NIX-Note 5 SAC November, 1994 R. Ruth

Size: px
Start display at page:

Download "NIX-Note 5 SAC November, 1994 R. Ruth"

Transcription

1 NIX-Note 5 SAC November, 1994 R. Ruth

2 NLCTA Contributors R.D. Ruth C. Adolphsen R. Atkinson K.L. Bane R.F. Boyce D.L. Burke R.S. Callin G. Caryotakis R.L. Cassel S.L. Clark C. Cofvin T. Dean H. Deruyter R.A. Early K.R. Eppley K. Fant C. Foundoulis R.W. Fuller L. Giannini L. Godshall S.A. Heifets Y. Higashi T. Higo H.A. Hoag D. Hopkins R. Humphrey K. Kendall S. Khelfets K. Ko R.F. Koontz NM. Kroll K. Kubo T.L. Lavi ne T. Lee M. Litynski G.A. Loew A. Menegat R.H. Miller T. Montagne H.W. Moshammer C. Nantlsta E. Nelson v. Nesterov C.K. Ng E.Patet8on. C. Pearson R.M. Phlllips T. Raubenheimer J. Rifkin P. qodrlguez J. Scott J. Spencer S.G. Tantawi K.A. Thompson A.E. Vlieks V. Vylet J.W. Wang P.B. Wilson E.L. Wright A.D. Yeremian A. Young B. Youngman

3 c

4 Compressor E-z J/a 60 l+tev.... _ _I :y.;.....:: Pre-Accelerator t Main Linac Beam Dump 7 Final Focus Electron Source 0 Ir e :.. Positron Source I. : Damping Ring 8I e+ -.,...&. ;:., 7 Compressor.. Pre-Accelerator 4 $ 7:. t e-.:.ẇ...? $5 Beam Dump Main Linac 7-90 Compressor 4454A96 (Schematic Layout of the Next Linear Collider]

5 i Table 1. NLC Parameters Energy per beam Luminosity Linac length (both linacs) Unloaded accelerating gradient RF frequency Electrons per bunch Bunches Repetition rate Wall-plug power Bunch height at collision Bunch width at collision Bunch length at collision Initial 250 GeV 8 x 1O33 15 km 50 MV/m 11.4 GHz 0.65 x Hz WMW 92 3nm 300 nm 100 pm Upgraded 500 GcV 2 x 1o34 15 km 100 MVlm 11.4 GHz 1.3 x 1o O Hz g#r MW nm 430 nm 100 jrm

6 The NLC Test Accelerator Goals 7 0 consfruct and reliably operate an en mode/ of a section of the NLC high-gra8ient ineered linac. Systems Integration Test Bed for RF System Instrumentation Development TO #est those beam dynamics questions coupled fo acceleration. Multibunch Beam Loading Compensation Multibunch Beam Breakup Field Emission Effects Transverse Accelerator Fields

7 1..,..m... p! e 4d.: : :..:. :. :. :...: w : : :._.. :. \, I :y.:.: 3.I,..,.... i..,..: 1 _..A..; :... )!I..y:;:::.. zl.. 3,.,:.:.: $.:::;$:;;... II g$$:; :...-. :.. : II f...

8 Table 2. NLCTA RF System Parameters (& vq C bjo Parameter NLCTA Energy Design Upgrade I!i Linac unloaded energy gain 340 MeV 1080 MeV Linac active length 10.8 m 10.8 m. i i I Unloaded accelerating pdient 50 W/m 100 kfv/m Injection enera 90 MeV 90 MeV RF frequency GHz GHz Xumber of klystrons 3 6 I Klystron peak power 30 MU 100 hw Klystron pulse length 1.5 /.fs 1.5 p RF pulse compression power gain Phase advance per cell 2;rr/3 2x13 HOM suppression technique Detuning Detuning

9 NLCTA Upgrade Capability 1.1 Project Gun --> NLC Average Current. Upgrade --> 90 bunches 1.4 nsec spacing. Space Available. Injector Solenoids --> current overhead. 24 Project Acceleration Gradient = 50 MV/m. Gradient for l/2 TeV NLC 0-s 50 MV/m = NLCTA Gradient Gradient for 1 TeV NLC.w> 100 MV/m Upgrade --> 87 MV/m. Modulators Accept two 75 MW Klystrons

