCB[H:L], CCC[H:L] and CCD[H:L] >Timer1, with 2 channels has CCA[H:L] and CCB[H:L]. >Each CCx[H:L] register has a buffer register, CCxBUF[H:L] 16 8

9 Sec 3.6 XMEGA Event Input Selection The TC input capture system uses the event system to trigger an input capture (see Lab 7) When the TC is used for input capture, all enabled input capture channels must be associated with an event channel > The EVSEL[3:0] bits of the CTRLD register select the event channels that are associated with the input capture channels > EVSEL3 must be 1 to select an event source > EVSEL[2:0] selects between the 8 event channels TCpy_CTRLD, p=c, D, E, or F; y=0,1, or 2; example TCF0_CTRD 17 Sec 3.6 XMEGA Event Input Selection The event channels associated with the different channels cannot be selected individually The % is the modulo operator > Note that when a set of event channels have been selected for the TC, this does not mean that these event channels are used exclusively by the TC > The TC simply listens to the selected channels and is able to receive events on these event channels Table 3-2 Input capture channel Global event channel A N B (N+1)% 8 C (if available) (N+2) % 8 D (if available) (N+3) %

10 Sec 3.6 XMEGA Event Input Selection Example 1: > CTRLD s EVSEL3 = 1 and EVSEL[2:0] = 0 means that input capture channels A, B, C and D are triggered by event channels 0, 1, 2 and 3 respectively Example 1: > CTRLD s EVSEL3 = 1 and EVSEL[2:0] = 6 means that input capture channels A, B, C and D are triggered by event channels 6, 7, 0 and 1 respectively Table 3-2 See doc8331, Sec Input capture channel Global event channel A N B (N+1)% 8 C (if available) (N+2) % 8 D (if available) (N+3) % 8 19 Sec 3.6 XMEGA Event Input Selection and Bouncing If the event source is subject to noise, e.g., caused by the bouncing of an external switch, it is possible to enable digital filtering on the event channel >See application note AVR1001 for more information on the event system and its digital filtering capabilities 20 10

11 See doc8331: Figure XMEGA Capture Channel The CC channels can be used as capture channels to capture external events and give them a timestamp To use capture, the counter must be set for normal operation 21 See doc8331: Section EVACT[2:0]: Event Action > These bits define the event action the timer performs on an event according Selecting any of the capture event actions changes the behavior of the CCx registers and related status and control bits to be used for capture The error status flag (ERRIF) will indicate a buffer overflow in this configuration XMEGA TC CTRLD Control register D EVACT[2:0] Group Config Event Action 000 Off None 001 CAPT Input capture 010 UpDwn Externally ctrl count 011 QDEC Quad decode 100 Restart Restart per 101 FRQ Freq capture 110 PW PW capture TCpy_CTRLD, p=c, D, E, or F; y=0,1, or 2; example TCF0_CTRD 22 11

12 See doc8331: Section XMEGA TC CTRLA Control Register A CLKSEL[3:0]: Clock Select CLKSEL[2:0] 0000 Group Config Off Description None (TC OFF) 0001 DIV1 Prescaler: Clk 0010 DIV2 Prescaler: Clk/ DIV4 Prescaler: Clk/4 See doc8331: 0100 DIV8 Prescaler: Clk/8 Table DIV64 Prescaler: Clk/ DIV256 Prescaler: Clk/ DIV1024 Prescaler: Clk/1024 nnn event channel 1nnn EVCHn Event channel n, n=0,,7 TCpy_CTRLA, p=c, D, E, or F; y=0,1, or 2; example TCF0_CTRD 25 See doc8331: Section XMEGA TC CTRLB Control Register B CCxEN: Compare or Capture Enable >Setting these bits in the FRQ or PWM waveform generation mode of operation will override the port output register for the corresponding OCn output pin >When input capture operation is selected, the CCxEN bits enable the capture operation for the corresponding CC channel TCpy_CTRLB, p=c, D, E, or F; y=0,1, or 2; example TCF0_CTRB 26 12

