Data Sheet. MGA GHz WLAN Power Amplifier Module. Description. Features. Component Image. Applications. Pin Configuration

Size: px
Start display at page:

Download "Data Sheet. MGA GHz WLAN Power Amplifier Module. Description. Features. Component Image. Applications. Pin Configuration"

Transcription

1 MGA GHz WLAN Power Amplifier Module Data Sheet Description Avago Technologies MGA is a fully matched power amplifier for use in the WLAN band ( MHz). High linear output power at 5.0 V is achieved through the use of Avago s proprietary 0.25 µm GaAs Enhancement-mode phemt process. MGA is housed in a miniature 5.0 mm 5.0 mm molded-chip-on-board (MCOB) module package. A detector is also included on-chip. The compact footprint coupled with high gain, high linearity and good efficiency makes the MGA an ideal choice as a power amplifier for small cell enterprise WLAN PA applications. Component Image ( ) mm Package Outline AVAGO YYWW XXXX TOP VIEW Notes: Package marking provides orientation and identification = Device part number YYWW = Year and work week XXXX = Assembly lot number Features Linear P EVM =2.5% (802.11n): 27.8 dbm Linear P out with Restricted Band Emission (802.11n) of MHz: 22.2 dbm Linear P out with Restricted Band Emission (802.11n) of MHz: 22.2 dbm High gain : 40.5 db Fully matched input and output ports Built-in detector GaAs E-pHEMT Technology [1] Low-cost small package size: ( ) mm MSL3 Lead-free/Halogen-free/RoHS compliance Note: 1. Enhancement mode technology employs positive V GS, and so eliminates the need for negative gate voltage associated with conventional depletion mode devices. Applications Enterprise WLAN access points Small cell with embedded WLAN Pin Configuration 28 Vdd1 27 Gnd 26 Vdd2 25 Gnd 24 Vdd3 23 Vdd3 22 Vdd3 Gnd 1 Gnd 2 NC 3 RFin 4 NC 5 Gnd 6 NC 7 ( ) mm 21 Gnd 20 Gnd 19 RFout 18 RFout 17 RFout 16 Gnd 15 Gnd Functional Block Diagram RFin Vdd1 Vdd2 Vdd3 1 st Stage 2 nd Stage 3 rd Stage RFout Attention: Observe precautions for handling electrostatic-sensitive devices. ESD Machine Model = 60 V ESD Human Body Model = 400 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Vc1 8 Vc2 9 Vc3 10 Gnd 11 VddBias 12 Gnd 13 Vdet 14 Biasing Circuit Top View Vc1 Vc2 Vc3 VddBias Vdet

2 Absolute Maximum Rating [1] T A = 25 C Symbol Parameter Units Absolute Max. V dd, V ddbias Supply voltages, bias supply voltage V 5.5 V c Control voltage V (V dd ) P in,max CW RF Input Power dbm 20 P diss Total Power Dissipation [3] W 6.0 T j Junction Temperature C 150 T STG Storage Temperature C -65 to 150 Thermal Resistance [2,3] q JC = 13 C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Thermal resistance measured using Infra- Red Measurement Technique. 3. Board temperature (T C ) is 25 C, for T C > 72 C derate the device power at 77 mw per C rise in board (package belly) temperature. Electrical Specifications T A = 25 C, V dd = V ddbias =5.0 V, V c1 =2.0 V, V c2 =2.2 V, V c3 =2.0 V, RF performance at 2442 MHz, IEEE n 64-QAM, 20 MHz Bandwidth, MCS 7, 800 ns Guard Interval, unless otherwise stated. Symbol Parameter and Test Condition Units Min. Typ. Max. V dd Supply Voltage V 5.0 I dq Quiescent Supply Current ma I ddtotal Total Supply Current at linear output 21 dbm (2412 MHz) ma Total Supply Current at linear output 21 dbm (2462 MHz) ma Total Supply Current at linear output 27 dbm ma 700 S21 Small Signal Gain db 40.5 S11 Input Return Loss, 50 Ω source db 12.5 S22 Output Return Loss, 50 Ω source db 13.5 OP1dB Output Power at 1 db Gain Compression dbm 36 PAE Power Added Efficiency at linear output 21 dbm (2412 MHz) % 4.4 Power Added Efficiency at linear output 21 dbm (2462 MHz) % 5.2 Power Added Efficiency at linear output 27 dbm % fo 2nd Harmonic Distortion at 27 dbm dbc fo 3rd Harmonic Distortion at 27 dbm dbc Linear P out Restricted Band Emission 21 dbm at 2390 MHz (2412 MHz) dbm Restricted Band Emission 21 dbm at MHz (2462 MHz) dbm Error Vector Magnitude at 2.5% dbm

3 Product Consistency Distribution Charts [1] Figure 1. I dq Figure 2. I dd 21 dbm at 2412 MHz Figure 3. I dd 21 dbm at 2462 MHz Figure dbm at 2390 MHz Figure dbm at MHz Note: 1. Distribution data sample size is 1200 samples taken from three wafer lots. T A = 25 C, V dd = V ddbias = 5.0 V, V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V, RF input at 2412 MHz and 2462 MHz, unless otherwise stated. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 3

4 MGA typical small-signal over-temperature performance at V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V (V dd = V ddbias = 5.0 V) as per demonstration board in Figure 28, unless otherwise stated. S11 (db) C C 40 C C C 85 C Frequency (GHz) Figure 6. Over-temperature S11 vs. Frequency S22 (db) Frequency (GHz) Figure 7. Over-temperature S22 vs. Frequency S21 (db) C 40 C 85 C Frequency (GHz) Figure 8. Over-temperature S21 vs. Frequency 4