10

11 NLCV I ❻.. ❻ ॐ❻. --, :;,.,et;,ee. * Bi ❼ I IwI.00~ LOOKINGDOWNSTREAM.

12

13

14

15 I-.~::.z.-k-;.n: ::.: i,;,.. _,...1.,,...,.:..;i;:dE-7 ii.-- : :::~:: :.:: :: ::. :i ipiili~ --;:,~~~~.i, ::. l.:: ::::,::~L,:i-lr :-.:::: ;:D::,; ::::::I;;l::;:rg?+==:= _...: , ~~;,:..:;L. 2.. :~~x:z~j:~~-. L:.si.i:i:. _...i::i9gii;:iiiii:ji~:i:) ::i:..:..:.:::::::-:!:::.~~, :::::I1C:i- :_: *..::~::..-n:.,;:,*.,,::~:~:.1:::: ::. : :il:.:,.,....,.: :::::s:.,:i.:: ::::.:..:.. ::..%,:. :::I :.:,....r...:i::.. : :.:,_.,. :- : ;.: :.: ::i. ::. --:,:i.,,,, I,...,::!:..:.~.:: :,:,, :;<..:.:,....i:- : :r::.~ :,:.:!:i::::::: ;:;.::.r::;,,:~; :,~~liiiiil~.:-:i :~~..;-.-:.-. :,.: ::..., :,.._.._.::.::z:,.:. : ::. -7: :::.. : _....,.,..: ::...,. m+:..... :.;;z., : :;z;:r:i...: i _:I _, il,-;: :,;.:+:l :,:,...,,,.,:! {. _. :..., Z..,... :-.. ii!. :..,.._ L :.:,:.;,;:::;;;,:: ::.: -.:L...:.::.:: ::..:._, _:. : (,.. ;..<: -.::...:..;::.:.: j _i, :,..:. I.

16 . II Mde 3. NLCTA RF System Performance Accelerator Structure NLCTA Energy Design Upgrade Gradient (MV/m) Pulse length (ns) Peak power per feed (MW) Pulse energy per feed (J) Feeds per klystron 2 1 POwer Ikansmission Efficiency Pulse Compression Peak output power (MW) \ Pulse energy (J) Power gain Compression ratio 6 6 Compression efficiency Klystron Peak output power (MW) F@ P* h$h (I Klystron efficiency Modulator Klystrons per modulator 1 2 Peak output power (Mw) Modulator efficiency PFN stored energy (J) AC input power (kw) at 180 pps RF System Net Efkiency

17 I - FREQUENCY-DOMAIN AMLYSIS OF A?GSSIBtE BEAU-WADKMC COWPENSATKON SGHEME I / With Dispwsh Tie (ns)

18 . Table II Summary of RF System Status Now( ) LC 9# NLC/Proposal(3) NLC-II( ) (VW (3/95) P/W (>2000) Klystron Peak Power (MW) Klystron Pulse Length (ps) Klystron EfTiciency Modulator Efficiency , 0.95 Pulse Compression Efficiency (1nc.l. Power Transmission) Net RF Efficiency Notes *Decreases to 9.9% with 2 x 25 kw klystron focus solenoids per 7.2 m module. *+ Decreases to 12.2% with klystron solenoids included. (I) Klystron: demonstrated. Modulator: Cassel simulations of NLCTA mod. give q = 0.55 to 0.70, depending on series inductunce. Pulse compression: based on sum of measured components. (2) Klystron: estimated peformance of XL2 from simulations; parameters for NLCTA. Modulator: same as (1). Pulse compression: assumes improved power transmission efficiency with tuning of line sections between flower petal mode converters. (3) Klystron: Based on simulations of low perveance PPM focused tubes. Modulator: Based on Cassel simula~tion of high-efficiency modulator (SLAGPUB- 3851); efficiency will be demonstrated with operating prototype by LC 95. Pulse compression: assumes further improvements in FP converter. (4) Klystron: grid-switched beam with 95% switching q. Pulse compression: Sstage BPC with loaded delay lines and q = 0.95 per stage. Power transmission: q = 0.94, same a+ (3). If a 25 SLED-II pulse compression system is used, RF ef&iency is 44% and klystron peak power is 135 MW. /.