13 XMEGA TC Normal Mode Sec Normal Mode MUST BE USED for Input Capture > Counter will count in the direction set by the DIR bit in CTRLF for each clock until it reaches TOP set by PER[H:L] or BOTTOM (zero) > When TOP is reached when up-counting the counter will be reset to zero > When BOTTOM is reached when downcounting, the counter will wrap around to the value in PER[H:L] 28 XMEGA TC Input Capture Setup Setup GPIO for input pin and event on any edge > PORTF_DIR, PORTF_PIN0CTRL Configure TC system (and event system) > TCF0_CTRLA, TCF0_CTRLB, TCF0_CTRLD, EVSYS_CH0MUX, TCF0_PER Configure TC interrupts or use Event System > TCF0_INTCTRLB, PMIC_CTRL Input Capture TC interrupt service routine > TCF0_CCA, TCF0_CTRLFSET Sec

14 See doc8045: Section 6 describes several similar examples of how to complete tasks. XMEGA Input Capture Example Task: Configure TCC0 with Input Capture Channel A enabled. The Input Capture is triggered by the falling edge of PC0 See doc8045: Sec Configure PC0 for input, triggered on falling edge 2. Select PC0 as multiplexer input for event channel 0 3. Configure TCC0 for input capture by setting event source and event action to Input capture in CTRLD 4. Enable input capture channel A by setting the CCAEN bit in CTRLB 5. Start the TC by selecting a clock source (CLKSEL in CTRLA) 6. Wait for Input Capture Interrupt Flag A in INTFLAGS to be set 7. Read input capture value from the CCA[H:L] register 8. Go to step 4 31 The End! 32 14

COSC3215. Input Capture Output Compare

COSC3215. Input Capture Output Compare COSC3215 Input Capture Output Compare Time Base A 16-bit free running counter is used as a time base for the IC/OC system. CLK0 CLK1 4:1 MUX Timer Clock TIMCLK PACK/256 PACK/65536 PACK PCLK CLK1 CLK0 Action

More information

M68HC11 Timer. Definition

M68HC11 Timer. Definition M68HC Timer March 24 Adam Reich Jacob Brand Bhaskar Saha Definition What is a timer? A timer is a digital sequential circuit that can count at a precise and programmable frequency Built-in timer (like

More information

Point System (for instructor and TA use only)

Point System (for instructor and TA use only) EEL 4744C - Drs. George and Gugel Spring Semester 2002 Final Exam NAME SS# Closed book and closed notes examination to be done in pencil. Calculators are permitted. All work and solutions are to be written

More information

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the 9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of 9S12 hardware subsystems Introduction

More information

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the 9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of 9S12 hardware subsystems Introduction

More information

Microcontrollers. Outline. Class 4: Timer/Counters. March 28, Timer/Counter Introduction. Timers as a Timebase.

Microcontrollers. Outline. Class 4: Timer/Counters. March 28, Timer/Counter Introduction. Timers as a Timebase. Microcontrollers Class 4: Timer/Counters March 28, 2011 Outline Timer/Counter Introduction Timers as a Timebase Timers for PWM Outline Timer/Counter Introduction Timers as a Timebase Timers for PWM Outline

More information

Design and Implementation of Timer, GPIO, and 7-segment Peripherals

Design and Implementation of Timer, GPIO, and 7-segment Peripherals Design and Implementation of Timer, GPIO, and 7-segment Peripherals 1 Module Overview Learn about timers, GPIO and 7-segment display; Design and implement an AHB timer, a GPIO peripheral, and a 7-segment

More information

AND, NAND, OR, NOR, XOR, XNOR, NOT, MUX D-Flip-Flop, D Latch, RS Latch. Input sources: From external pins or the event system USART pins

AND, NAND, OR, NOR, XOR, XNOR, NOT, MUX D-Flip-Flop, D Latch, RS Latch. Input sources: From external pins or the event system USART pins APPLICATION NOTE AT01084: XMEGA E Using the XCL Module Atmel AVR XMEGA E XCL Features Two independent 8-bit timer/counter One 16-bit timer/counter by cascading two 8-bit timer/counters Programmable lookup

More information

Fast Quadrature Decode TPU Function (FQD)

Fast Quadrature Decode TPU Function (FQD) PROGRAMMING NOTE Order this document by TPUPN02/D Fast Quadrature Decode TPU Function (FQD) by Jeff Wright 1 Functional Overview The fast quadrature decode function is a TPU input function that uses two