5 MGA typical over-temperature performance at V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V (V dd = V ddbias = 5.0 V) with IEEE n 64-QAM, 20 MHz Bandwidth, MCS 7, 800 ns Guard Interval as per demonstration board in Figure 28, unless otherwise stated. RBE (dbm) at 2390 MHz MHz Figure 9. Over-temperature RBE at 2390 MHz vs MHz P out RBE (dbm) at MHz MHz Figure 10. Over-temperature RBE at MHz vs MHz P out RBE (dbm) at 2390 MHz MHz Figure 11. Over-temperature RBE at 2390 MHz vs MHz P out RBE (dbm) at MHz MHz Figure 12. Over-temperature RBE at MHz vs MHz P out EVM (%) EVM (%) Figure13. Over-temperature EVM vs. P out at 2412 MHz Figure 14. Over-temperature EVM vs. P out at 2442 MHz 5

6 MGA typical over-temperature performance at V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V (V dd = V ddbias = 5.0 V) with IEEE n 64-QAM, 20 MHz Bandwidth, MCS 7, 800 ns Guard Interval as per demonstration board in Figure 28, unless otherwise stated. (con't) EVM (%) Figure 15. Over-temperature EVM vs. P out at 2462 MHz PAE (%) Figure 16. Over-temperature PAE vs. P out at 2442 MHz Itotal (A) Vdet(V) Figure 17. Over-temperature I total vs. P out at 2442 MHz Figure 18. Over-temperature V det vs. P out at 2442 MHz 2nd Harmonic (dbc) Figure19. Over-temperature 2nd Harmonic vs. P out at 2442 MHz 3rd Harmonic (dbc) Figure 20. Over-temperature 3rd Harmonic vs. P out at 2442 MHz 6

7 MGA typical over-temperature performance at V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V (V dd = V ddbias = 5.0 V) with IEEE n 64-QAM, 20 MHz Bandwidth, MCS 7, 800 ns Guard Interval as per demonstration board in Figure 28, unless otherwise stated. (con't) Gain (db) Gain I total C Figure 21. Over-temperature CW Gain, I total vs. P out at 2412 MHz Itotal (A) Gain (db) Gain I total Figure 22. Over-temperature CW Gain, I total vs. P out at 2442 MHz Itotal (A) Gain (db) Gain I 38.5 total Figure 23. Over-temperature CW Gain, I total vs. P out at 2462 MHz Itotal (A) 7

8 MGA typical over-temperature performance at V c1 = 2.0 V, V c2 = 2.2 V, V c3 = 2.0 V (V dd = V ddbias = 5.0 V) with IEEE n 64-QAM, 20 MHz Bandwidth, MCS 7, 800 ns Guard Interval as per demonstration board in Figure 28, unless otherwise stated. (con't) Spectrum Emission Mask (SEM) with n IEEE signal Power (db) Frequency Offset (MHz) Figure 24. Over-temperature SEM 22 dbm at 2442 MHz SEM Limit Power (db) Frequency Offset (MHz) Figure 25. Over-temperature SEM 29.5 dbm at 2442 MHz SEM Limit Spectrum Emission Mask (SEM) with b IEEE signal Power (db) SEM Limit Frequency Offset (MHz) Figure 26. Over-temperature SEM 22 dbm at 2442 MHz Power (db) SEM Limit Frequency Offset (MHz) Figure 27. Over-temperature SEM 32.5 dbm at 2442 MHz 8

9 S-Parameter [1] (V dd = V ddbias = 5.0 V, V c1 = 2.0 V, V c2 = 2.2 V, V c3 =2.0 V), T = 25 C, 50 Ω matched) Freq (GHz) 9 S11 (db) S11 (ang) S21 (db) S21 (ang) S22 (db) S22 (ang) S12 (db) S12 (ang)

10 S-Parameter [1] (V dd = V ddbias = 5.0 V, V c1 = 2.0 V, V c2 = 2.2 V, V c3 =2.0 V), T = 25 C, 50 Ω matched) Cont. Freq (GHz) S11 (db) S11 (ang) S21 (db) S21 (ang) S12 (db) Note: 1. S-parameter is measured with de-embedded reference plane at DUT RF in and RF out pins. S12 (ang) S22 (db) S22 (ang) 10

11 Test system setup Power Meter MXA Signal Analyzer Ext Trig 1 Event 1 Power Sensor MGA Power Sensor Signal Generator Coupler IEEE n 20 MHz (MCS 7) Signal Cavity Filter Isolator Attenuator Coupler Attenuator Power Supply Small-signal performance for Cavity Filter S11, S22, S21 (db) S(1,1) S(2,2) S(2,1) Frequency (GHz) freq S(1,1) S(2,1) S(2,2) S(1,2) GHz db ang db ang db ang db ang A cavity filter is used at the input of the DUT to ensure that a clean signal from the signal generator is presented to the DUT. 11