19 I.-... i Comparison of Linear Collider Parameters Table 3 I Parameter I TESLA I SBLC I NLC(- JLC) I I 5a.m 500/s 500/s IO/(11 uv0.l 40/0.1 s;rzb m/3 =I2 6

20 VIII. Main Linac RF Svstem 1. Parameters and Specifications WlmN w. a. b. C. 2. RF a. b. C. d. e. System Boundaries System Overview and Performance Parameter List System Design Accelerator Structures i. Theoretical Design and Wake-Fields T. Wa-, K-h-*- ii. Structure Mechanical Design Il.*0 d iii. Vacuum System 1 &yo a, RF Pulse Compression and Power Transmission i. SLED-II System Design and Losses ii. SLED-II Components iii. SLED-II Layout iv. SLED-II Vacuum Klystrons avo i. Klystron Design and Simulations ii. Prototype Performance iii. Detailed Design and Specifications Pk/rwp. Pulse Modulators Da* %A a i. Requirements ii. Design and Efficiencies iii. Prototype Performance &3&s& f Protection Systems RI I(=crods* /&qy i. Structure ii. Klystron iii. Modulator RF Drive and Control i. Low Level RF Drive ii. Phase Manipulation and Feedback iii. RF CwJwiv iii; 13 Yc;b Q-43 b-c. u/; IL ILmh.

21 .. Table I NLC Scenarios NLC-I NLC-II t Center-of-Mass Energy 0.5 TeV 1.0 TeV 1.5 TeV a m C D E.F Active Str. Length (km) Accel. Grad.( ) (MV/m) Unloaded/Loaded so/37 SS/SS 100/74 67/55 NO/74 S4/62 \ C,. No. of 7.2 m Modules ls Particles perbunch (lo] ) o.s Repetition rate (Hz) 1so Bunches per RF Pulse RF Pulse Length (ns) Pulse Comp. System( ) SLED-II SLE$I B;; Bx f BxpsC BPC x5 X8 Pulse Comp. Pwr. Gainf3) Kly. Pulse Length (ps) s s Kly. Peak Power(4) (MW) 4s 2 x PFN Stored Energy (J) per Module( ) Net RF Sys. Efficiency( ) Wall Plug Power (MW) (1) Threshold gradient for dark current capture is 61 MV/m. (2) If a X5SLED-Ii system is used for - C, D, E aud F, the klystron peak powers become: 193 MW, 85 MW, 193 MW and 135 MW repectively. The net rf system &ciency is reduced from 50% to 44% and the wail plug powers become: 162 MW, 106 MW, 241 MW aud 204 M-W. (3) Includes allowance for power transmi&od loss. (4) Assumes 2 klystrons per 7.2 m module. (5) Fgr cases C through F (grid-switched )tlystron) this is the switched v assuming 2-l/2% switching loss. It is assumed that storage element (containing perhaps 5 times switched energy) is charged with 2-l/2% loss from AC line. (6) Case B zwumes NLGI efficiencies for klystron and pulse compression.

22 I - t

23 NLCTA Project Milestones Date 4/ l/ / /94 8/ / /95 2/ / $196 pvlilestone Project conceived First project review NEPA approval Conceptual Design Report complete 1.8-m structure prototype tests complete Klystron prototype complete Preliminary Safety Analysis Document (PSAD) complete SLED-II prototype tests complete Beamline complete to dump Control System required for Injector complete Injector RF System complete Commission Injector, Test beam to end of spectrometer Final Safety Analysis Document (FSAD) complete Accelerator Readiness Review (ARR) complete Linac RF System complete Beam Accelerated to Dump Project complete

24 /, WAKEFIELD MEASUREMENTS I 1) Fix Vertical Drive Bunch Offset: yd = 2.2 mm 2) Vary Relative Bunch Time Separation, t 3) h&sure witness Bunch Deflection: A$ = wl(t) yd A z-e z EM40-E 6 I- E2 3 g 0 G o-- 2 o- s" \ >,a o- '; -I O I 1 I I I -40 I t (PSI t (ps) 80