More information

MBI5050 Application Note

MBI5050 Application Note MBI5050 Application Note Foreword In contrast to the conventional LED driver which uses an external PWM signal, MBI5050 uses the embedded PWM signal to control grayscale output and LED current, which makes

More information

AT03716: Implementation of SAM L Configurable Custom Logic (CCL) Peripheral. Description. SMART ARM-based Microcontrollers APPLICATION NOTE

AT03716: Implementation of SAM L Configurable Custom Logic (CCL) Peripheral. Description. SMART ARM-based Microcontrollers APPLICATION NOTE SMART ARM-based Microcontrollers AT03716: Implementation of SAM L Configurable Custom Logic (CCL) Peripheral APPLICATION NOTE Description The Configurable Custom Logic (CCL) module contains programmable

More information

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Application Note GA8_0L Klaus Schiffner, Tilman Betz, 7/97 Subject to change Product: Audio Analyzer UPD . Introduction

More information

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 1 Introduction Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 Circuits for counting both forward and backward events are frequently used in computers and other digital systems. Digital

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

SPI Serial Communication and Nokia 5110 LCD Screen

SPI Serial Communication and Nokia 5110 LCD Screen 8 SPI Serial Communication and Nokia 5110 LCD Screen 8.1 Objectives: Many devices use Serial Communication to communicate with each other. The advantage of serial communication is that it uses relatively

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? A means to convert

More information

Lab 3: Timer and Clock

Lab 3: Timer and Clock CS4101 Introduction to Embedded Systems Lab 3: Timer and Clock Prof. Chung-Ta King Department of Computer Science, Taiwan Introduction In this lab, we will learn more advanced timer operations and clocking

More information

EET 1131 Lab #10 Latches and Flip-Flops

EET 1131 Lab #10 Latches and Flip-Flops Name OBJECTIVES: 1. To study the operation of a D latch. 2. To study the operation of a D flip-flop. 3. To study the operation of a J-K flip-flop. EQUIPMENT REQUIRED: Safety glasses ICs: 7474, 7475, 74LS76

More information

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date:

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date: Richland College School of Engineering & Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Rev. 3 (7/2015) J. Bradbury Digital Fundamentals CETT 1425 Lab 5 Latches & Flip-Flops

More information

NI-DAQmx Device Considerations

NI-DAQmx Device Considerations NI-DAQmx Device Considerations January 2008, 370738M-01 This help file contains information specific to analog output (AO) Series devices, C Series, B Series, E Series devices, digital I/O (DIO) devices,

More information

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 9 Clock generator circuits & Counters

More information

ASYNCHRONOUS COUNTER CIRCUITS

ASYNCHRONOUS COUNTER CIRCUITS ASYNCHRONOUS COUNTER CIRCUITS Asynchronous counters do not have a common clock that controls all the Hipflop stages. The control clock is input into the first stage, or the LSB stage of the counter. The

More information

WaveMaker III Gartech Enterprises Inc. 12/17/2012

WaveMaker III Gartech Enterprises Inc. 12/17/2012 WaveMaker III Gartech Enterprises Inc. 12/17/2012 1 Preface: WaveMaker III standalone unit is produced for those desiring a flexible wave form generator. This unit is capable of providing selectable waveform

More information

EECS145M 2000 Midterm #1 Page 1 Derenzo

EECS145M 2000 Midterm #1 Page 1 Derenzo UNIVERSITY OF CALIFORNIA College of Engineering Electrical Engineering and Computer Sciences Department EECS 145M: Microcomputer Interfacing Laboratory Spring Midterm #1 (Closed book- calculators OK) Wednesday,

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Analog-to-Digital Converter

Analog-to-Digital Converter 5 5.1 Objectives: The TM4C is equipped with an analog-to-digital (ATD) conversion system that samples an analog (continuous) signal at regular intervals and then converts each of these analog samples into

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Asynchronous counters

Asynchronous counters Asynchronous counters In the previous section, we saw a circuit using one J-K flip-flop that counted backward in a two-bit binary sequence, from 11 to 10 to 01 to 00. Since it would be desirable to have

More information

Eng. Mohammed Samara. Fall The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