12 Demonstration Board Top View V dd1 (force) +5V V dd1s (sense) +5V V dd2 (force) +5V V dd2s (sense) +5V V dd3 (force) +5V V dd3s (sense) +5V Component Value Part Number Manufacturer Size C1, C2, C18, 7.5 pf GJM1555C1H7R5BB01D Murata 0402 C20, C22 C3, C7, C13, 0.1 µf GRM155R71C104KA88D Murata 0402 C25 C4, C8 8.2 pf GRM1555C1H8R2DZ01E Murata 0402 C µf GRM21BR71E225KA73L Murata 0805 C pf GJM1555C1H6R0CB01D Murata 0402 C26 22 nf CM05X7R223K16AHF AVX 0402 R1 0 Ω RMC1/10 JPTP Kamaya 0805 R2, R3, R4, R5 0 Ω RMC1/16S JPTH Kamaya 0402 V c1 =2.0 V V c2 =2.2 V V ddbias +5V V det Vc3=2.0 V (Output) V dd1s V dd2 V dd2s V dd3 V (sense) (force) (sense) (force) dd1 V (force) +5V +5V +5V +5V dd3s (sense) +5V +5V Pins pointing out of the page (unit is on top) Application board pin header assignments Pin 1 : V dd3 (Sense) Pin 2 : V dd3 (Force) Pin 3 : V dd2 (Sense) Pin 4 : V dd2 (Force) Pin 5 : V dd1 (Sense) Pin 6 : V dd1 (Force) Pin 13 : V c1 Pin 14 : V c2 Pin 15 : V c3 Pin 16 : V ddbias (Force) Pin 17 : V det All other pins are grounded V c1 =2.0 V V c2 =2.2 V V ddbias +5V V det Vc3=2.0 V (Output) Figure 28. Demonstration board application circuit for MGA module 12

13 Application Schematic C3 C4 Z = 50 Ω E = 8.3 deg F = GHz Vdd1 C8 Vdd2 Idq1 C7 Idq2 Idq3 Z = 50 Ω E = 7.0 deg F = GHz Z = 50 Ω E = 8.3 deg F = GHz Vdd3 C10 C13 1 RFin Z = 50 Ω F = GHz C1 Top View C2 RFout Z = 50 Ω F = GHz C18 C20 C22 C24 I_Vddbias C25 C26 Vc1 Vc2 Vc3 Vddbias Vdet Figure 29. Application circuit in demonstration board Notes: 1. All capacitors on supply lines are bypass capacitors. 2. C1/C2 are RF coupling capacitors. 3. For V dd = V ddbias = 5.0 V, I dq1 = 50 ma, I dq2 = 150 ma, I dq3 = 248 ma, I_V ddbias = 12 ma. These currents enable optimum bias conditions to be achieved for best linearity for n signal. 13

14 PCB Land Pattern and Stencil Outline Pin SolderMask Opening 0.50 (pitch) 0.25 PCB Land Pattern 0.50 Stencil Opening SolderMask Top Metal Notes: 1. Recommended Land Pattern and Stencil mils stencil thickness recommended. 3. All dimensions are in mm Combination of Land Pattern and Stencil Opening 14

15 MCOB (5.0 x 5.0 x 0.82) mm 28-Lead Package Dimensions PIN #1 Identification 5.00 ± ± PIN #1 Identification CHAMFER 0.43 x 45 AVAGO YYWW XXXX 5.00 ± Top View Side View Bottom View Notes: 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal burr. Part Number Ordering Information Part Number Qty Container MGA BLKG 100 Antistatic Bag MGA TR1G Reel 15

16 Device Orientation REEL USER FEED DIRECTION CARRIER TAPE AVAGO YYWW XXXX AVAGO YYWW XXXX AVAGO YYWW XXXX USER FEED DIRECTION COVER TAPE TOP VIEW END VIEW Tape Dimensions 16

17 Reel Dimensions (7 reel) Flange Thickness : Min mm min max min. Hatched Area Indicates Thru Hole FRONT VIEW Note: Dimensions are in mm. 2.5±0.5 RECYCLE SYMBOL 12.8 min max min TOLERANCE.X = ±0.25.XX = ±0.13 BACK VIEW 17

18 For product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright Avago Technologies. All rights reserved. AV EN - October 8, 2014

Data Sheet. ALM MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Description.

Data Sheet. ALM MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Description. ALM-11036 776 MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature Data Sheet Description Avago Technologies ALM-11036 is an easy-to-use GaAs MMIC Tower Mount Amplifier

More information

Data Sheet. ALM MHz 915 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Description.

Data Sheet. ALM MHz 915 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Description. ALM-11136 870 MHz 915 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature Data Sheet Description Avago Technologies ALM-11136 is an easy-to-use GaAs MMIC Tower Mount Amplifier

More information

Data Sheet. AMMP GHz x2 Frequency Multiplier. Features. Description. Applications. Functional Block Diagram.

Data Sheet. AMMP GHz x2 Frequency Multiplier. Features. Description. Applications. Functional Block Diagram. AMMP-61-24 GHz x2 Frequency Multiplier Data Sheet Description The AMMP-61 is an easy-to-use surface mounted packaged integrated frequency multiplier (x2) that operates from to 24 GHz output frequency.

More information

ALM-GP003 Data Sheet Description Features

ALM-GP003 Data Sheet Description Features ALM-GP3 GPS Filter LNA Front End Module Data Sheet Description Avago Technologies ALM-GP3 is a GPS front-end module that combines a GPS FBAR filter with high-gain low-noise amplifier (LNA).The LNA uses

More information

ADA-4789 Data Sheet Description Features Specifications Package Marking and Pin Connections 4GX Applications

ADA-4789 Data Sheet Description Features Specifications   Package Marking and Pin Connections 4GX Applications ADA-789 Silicon Bipolar Darlington Amplifier Data Sheet Description Avago Technologies ADA-789 is an economical, easyto-use, general purpose silicon bipolar RFIC gain block amplifiers housed in SOT-89

More information

Data Sheet. AMMP to 40 GHz GaAs MMIC Sub-Harmonic Mixer In SMT Package. Description. Features. Applications.