25 0

26 :o.o I X-BAND stiwcture I Data direct,ion - \ Data direction -

27 Accelhation Structure SETup (ASSET) in the SLC Test Structure -3mt Beginning of the Second Girder in L102 MEASUREMENT OF THE BUNCH-TO-BUNCH TRANSVERSE WAKEFIELD COUPLING IN THE I&x STRUCTURE Inject a positron bunch into the linac followed by an electron bunch - the positrons serve as the drive bunch and electrons as the witness bunch. Vary the vertical drive bunch amplitude and measure the betatron amplitude of the witness bunch in the linac after the drive bunch is dumped - the ratio of these amplitudes is proportional to the wakefield coupling. Repeat for different bunch-to-bunch time separations to measure the temporal dependence of the long-range transverse wakefield.

28 ' DSA 602 DlGlTlZlNG SlCNAL ANALYZER dote: 4-MAR-94 time: 22:59:35 660mV ACC IN E 75mV /div ACC I N W trig d KC OUT E d

29 0 m 0

30

31 c

32 100 2i 0 g 5, IO Q) A Distance Behind Driving Bunch (m)

33 + is Transverse Oscillation Amplitude (normalized ) 0 0 a. A bo id b A io ;. 3

34 . 80 \ 3 n t 3 40 z Constant Gradient Detuned Gaussian Constant impedance Distance Along Structrure (m) 7307&J Figure 8. Comparison of accelerating field profiles in a 1.8-m-long accekra&r section for 1CKkMw inpu ; power.

35 Section length Phase advance per cell Iris aperture radius NLCTA Structure Parameters. 1.8 m 2 x m Iris aperture normalized radius Group velocity Filling time, Unloaded time constant v Attenuation parameter Elastance (&Z/Q per unit length) Peak input power/(l.8 m) for 50 MV/m Peak power per feed for 50 MV/m Structure average power dissipation for 50 MV/m, 250~ns pulse length, 180 pps 0.218X-0.149X O.l2c-0.03~ 100 3s s nepers V/PC/m 48.1 MW/m 86.5 MW 1.4 kw/m

36 I - /. DSA 602A DlGlTlZlNG SIGNAL ANALYZER dote: 4-MAR-94 time: 22:39:57 TS08 SLED II TEST 1 ornv./div trig d Rl! i I, SLED, L-J -47.7A ~s 2C3ns/ vl= 250. OLlV v2= 28.05mV Av= 27.8OmV iori;&tol I Previous -ii MOi~ t ~ : I

37 I THE RF STRUCTURE 75 cm accelerator structure tested Ez max = 90 MVIm (Power limited). I.&m NLCTA prototype structure complete. Tested to 55 W/m (Power limited). Wakefields of 1.8m structure measured in ASSET. Cells for 2nd 1.8m structure and two 0.9m injector structures in production. 1.8m structure to be diamond-point finish machined at KEK.

38 RF Pulse Comwession 0 SLED II High Power prototype complete: 33 MW input 154 MW output (75 nsec) 0 Compact Mode Converter test to 150 MW - nsec... used routinely now. 0 SLED II NLCTA prototype being assembled now.

39 h

40 THE KLYSTRON 0 XL 1 Achieved Test Accelerator Specifications: 50MW 1.5~ sec. 0 XL 2,3 are in production 0 NLCTA Plan Use2of3 X11,2,3 Produce 1 additional

41 DSA 602 DIGITIZING SIGNAL ANALYZER date: l-nov-93 time: 15:13:50 XL1 Klystron 44mV r - --T w-f t t._.. pt ---t 1 t $7 c Pout Clrc t i 3-9.elnv 1 /div i Pin=85W i Wg d p.s -+ i t i Pout= 51 MW. Vo=415 kv 10=332 A fo=l1.455 GHz Efficiency=37 %

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract

THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Abstract SLAC PUB 7246 June 996 THE NEXT LINEAR COLLIDER TEST ACCELERATOR: STATUS AND RESULTS * Ronald D. Ruth, SLAC, Stanford, CA, USA Abstract At SLAC, we are pursuing the design of a Next Linear Collider (NLC)