Eng. Mohammed Samara. Fall The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department Fall 2011 The Islamic University of Gaza Faculty of Engineering Computer Engineering Department ECOM 4111 - Digital Systems Design Lab Lab 7: Prepared By: Eng. Mohammed Samara Introduction: A counter is

More information

Marks and Grades Project

Marks and Grades Project Marks and Grades Project This project uses the HCS12 to allow for user input of class grades to determine the letter grade and overall GPA for all classes. Interface: The left-most DIP switch (SW1) is

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

LAB #4 SEQUENTIAL LOGIC CIRCUIT

LAB #4 SEQUENTIAL LOGIC CIRCUIT LAB #4 SEQUENTIAL LOGIC CIRCUIT OBJECTIVES 1. To learn how basic sequential logic circuit works 2. To test and investigate the operation of various latch and flip flop circuits INTRODUCTIONS Sequential

More information

R3B Si TRACKER CABLE TEST REPORT

R3B Si TRACKER CABLE TEST REPORT R3B Si TRACKER CABLE TEST REPORT Author: Mos Kogimtzis Date: 22/05/2012 Department: NPG, Technology Project: R3B Si Tracker Detector Customer: Internal 1. Scope The aim of the test described below is to

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals CHAPTER 7 Latches, Flip-Flops

More information

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017 University of Texas at El Paso Electrical and Computer Engineering Department EE 2169 Laboratory for Digital Systems Design I Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift

More information

Experiment: FPGA Design with Verilog (Part 4)

Experiment: FPGA Design with Verilog (Part 4) Department of Electrical & Electronic Engineering 2 nd Year Laboratory Experiment: FPGA Design with Verilog (Part 4) 1.0 Putting everything together PART 4 Real-time Audio Signal Processing In this part

More information

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory RPI Rensselaer Polytechnic Institute Computer Hardware Design ECSE 4770 Report Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory Name: Walter Dearing Group: Brad Stephenson David Bang

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

Boonton 4540 Remote Operation Modes

Boonton 4540 Remote Operation Modes Application Note Boonton 4540 Remote Operation Modes Mazumder Alam Product Marketing Manager, Boonton Electronics Abstract Boonton 4540 series power meters are among the leading edge instruments for most

More information

Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect

Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect software faults. 1 The window watchdog is used to detect the

More information

ECT 224: Digital Computer Fundamentals Digital Circuit Simulation & Timing Analysis

ECT 224: Digital Computer Fundamentals Digital Circuit Simulation & Timing Analysis ECT 224: Digital Computer Fundamentals Digital Circuit Simulation & Timing Analysis 1) Start the Xilinx ISE application, open Start All Programs Xilinx ISE 9.1i Project Navigator or use the shortcut on

More information

HST Neural Coding and Perception of Sound. Spring Cochlear Nucleus Unit Classification from Spike Trains. M.

HST Neural Coding and Perception of Sound. Spring Cochlear Nucleus Unit Classification from Spike Trains. M. Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte HST.723 - Neural Coding and Perception of Sound Spring 2004 Cochlear

More information

Special Applications Modules

Special Applications Modules (IC697HSC700) datasheet Features 59 1 IC697HSC700 a45425 Single slot module Five selectable counter types 12 single-ended or differential inputs TTL, Non-TTL and Magnetic Pickup input thresholds Four positive

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers Registers Registers are a very important digital building block. A data register is used to store binary information appearing at the output of an encoding matrix.shift registers are a type of sequential

More information

2.6 Reset Design Strategy

2.6 Reset Design Strategy 2.6 Reset esign Strategy Many design issues must be considered before choosing a reset strategy for an ASIC design, such as whether to use synchronous or asynchronous resets, will every flipflop receive

More information

Part No. ENC-LAB01 Users Manual Introduction EncoderLAB

Part No. ENC-LAB01 Users Manual Introduction EncoderLAB PCA Incremental Encoder Laboratory For Testing and Simulating Incremental Encoder signals Part No. ENC-LAB01 Users Manual The Encoder Laboratory combines into the one housing and updates two separate encoder

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 2/4 ELEKTRONIK DIGIT Kolej Universiti Kejuruteraan Utara Malaysia Sequential Logic Circuits - COUNTERS - LATCHES (review) S-R R Latch S-R R Latch Active-LOW input INPUTS OUTPUTS S R Q Q COMMENTS Q