Data Sheet. AMMP to 40 GHz GaAs MMIC Sub-Harmonic Mixer In SMT Package. Description. Features. Applications. AMMP-5 1 to GHz GaAs MMIC Sub-Harmonic Mixer In SMT Package Data Sheet Description Avago s AMMP-5 is an easy-to-use broadband subharmonic mixer, with the injected at half of the frequency of that required

More information

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1]

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1] Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Space Functional Diagram Features Saturated

More information

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications Typical Applications The is ideal for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Functional Diagram Features High

More information

Features. = +25 C, Vdd = +4.5V, +4 dbm Drive Level

Features. = +25 C, Vdd = +4.5V, +4 dbm Drive Level Typical Applications The is ideal for: Clock Generation Applications: SONET OC-192 & SDH stm-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Features High Output Power: +21

More information

CMD197C GHz Distributed Driver Amplifier

CMD197C GHz Distributed Driver Amplifier Features Functional Block Diagram Wide bandwidth High linearity Single positive supply voltage On chip bias choke Pb-free RoHs compliant 4x4 mm SMT package Description The CMD197C4 is a wideband GaAs MMIC

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Typical Applications The is ideal

More information

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram v1.111 LO AMPLIFIER, 1.7-4. GHz Typical Applications The HMC215LP4 / HMC215LP4E is ideal for Wireless Infrastructure Applications: PCS / 3G Infrastructure Base Stations & Repeaters WiMAX & WiBro ISM &

More information

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications v2.514 Typical Applications The is suitable for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram Features

More information

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V v4.414 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Integrated LO Amplifier: -4

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v4.414 Typical Applications Features

More information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information Features Ideal for 802.11b ISM Applications Single Positive Supply Output Power 27.5 dbm 57% Typical Power Added Efficiency Downset MSOP-8 Package Description M/A-COM s is a 0.5 W, GaAs MMIC, power amplifier

More information

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier DATA SHEET SKY67105-306LF: 0.6-1.1 GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier Applications GSM, CDMA, WCDMA, cellular infrastructure systems Ultra low-noise, high gain and high linearity

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units HMCBLPE v.. -. GHz Typical Applications The HMCBLPE is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection:

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection: dbc Input Third-Order

More information

RFOUT/ VC2 31 C/W T L =85 C

RFOUT/ VC2 31 C/W T L =85 C 850MHz 1 Watt Power Amplifier with Active Bias SPA-2118(Z) 850MHz 1 WATT POWER AMPLIFIER WITH ACTIVE BIAS RoHS Compliant and Pb-Free Product (Z Part Number) Package: ESOP-8 Product Description RFMD s SPA-2118

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features 3 ~ 3.2V supply No Dropping Resistor Required No matching circuit needed Lead-free/Green/RoHS compliant SOT-363 package Application: Driver Amplifier, Cellular, PCS, GSM, UMTS, WCDMA, Wireless

More information

= +25 C, IF= 100 MHz, LO = +17 dbm*

= +25 C, IF= 100 MHz, LO = +17 dbm* v3.514 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Wide IF Bandwidth: DC - 3.5

More information

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units v. DOWNCONVERTER, - GHz Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radios Features Conversion

More information

SKY LF: GHz Ultra Low-Noise Amplifier

SKY LF: GHz Ultra Low-Noise Amplifier PRELIMINARY DATA SHEET SKY67151-396LF: 0.7-3.8 GHz Ultra Low-Noise Amplifier Applications LTE, GSM, WCDMA, TD-SCDMA infrastructure Ultra low-noise, high performance LNAs Cellular repeaters High temperature

More information

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A FEATURES Conversion loss: 9 db typical Local oscillator (LO) to radio frequency (RF) isolation: 37 db typical LO to intermediate frequency (IF) isolation: 37 db typical RF to IF isolation: db typical Input

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features Single Fixed 3V supply No Dropping Resistor Required No matching circuit needed Lead-free/Green/RoHS compliant SOT-363 package Application: Driver Amplifier, Cellular, PCS, GSM, UMTS, WCDMA,

More information

Absolute Maximum Ratings Parameter Rating Unit Max Supply Current (I C1 ) at V CC typ. 150 ma Max Supply Current (I C2 ) at V CC typ. 750 ma Max Devic

Absolute Maximum Ratings Parameter Rating Unit Max Supply Current (I C1 ) at V CC typ. 150 ma Max Supply Current (I C2 ) at V CC typ. 750 ma Max Devic 850MHz 1 Watt Power Amplifier with Active Bias SPA2118Z 850MHz 1 WATT POWER AMPLIFIER WITH ACTIVE BIAS Package: Exposed Pad SOIC-8 Product Description RFMD s SPA2118Z is a high efficiency GaAs Heterojunction

More information

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B Data Sheet FEATURES Passive; no dc bias required Conversion loss 8 db typical for 1 GHz to 18 GHz 9 db typical for 18 GHz to 26 GHz LO to RF isolation: 4 db Input IP3: 19 dbm typical for 18 GHz to 26 GHz

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features Single Fixed 3V supply No Dropping Resistor Required No matching circuit needed Lead-free/Green/RoHS compliant SOT-363 package Application: Driver Amplifier, Cellular, PCS, GSM, UMTS, WCDMA,