More information

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen J/NLC Progress on R1 and R2 Issues Chris Adolphsen Charge to the International Linear Collider Technical Review Committee (ILC-TRC) To assess the present technical status of the four LC designs at hand,

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003

NLC - The Next Linear Collider Project NLC R&D. D. L. Burke. DOE Annual Program Review SLAC April 9-11, 2003 DOE Annual Program Review SLAC April 9-11, 2003 NLC Activities for the Past Year Accelerator Design centered around ILC-TRC studies. Technology R&D focused on the RF R&D. Modulator, klystron, SLED-II,

More information

Overview of the X-band R&D Program

Overview of the X-band R&D Program Overview of the X-band R&D Program SLAC-PUB-9442 August 2002 Abstract T.O. Raubenheimer Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 USA An electron/positron linear

More information

RF System for the Main Linacs

RF System for the Main Linacs 8 RF System for the Main Linacs Contents 8.1 Introduction..................................................... 439 8.1.1 Overview................................................. 439 8.1.2 Upgradeto1TeV.............................................

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, for the CLIC/CTF3 Collaboration http://cern.ch/clic-study LINAC 10 MO303 13 Sep 2010 The Key to CLIC Efficiency NC Linac for

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

Chapter 4. Rf System Design. 4.1 Introduction Historical Perspective NLC Rf System Overview

Chapter 4. Rf System Design. 4.1 Introduction Historical Perspective NLC Rf System Overview Chapter 4 Rf System Design 4.1 Introduction 4.1.1 Historical Perspective The design of the NLC main linacs is based on the extensive experience gained from the design, construction, and 35 years of operation

More information

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Demonstrate an NLC power source Two Phases: 8-Pack Phase-1 (current): Multi-moded SLED II power compression Produce NLC baseline power: 475

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

* Work supported by Department of Energy contract DE-AC03-76SF RF Pulse Compression. for F'uture Linear Colliders* SLAC-PUB

* Work supported by Department of Energy contract DE-AC03-76SF RF Pulse Compression. for F'uture Linear Colliders* SLAC-PUB SLAC-PUB-95-6755 RF Pulse Compression for F'uture Linear Colliders* PERRY B. WILSON Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 Presented at the Conference on Pulsed RF Sources

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB S. Michizono for the KEK electron/positron Injector Linac and the Linac Commissioning Group KEK KEKB injector linac Brief history of the KEK electron linac

More information

Overview of NLC/JLC Collaboration *

Overview of NLC/JLC Collaboration * SLAC PUB 10117 August 2002 Overview of NLC/JLC Collaboration * K. Takata KEK, Oho, Tsukuba-shi 305-0801, JAPAN On behalf of the NLC Group Stanford Linear Accelerator Center, Stanford, California 94309,

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

INFN School on Electron Accelerators. RF Power Sources and Distribution

INFN School on Electron Accelerators. RF Power Sources and Distribution INFN School on Electron Accelerators 12-14 September 2007, INFN Sezione di Pisa Lecture 7b RF Power Sources and Distribution Carlo Pagani University of Milano INFN Milano-LASA & GDE The ILC Double Tunnel

More information

X-Band Klystron Development at

X-Band Klystron Development at X-Band Klystron Development at SLAC Slide 1 The Beginning X-band klystron work began at SLAC in the mid to late 80 s to develop high frequency (4x SLAC s-band), high power RF sources for the linear collider

More information

reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8

reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8 C-band RF System R&D reported by T. Shintake KEK / RIKEN Japan Summary of C-band R&D for Linear Collider at KEK New soft-x-ray FEL Project at RIKEN/SPring-8 Project was funded in 2001 April Material Science

More information

PULSED POWER FOR FUTURE LINEAR ACCELERATORS

PULSED POWER FOR FUTURE LINEAR ACCELERATORS PULSED POWER FOR FUTURE LINEAR ACCELERATORS Peter D. Pearce High-energy accelerators High-energy accelerators enable us to collide particle beams together and create conditions believed to be similar to

More information

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Michael V. Fazio C. Adolphsen, A. Jensen, C. Pearson, D.