More information

Application Note. RTC Binary Counter An Introduction AN-CM-253

Application Note. RTC Binary Counter An Introduction AN-CM-253 Application Note RTC Binary Counter An Introduction AN-CM-253 Abstract This application note introduces the behavior of the GreenPAK's Real-Time Counter (RTC) and outlines a couple common design applications

More information

Programmable Logic Design Techniques II

Programmable Logic Design Techniques II Programmable Logic Design Techniques II. p. 1 Programmable Logic Design Techniques II Almost all digital signal processing requires that information is recorded, possibly manipulated and then stored in

More information

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

SWITCH: Microcontroller Touch-switch Design & Test (Part 2) SWITCH: Microcontroller Touch-switch Design & Test (Part 2) 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON v2.09 Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Timetable... 2

More information

Counter/timer 2 of the 83C552 microcontroller

Counter/timer 2 of the 83C552 microcontroller INTODUCTION TO THE 83C552 The 83C552 is an 80C51 derivative with several extended features: 8k OM, 256 bytes AM, 10-bit A/D converter, two PWM channels, two serial I/O channels, six 8-bit I/O ports, and

More information

Experiment 7 Fall 2012

Experiment 7 Fall 2012 10/30/12 Experiment 7 Fall 2012 Experiment 7 Fall 2012 Count UP/DOWN Timer Using The SPI Subsystem Due: Week 9 lab Sessions (10/23/2012) Design and implement a one second interval (and high speed 0.05

More information

DT9834 Series High-Performance Multifunction USB Data Acquisition Modules

DT9834 Series High-Performance Multifunction USB Data Acquisition Modules DT9834 Series High-Performance Multifunction USB Data Acquisition Modules DT9834 Series High Performance, Multifunction USB DAQ Key Features: Simultaneous subsystem operation on up to 32 analog input channels,

More information

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs Asynchronous Preset and Clear Inputs The S-R, J-K and D inputs are known as synchronous inputs because the outputs change when appropriate input values are applied at the inputs and a clock signal is applied

More information

Fast Quadrature Decode TPU Function (FQD)

Fast Quadrature Decode TPU Function (FQD) SEMICONDUCTOR PROGRAMMING NOTE Order this document by TPUPN02/D Fast Quadrature Decode TPU Function (FQD) by Jeff Wright 1 Functional Overview The fast quadrature decode function is a TPU input function

More information

IS01BFRGB LCD SmartDisplay from NKK Switches Simple implementation featuring the ATmega88PA from Atmel Complete software solution

IS01BFRGB LCD SmartDisplay from NKK Switches Simple implementation featuring the ATmega88PA from Atmel Complete software solution DKAN0003A Controlling the SmartDisplay with a SPI Peripheral 09 June 009 Features IS01BFRGB LCD SmartDisplay from NKK Switches Simple implementation featuring the ATmega88PA from Atmel Complete software

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

Chapter 2. Digital Circuits

Chapter 2. Digital Circuits Chapter 2. Digital Circuits Logic gates Flip-flops FF registers IC registers Data bus Encoders/Decoders Multiplexers Troubleshooting digital circuits Most contents of this chapter were covered in 88-217

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver EM MICROELECTRONIC - MARIN SA 2, 4 and 8 Mutiplex LCD Driver Description The is a universal low multiplex LCD driver. The version 2 drives two ways multiplex (two blackplanes) LCD, the version 4, four

More information

Polar Decoder PD-MS 1.1

Polar Decoder PD-MS 1.1 Product Brief Polar Decoder PD-MS 1.1 Main Features Implements multi-stage polar successive cancellation decoder Supports multi-stage successive cancellation decoding for 16, 64, 256, 1024, 4096 and 16384

More information

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise 4 Polling and Interrupts The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two methods used to indicate whether or not data can be

More information

CMS Conference Report

CMS Conference Report Available on CMS information server CMS CR 1997/017 CMS Conference Report 22 October 1997 Updated in 30 March 1998 Trigger synchronisation circuits in CMS J. Varela * 1, L. Berger 2, R. Nóbrega 3, A. Pierce