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features Single Fixed 3V supply No Dropping Resistor Required No matching circuit needed Lead-free/Green/RoHS compliant SOT-363 package Application: Driver Amplifier, Cellular, PCS, GSM, UMTS, WCDMA,

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

4W High Linearity InGaP HBT Amplifier. Product Description

4W High Linearity InGaP HBT Amplifier. Product Description AH42 Product Features 4 27 MHz +3.7 dbm P1dB -49 dbc ACLR @ 26 dbm db Gain @ 2 MHz 8 ma Quiescent Current + V Single Supply MTTF > 1 Years Lead-free/green/RoHS-compliant 12-pin 4xmm DFN Package Applications

More information

Preliminary Datasheet

Preliminary Datasheet Device Features Operated at 3.0V and 5.0V 35.5 dbm Output IP3 at 0dBm/tone at 3500MHz 16.4 db Gain at 3500 MHz 20.1 dbm P1dB at 3500MHz 0.67 db NF at 3500MHz Fast shut down to support TDD systems Lead-free/Green/RoHS

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 30 dbm @ 1900 MHz Gain = 16.4 db @ 1900 MHz Output P1 db = 17 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

Typical Performance 1. 2 OIP3 _ measured on two tones with a output power 8 dbm/ tone, F2 F1 = 1 MHz. +5V. RFout. Absolute Maximum Ratings

Typical Performance 1. 2 OIP3 _ measured on two tones with a output power 8 dbm/ tone, F2 F1 = 1 MHz. +5V. RFout. Absolute Maximum Ratings Device Features OIP3 = 41.5 dbm @ 500 MHz Gain = 27 db @ 140 MHz Output P1 db = 21 dbm @ 140 MHz NF = 2.7 @ 70MHz at Demo Board Product Description BeRex s BIG8 is a high performance InGaP/ GaAs HBT MMIC

More information

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram Typical Applications The HMC1LP6 / HMC1LP6E is ideal for Wireless Infrastructure Applications: GSM, GPRS & EDGE CDMA & W-CDMA Cellular / 3G Infrastructure Functional Diagram Features +26 dbm Input IP3

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units v1.214 HMC163LP3E Typical Applications The HMC163LP3E is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Sensors Functional Diagram Features

More information

2 OIP3 _ measured on two tones with a output power 8 dbm/ tone, F2 F1 = 1 MHz. Absolute Maximum Ratings

2 OIP3 _ measured on two tones with a output power 8 dbm/ tone, F2 F1 = 1 MHz. Absolute Maximum Ratings Device Features OIP3 = 41 dbm @ 14 MHz Gain = 2. db @ 14 MHz Output P1 db = 2. dbm @ 14 MHz NF = 2.7 @ 14MHz at Demo Board Ω Cascadable Lead-free/RoHS-compliant SOT-89 SMT package Typical Performance 1

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v3.514 Typical Applications Features The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Digital Radio VSAT Functional Diagram Wide IF Bandwidth: DC - 3.5 GHz Image Rejection: 35 db LO to RF

More information

Features. = +25 C, 50 Ohm System

Features. = +25 C, 50 Ohm System v1.111 47 Analog Phase Shifter, Typical Applications The is ideal for: EW Receivers Military Radar Test Equipment Satellite Communications Beam Forming Modules Features Wide Bandwidth: 47 Phase Shift Low

More information

* Notices. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage.

* Notices. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage. 1.7~2.7GHz High IIP3 GaAs MMIC with Integrated LO AMP Device Features +33.9 dbm Input IP3 8.3dB Conversion Loss Integrated LO Driver -2 to +4dBm LO drive level Available 3.3V to 5V single voltage MSL 1,

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 28 dbm @ 1900 MHz Gain = 16 db @ 1900 MHz Output P1 db = 15.5 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v3.514 HMC52LC4 6-1 GHz Typical Applications Features The HMC52LC4 is ideal for: Point-to-Point and Point-to-Multi-Point Radio Digital Radio VSAT Functional Diagram Wide IF Bandwidth: DC - 3.5 GHz Image

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features NF = 0.91 db @ 900MHz at RF connectors of Demo board Gain = 22.0 db @ 900 MHz OIP3 = 36.0 dbm @ 1900MHz, 38.0 dbm @ 2450MHz Output P1 db = 20.5 dbm @ 900/1900/2140 MHz 5V/75mA, MTTF > 100

More information

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram v3.1 HMC98LC Typical Applications The HMC98LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radio Functional Diagram

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC148* Product Page Quick Links Last Content Update: 11/1/216 Comparable

More information

TGA4541-SM Ka-Band Variable Gain Driver Amplifier

TGA4541-SM Ka-Band Variable Gain Driver Amplifier Applications VSAT Point-to-Point Radio Test Equipment & Sensors Product Features 441 1347 717 QFN 6x6mm L Functional Block Diagram Frequency Range: 28 31 GHz Power: 23 dbm P1dB Gain: 33 db Output TOI:

More information

Typical Performance 1. 2 OIP3 _ measured with two tones at an output of 7 dbm per tone separated by 1 MHz. Absolute Maximum Ratings

Typical Performance 1. 2 OIP3 _ measured with two tones at an output of 7 dbm per tone separated by 1 MHz. Absolute Maximum Ratings Device Features OIP3 = 32 dbm @ 1900 MHz Gain = 21.5 db @ 1900 MHz Output P1 db = 19 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