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

Lab #11: Register Files

Lab #11: Register Files Lab #11: Register Files ECE/COE 0501 Date of Experiment: 3/20/2017 Report Written: 3/22/2017 Submission Date: 3/27/2017 Nicholas Haver nicholas.haver@pitt.edu 1 H a v e r PURPOSE The purpose of this lab

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE - To explain how to configure and use the Timebase Module OBJECTIVES: - Describe the uses and features of the Timebase Module. - Identify the steps to configure the Timebase

More information

BUSES IN COMPUTER ARCHITECTURE

BUSES IN COMPUTER ARCHITECTURE BUSES IN COMPUTER ARCHITECTURE The processor, main memory, and I/O devices can be interconnected by means of a common bus whose primary function is to provide a communication path for the transfer of data.

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

C Module Description

C Module Description IQMMX -Input Router & ASI Distribution Amplifier C Module Description The IQMMX is an ASI to 1 switch, distribution amplifier and transport stream switcher with up to 8 outputs in double width form or

More information

C8188 C8000 1/10. digital audio modular processing system. 4 Channel AES/EBU I/O. features. block diagram. 4 balanced AES inputs

C8188 C8000 1/10. digital audio modular processing system. 4 Channel AES/EBU I/O. features. block diagram. 4 balanced AES inputs features 4 balanced AES inputs Input Sample Rate Converters (SRC) 4 balanced AES outputs Relay bypass for pairs of I/Os Relay wait time after power up Master mode (clock master for the frame) 25pin Sub-D,

More information

Dave Jones Design Phone: (607) Lake St., Owego, NY USA

Dave Jones Design Phone: (607) Lake St., Owego, NY USA Manual v1.00a June 1, 2016 for firmware vers. 2.00 Dave Jones Design Phone: (607) 687-5740 34 Lake St., Owego, NY 13827 USA www.jonesvideo.com O Tool Plus - User Manual Main mode NOTE: New modules are

More information

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001 Flip-Flops and Related Devices Wen-Hung Liao, Ph.D. 4/11/2001 Objectives Recognize the various IEEE/ANSI flip-flop symbols. Use state transition diagrams to describe counter operation. Use flip-flops in

More information

R.G.O. 32 BIT CAMAC COUNTER MODULE USER MANUAL

R.G.O. 32 BIT CAMAC COUNTER MODULE USER MANUAL R.G.O. 32 BIT CAMAC COUNTER MODULE USER MANUAL C.S. Amos / D.J. Steel 16th August 1993 Copyright R.G.O. August 1993 1. General description. 3 2. Encoder formats 3 2.1 A quad B type encoders... 3 2.2 Up/down

More information

DIGITAL TIMER - MODES- rev. 5.5

DIGITAL TIMER - MODES- rev. 5.5 JUMPER LOGIC The different modes described can be accessed by setting the jumpers according to the following table. MODE JUMPER DESCRIPTION B C D 1 ON ON ON MANUAL STOP WITH CANCEL 2 OFF ON ON MANUAL STOP

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

1. Synopsis: 2. Description of the Circuit:

1. Synopsis: 2. Description of the Circuit: Design of a Binary Number Lock (using schematic entry method) 1. Synopsis: This lab gives you more exercise in schematic entry, state machine design using the one-hot state method, further understanding

More information

VGA Port. Chapter 5. Pin 5 Pin 10. Pin 1. Pin 6. Pin 11. Pin 15. DB15 VGA Connector (front view) DB15 Connector. Red (R12) Green (T12) Blue (R11)

VGA Port. Chapter 5. Pin 5 Pin 10. Pin 1. Pin 6. Pin 11. Pin 15. DB15 VGA Connector (front view) DB15 Connector. Red (R12) Green (T12) Blue (R11) Chapter 5 VGA Port The Spartan-3 Starter Kit board includes a VGA display port and DB15 connector, indicated as 5 in Figure 1-2. Connect this port directly to most PC monitors or flat-panel LCD displays

More information

T 2 : WR = 0, AD 7 -AD 0 (μp Internal Reg.) T 3 : WR = 1,, M(AB) AD 7 -AD 0 or BDB

T 2 : WR = 0, AD 7 -AD 0 (μp Internal Reg.) T 3 : WR = 1,, M(AB) AD 7 -AD 0 or BDB Lecture-17 Memory WRITE Machine Cycle: It also requires only T 1 to T 3 states. The purpose of memory write machine cycle is to store the contents of any of the 8085A register such as the accumulator into

More information

FRQM-2 Frequency Counter & RF Multimeter

FRQM-2 Frequency Counter & RF Multimeter FRQM-2 Frequency Counter & RF Multimeter Usage Instructions Firmware v2.09 Copyright 2007-2011 by ASPiSYS Ltd. Distributed by: ASPiSYS Ltd. P.O.Box 14386, Athens 11510 (http://www.aspisys.com) Tel. (+30)

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer 1 P a g e HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer Objectives: Develop the behavioural style VHDL code for D-Flip Flop using gated,

More information

Scanned by CamScanner

Scanned by CamScanner NAVEEN RAJA VELCHURI DSD & Digital IC Applications Example: 2-bit asynchronous up counter: The 2-bit Asynchronous counter requires two flip-flops. Both flip-flop inputs are connected to logic 1, and initially

More information

MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS)

MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) The MC54/ 74F568 and MC54/74F569 are fully synchronous, reversible counters with 3-state outputs. The F568 is a BCD decade counter; the F569 is a binary

More information

GREAT 32 channel peak sensing ADC module: User Manual

GREAT 32 channel peak sensing ADC module: User Manual GREAT 32 channel peak sensing ADC module: User Manual Specification: 32 independent timestamped peak sensing, ADC channels. Input range 0 to +8V. Sliding scale correction. Peaking time greater than 1uS.

More information

Using the Synchronized Pulse-Width Modulation etpu Function by:

Using the Synchronized Pulse-Width Modulation etpu Function by: Freescale Semiconductor Application Note Document Number: AN2854 Rev. 1, 10/2008 Using the Synchronized Pulse-Width Modulation etpu Function by: Geoff Emerson Microcontroller Solutions Group This application

More information

013-RD

013-RD Engineering Note Topic: Product Affected: JAZ-PX Lamp Module Jaz Date Issued: 08/27/2010 Description The Jaz PX lamp is a pulsed, short arc xenon lamp for UV-VIS applications such as absorbance, bioreflectance,

More information

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 Objectives: Students should be able to Thursday 21 st January 2016 @ 10:45 am Module

More information

82C55A CHMOS PROGRAMMABLE PERIPHERAL INTERFACE

82C55A CHMOS PROGRAMMABLE PERIPHERAL INTERFACE Y Y Y Y Y 82C55A CHMOS PROGRAMMABLE PERIPHERAL INTERFACE Compatible with all Intel and Most Other Microprocessors High Speed Zero Wait State Operation with 8 MHz 8086 88 and 80186 188 24 Programmable I

More information

Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts)

Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts) Nate Pihlstrom, npihlstr@uccs.edu Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts) Objective The objective of lab assignments 5 through 9 are to systematically design and implement

More information

Digital Systems Laboratory 3 Counters & Registers Time 4 hours

Digital Systems Laboratory 3 Counters & Registers Time 4 hours Digital Systems Laboratory 3 Counters & Registers Time 4 hours Aim: To investigate the counters and registers constructed from flip-flops. Introduction: In the previous module, you have learnt D, S-R,

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 6 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

N3ZI Digital Dial Manual For kit with Backlit LCD Rev 4.00 Jan 2013 PCB

N3ZI Digital Dial Manual For kit with Backlit LCD Rev 4.00 Jan 2013 PCB N3ZI Digital Dial Manual For kit with Backlit LCD Rev 4.00 Jan 2013 PCB Kit Components Item Qty Designator Part Color/Marking PCB 1 LCD Display 1 LCD 1602 Volt Regulator 1 U1 78L05, Black TO-92 Prescaler

More information

FLIP-FLOPS AND RELATED DEVICES

FLIP-FLOPS AND RELATED DEVICES C H A P T E R 5 FLIP-FLOPS AND RELATED DEVICES OUTLINE 5- NAND Gate Latch 5-2 NOR Gate Latch 5-3 Troubleshooting Case Study 5-4 Digital Pulses 5-5 Clock Signals and Clocked Flip-Flops 5-6 Clocked S-R Flip-Flop

More information