SKY LF: 1.5 to 3.8 GHz Two-Stage, High-Gain Low-Noise Amplifier

SKY LF: 1.5 to 3.8 GHz Two-Stage, High-Gain Low-Noise Amplifier DATA SHEET SKY67180-306LF: 1.5 to 3.8 GHz Two-Stage, High-Gain Low-Noise Amplifier Applications LTE, GSM, WCDMA, HSDPA macro-base and micro-base stations S and C band ultra-low-noise receivers Cellular

More information

Features. = +25 C, Vs = 5V, Vpd = 5V

Features. = +25 C, Vs = 5V, Vpd = 5V v1.117 HMC326MS8G / 326MS8GE AMPLIFIER, 3. - 4. GHz Typical Applications The HMC326MS8G / HMC326MS8GE is ideal for: Microwave Radios Broadband Radio Systems Wireless Local Loop Driver Amplifier Functional

More information

Typical Performance 1

Typical Performance 1 Device Features Internally matched to 50 ohms Operated at 3.0V and 5.0V 37.5 dbm Output IP3 at 0dBm/tone at 700MHz 22.5dB Gain at 700MHz 21.1dBm P1dB at 700 MHz 0.40 db NF at 700MHz on evaluation board

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 35 dbm @ 1900 MHz Gain = 16 db @ 1900 MHz Output P1 db = 19.5 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

Not recommended for new designs

Not recommended for new designs Device Features NF = 0.7 db @ 900MHz at RF connectors of Demo board Gain = 19.0 db @ 900 MHz OIP3 = 36.0 dbm @ 1900MHz, 2450MHz Output P1 db = 21.0 dbm @ 900MHz, 22.0 dbm @2450MHz 5V/48mA, MTTF > 100 Years,

More information

50~100MHz. 100~210MHz C2 1nF. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage

50~100MHz. 100~210MHz C2 1nF. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage 0.7~1.4GHz High IIP3 GaAs MMIC with Integrated LO AMP Device Features +31.7 dbm Input IP3 8.8dB Conversion Loss Integrated LO Driver -2 to +2dBm LO drive level Available 3.3V to 5V single voltage MSL 1,

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features db Conversion Gain Image Rejection:

More information

HMC485MS8G / 485MS8GE. Features OBSOLETE. = +25 C, LO = 0 dbm, IF = 200 MHz*, Vdd= 5V

HMC485MS8G / 485MS8GE. Features OBSOLETE. = +25 C, LO = 0 dbm, IF = 200 MHz*, Vdd= 5V Typical Applications High Dynamic Range Infrastructure: GSM, GPRS & EDGE CDMA & W-CDMA Cable Modem Termination Systems Functional Diagram Features +34 dbm Input IP3 Conversion Loss: db Low LO Drive: -2

More information

1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E

1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E FEATURES Passive: no dc bias required Conversion loss: 1 db typical Input IP3: 21 dbm typical RoHS compliant, ultraminiature package: 8-lead MSOP APPLICATIONS Base stations Personal Computer Memory Card

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v4.514 HMC62LC4 Typical Applications The HMC62LC4 is ideal for: Point-to-Point Point-to-Multi-Point Radio WiMAX & Fixed Wireless VSAT Functional Diagram Features General Description Electrical Specifications,

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 32.5 dbm @ 1900 MHz Gain = 20.9 db @ 1900 MHz Output P1 db = 18.8 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Patented Over Voltage Protection Circuit Lead-free/RoHS-compliant

More information

Features. = +25 C, IF= 100 MHz, LO= +13 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF= 100 MHz, LO= +13 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units Features Passive Double Balanced Topology High LO/RF Isolation: 48 db Low Conversion Loss: 7 db Wide IF Bandwidth: DC - GHz Robust 1,000V esd, Class 1C Typical Applications The is ideal for: Point-to-Point

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 35 dbm @ 1900 MHz Gain = 13.3 db @ 1900 MHz Output P1 db = 18.5 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

2-20 GHz Power Limiter

2-20 GHz Power Limiter AMT176211 Rev. 1. March 27 2-2 GHz Power Limiter Features Frequency Range : 2-2 GHz db insertion loss 3 dbm power limiting 5-15 dbm limiting range Input Return Loss > 1 db Output Return Loss > 1 db DC

More information

Typical Performance 1. 2 OIP3 _ measured with two tones at an output of 9 dbm per tone separated by 1 MHz. Absolute Maximum Ratings

Typical Performance 1. 2 OIP3 _ measured with two tones at an output of 9 dbm per tone separated by 1 MHz. Absolute Maximum Ratings Device Features OIP3 = 35.5 dbm @ 1900 MHz Gain = 16 db @ 1900 MHz Output P1 db = 19.7 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product

More information

MAAP DIEEV1. Ka-Band 4 W Power Amplifier GHz Rev. V1. Features. Functional Diagram. Description. Pin Configuration 2

MAAP DIEEV1. Ka-Band 4 W Power Amplifier GHz Rev. V1. Features. Functional Diagram. Description. Pin Configuration 2 Features Frequency Range: 32 to Small Signal Gain: 18 db Saturated Power: 37 dbm Power Added Efficiency: 23% % On-Wafer RF and DC Testing % Visual Inspection to MIL-STD-883 Method Bias V D = 6 V, I D =

More information

Features. = +25 C, 50 Ohm System

Features. = +25 C, 50 Ohm System v.211 18 Analog Phase Shifter, 2-2 GHz Typical Applications The is ideal for: EW Receivers Military Radar Test Equipment Satellite Communications Beam Forming Modules Features Wide Bandwidth: 2-2 GHz 18

More information

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V*

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V* v3.1 LO AMPLIFIER, 7 - MHz Typical Applications The HMC684LP4(E) is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +32

More information

Typical Performance 1

Typical Performance 1 Device Features Internally matched to 50 ohms Operated at 3.0V and 5.0V 36.2 dbm Output IP3 at 0dBm/tone at 1850 MHz 18.5dB Gain at 1850MHz 19.6dBm P1dB at 1850MHz 0.65 db NF at 1850MHz on evaluation board

More information

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description HMCBMSGE v1.1 Typical Applications The HMCBMSGE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Functional Diagram Features Conversion Loss: db Noise Figure: db LO to RF Isolation: db LO to

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 44.0 dbm @ 70 MHz Gain = 20.3 db @ 70 MHz Output P1 db = 23.5 dbm @ 70 MHz 50 Ω Cascadable Patented over voltage protection Lead-free/RoHS-compliant SOT-89 SMT package Product Description

More information

Data Sheet. AMMC GHz Image Reject Mixer. Description. Features. Applications. Absolute Maximum Ratings [1]

Data Sheet. AMMC GHz Image Reject Mixer. Description. Features. Applications. Absolute Maximum Ratings [1] AMMC-63 3 GHz Image Reject Mixer Data Sheet drain Chip Size: 13 x 14 µm Chip Size Tolerance: ±1 µm (±.4 mils) Chip Thickness: 1 ± 1 µm (4 ±.4 mils) gate Description Avago s AMMC-63 is an image reject mixer

More information

Features. Gain Variation Over Temperature db/ C

Features. Gain Variation Over Temperature db/ C v4.3 MODULE,. - 5 GHz Features Typical Applications The Wideband PA is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional Diagram Gain:

More information

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A FEATURES Conversion loss: db LO to RF isolation: db LO to IF isolation: 3 db Input third-order intercept (IP3): 1 dbm Input second-order intercept (IP2): dbm LO port return loss: dbm RF port return loss:

More information

Features OBSOLETE. = +25 C, IF = 1.45 GHz, LO = +13 dbm [1]

Features OBSOLETE. = +25 C, IF = 1.45 GHz, LO = +13 dbm [1] v2.614 Typical Applications The HMC412AMS8G / HMC412AMS8GE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Functional Diagram Features General Description Parameter Min. Typ. Max. Units Frequency

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 32.0 dbm @ 1900 MHz Gain = 22.2 db @ 1900 MHz Output P1 db = 19.0 dbm @ 1900 MHz 50 Ω Cascadable Patented temperature compensation Patented Over Voltage Protection Circuit Lead-free/RoHS-compliant

More information

MAMX Sub-Harmonic Pumped Mixer GHz Rev. V1. Functional Schematic. Features. Description. Pin Configuration 1

MAMX Sub-Harmonic Pumped Mixer GHz Rev. V1. Functional Schematic. Features. Description. Pin Configuration 1 MAMX-119 Features Up or Down Frequency Mixer Low Conversion Loss: 11 db 2xLO & 3xLO Rejection: db RF Frequency: 14 - LO Frequency: 4-2 GHz IF Frequency: DC - 7 GHz Lead-Free 1.x1.2 mm 6-lead TDFN Package

More information

Product Specification PE613050

Product Specification PE613050 PE63050 Product Description The PE63050 is an SP4T tuning control switch based on Peregrine s UltraCMOS technology. This highly versatile switch supports a wide variety of tuning circuit topologies with

More information

RFFM V TO 5.0V, 4.9GHz TO 5.85GHz a/n/ac FRONT END MODULE

RFFM V TO 5.0V, 4.9GHz TO 5.85GHz a/n/ac FRONT END MODULE 3.0V TO 5.0V, 4.9GHz TO 5.85GHz 802.11a/n/ac FRONT END MODULE Package: Laminate, 16-pin, 3.0mm x 3.0mm x 1.05mm LNA_EN C_RX ANT 16 15 14 13 Features Integrated 4.9GHz to 5.85GHz Amplifier, SPDT TX/RX Switch,

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 39.0 dbm @ 70 MHz Gain = 24 db @ 70 MHz Output P1 db = 20.5 dbm @ 70 MHz 50 Ω Cascadable Patented temperature compensation Lead-free/RoHS-compliant SOT-89 SMT package Product Description

More information

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units v1.514 Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Features Passive: No DC Bias Required

More information

SKY : 5 GHz, ac/n Low-Noise Amplifier

SKY : 5 GHz, ac/n Low-Noise Amplifier DATA SHEET SKY698-: GHz, 82.ac/n Low-Noise Amplifier Applications IEEE 82.ac/n WLANs GHz ISM radios SmartPhones Notebooks, netbooks, tablets Access points, routers, gateways Wireless video systems Features

More information

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system.

Typical Performance 1. 1 Device performance _ measured on a BeRex evaluation board at 25 C, 50 Ω system. Device Features OIP3 = 43.0 dbm @ 70 MHz Gain = 17.5 db @ 70 MHz Output P1 db = 20.5 dbm @ 70 MHz 50 Ω Cascadable Patented temperature compensation Patented over voltage protection Lead-free/RoHS-compliant

More information

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units Typical Applications The Hmc86LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features Electrical Specifications, T

More information

Features. = +25 C, IF= 100 MHz, LO= +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF= 100 MHz, LO= +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units v3.514 MIXER, 5.5-14. GHz Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Functional Diagram Features Passive Double Balanced

More information

GHz Wideband High Linearity LNA Gain Block. Typical Performance 1

GHz Wideband High Linearity LNA Gain Block. Typical Performance 1 Device Features Internally matched to 50 ohms This can be operated at Vd of 3.3V and 4.4V 37.0 dbm Output IP3 at 5dBm/tone at 1900MHz 15.5 db Gain at 1900MHz 22.0 dbm P1dB at 1900 MHz 1.6 db NF at 1900MHz

More information

RF V W-CDMA BAND 2 LINEAR PA MODULE

RF V W-CDMA BAND 2 LINEAR PA MODULE 3 V W-CDMA BAND 2 LINEAR PA MODULE Package Style: Module, 10-Pin, 3 mm x 3 mm x 1.0 mm Features HSDPA and HSPA+ Compliant Low Voltage Positive Bias Supply (3.0 V to 4.35 V) +28.5 dbm Linear Output Power

More information

TGA2218-SM GHz 12 W GaN Power Amplifier

TGA2218-SM GHz 12 W GaN Power Amplifier Applications Satellite Communications Data Link Radar Product Features Functional Block Diagram Frequency Range: 13.4 16.5 GHz PSAT: > 41 dbm (PIN = 18 dbm) PAE: > 29% (PIN = 18 dbm) Large Signal Gain:

More information

Features. = +25 C, IF = 1 GHz, LO = +13 dbm*

Features. = +25 C, IF = 1 GHz, LO = +13 dbm* v.5 HMC56LM3 SMT MIXER, 24-4 GHz Typical Applications Features The HMC56LM3 is ideal for: Test Equipment & Sensors Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Functional Diagram

More information

Product Specification PE613010

Product Specification PE613010 Product Description The is an SPST tuning control switch based on Peregrine s UltraCMOS technology. This highly versatile switch supports a wide variety of tuning circuit topologies with emphasis on impedance

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v3.514 MIXER, 5.5-14. GHz Typical

More information

OBSOLETE HMC422MS8 / 422MS8E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

OBSOLETE HMC422MS8 / 422MS8E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram v4.712 Typical Applications The HMC422MS8 / HMC422MS8E is ideal for: MMDS & ISM Wireless Local Loop WirelessLAN Cellular Infrastructure Functional Diagram Electrical Specifications, T A = +2 C Features

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.514 MIXER, 2.5-7. GHz Typical

More information

L, S-band Medium Power SPDT Switch

L, S-band Medium Power SPDT Switch RF SWITCH CG2179M2 L, S-band Medium Power SPDT Switch DESCRIPTION The CG2179M2 is a phemt GaAs SPDT (Single Pole Double Throw) switch. This device can operate from 0.05 GHz to 3.0GHz, having low insertion

More information

Features. = +25 C, IF= 100 MHz, LO = +17 dbm*

Features. = +25 C, IF= 100 MHz, LO = +17 dbm* v2.31 HMC-C44 1-23 GHz Typical Applications The HMC-C44 is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Features Wide

More information

TGA2807-SM TGA2807. CATV Ultra Linear Gain Amplifier. Applications. Ordering Information. CATV EDGE QAM Cards CMTS Equipment

TGA2807-SM TGA2807. CATV Ultra Linear Gain Amplifier. Applications. Ordering Information. CATV EDGE QAM Cards CMTS Equipment Applications CATV EDGE QAM Cards CMTS Equipment 28-pin 5x5 mm QFN Package Product Features Functional Block Diagram 40-000 MHz Bandwidth DOCSIS 3.0 Compliant ACPR: -69 dbc at 6 dbmv Pout Pdiss:.9 W.5 db

More information

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +10 dbm. IF = 70 MHz

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +10 dbm. IF = 70 MHz v1.112 HMC27AS8 / 27AS8E BALANCED MIXER,.7-2. GHz Typical Applications The HMC27AS8 / HMC27AS8E is ideal for: Base Stations Cable Modems Portable Wireless Functional Diagram Features Conversion Loss: 9

More information

OBSOLETE HMC423MS8 / 423MS8E MIXERS - DBL-BAL - SMT. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications.

OBSOLETE HMC423MS8 / 423MS8E MIXERS - DBL-BAL - SMT. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Typical Applications The HMC423MS8 / HMC423MS8E is ideal for: Base Stations Portable Wireless CATV/DBS ISM Functional Diagram Electrical Specifications, T A = +25 C Features Integrated LO Amplifi er w/

More information

L, S-band Medium Power SPDT Switch

L, S-band Medium Power SPDT Switch RF SWITCH CG2214M6 L, S-band Medium Power SPDT Switch DESCRIPTION The CG2214M6 is a phemt GaAs SPDT (Single Pole Double Throw) switch. This device can operate from 0.05 to 3.0 GHz, having low insertion

More information

TGA2238-CP 8 11 GHz 50 W GaN Power Amplifier

TGA2238-CP 8 11 GHz 50 W GaN Power Amplifier Applications X-band radar Data Links Product Features Frequency Range: 8 11 GHz P SAT : 47 dbm @ PIN = 23 dbm PAE: 34% @ PIN = 23 dbm Power Gain: 24 db @ PIN = 23 dbm Small Signal Gain: >28 db Return Loss:

More information

SKY : Shielded Low-Noise Amplifier Front-End Module with GPS/GNSS/BDS Pre-Filter

SKY : Shielded Low-Noise Amplifier Front-End Module with GPS/GNSS/BDS Pre-Filter DATA SHEET SKY65720-11: Shielded Low-Noise Amplifier Front-End Module with GPS/GNSS/BDS Pre-Filter Applications GPS/GNSS/BDS radio receivers Global Navigation Satellite Systems (GLONASS) VEN Fitness/activity

More information