More information

Towards an X-Band Power Source at CERN and a European Structure Test Facility

Towards an X-Band Power Source at CERN and a European Structure Test Facility Towards an X-Band Power Source at CERN and a European Structure Test Facility Erk Jensen and Gerry McMomagle CERN The X-Band Accelerating Structure Design and Test-Program Workshop Day 2: Structure Testing

More information

DEVELOPMENT OF X-BAND KLYSTRON TECHNOLOGY AT SLAC

DEVELOPMENT OF X-BAND KLYSTRON TECHNOLOGY AT SLAC DEVELOPMENT OF X-BAND KLYSTRON TECHNOLOGY AT SLAC George Caryotakis, Stanford Linear Accelerator Center P.O. Box 4349 Stanford, CA 94309 Abstract * The SLAC design for a 1-TeV collider (NLC) requires klystrons

More information

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR Proceedings of FEL213, New York, NY, USA STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR F. Loehl, J. Alex, H. Blumer, M. Bopp, H. Braun, A. Citterio, U. Ellenberger, H. Fitze, H. Joehri, T. Kleeb, L.

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

November 5,1999. The NLC Injector UCRL-JC

November 5,1999. The NLC Injector UCRL-JC Preprint UCRL-JC-13-6450 The NLC Injector System V. Bharadwaj, J.E. Clendenin, P. Emma, J. Frisch, R.K. Jobe, T. Kotseroglou, P. Krejcik, A. V. Kulikov, Z. Li, T. Maruyama, K.K. Millage, B. McKee, G. Mulhollan,

More information

Status of CTF3. G.Geschonke CERN, AB

Status of CTF3. G.Geschonke CERN, AB Status of CTF3 G.Geschonke CERN, AB CTF3 layout CTF3 - Test of Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 Drive Beam Injector ~ 50 m 3.5 A - 2100 b of 2.33 nc 150 MeV - 1.4

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, KVI Groningen 20 Sep 2011 The Key to CLIC Efficiency NC Linac for 1.5 TeV/beam accelerating gradient: 100 MV/m RF frequency:

More information

SUMMARY OF THE ILC R&D AND DESIGN

SUMMARY OF THE ILC R&D AND DESIGN SUMMARY OF THE ILC R&D AND DESIGN B. C. Barish, California Institute of Technology, USA Abstract The International Linear Collider (ILC) is a linear electron-positron collider based on 1.3 GHz superconducting

More information

Precision measurements of beam current, position and phase for an e+e- linear collider

Precision measurements of beam current, position and phase for an e+e- linear collider Precision measurements of beam current, position and phase for an e+e- linear collider R. Corsini on behalf of H. Braun, M. Gasior, S. Livesley, P. Odier, J. Sladen, L. Soby INTRODUCTION Commissioning

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems

LCLS RF Reference and Control R. Akre Last Update Sector 0 RF and Timing Systems LCLS RF Reference and Control R. Akre Last Update 5-19-04 Sector 0 RF and Timing Systems The reference system for the RF and timing starts at the 476MHz Master Oscillator, figure 1. Figure 1. Front end

More information

SLAC X-band Technology R&D. Tor Raubenheimer DOE Briefing June 11 th, 2010

SLAC X-band Technology R&D. Tor Raubenheimer DOE Briefing June 11 th, 2010 SLAC X-band Technology R&D Tor Raubenheimer DOE Briefing June 11 th, 2010 Introduction Overall ARD strategy ILC Program X-band program Compact XFEL and other applications Status and development needs Proposed

More information

STATUS AND FUTURE PROSPECTS OF CLIC

STATUS AND FUTURE PROSPECTS OF CLIC STATUS AND FUTURE PROSPECTS OF CLIC S. Döbert, for the CLIC/CTF3 collaboration, CERN, Geneva, Switzerland Abstract The Compact Linear Collider (CLIC) is studied by a growing international collaboration.

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

KARA and FLUTE RF Overview/status

KARA and FLUTE RF Overview/status KARA and FLUTE RF Overview/status Nigel Smale on behalf of IBPT and LAS teams Laboratory for Applications of Synchrotron radiation (LAS) Institute for Beam Physics and Technology (IBPT) KARA KIT The Research

More information

Introduction to CTF3. G.Geschonke CERN / PS

Introduction to CTF3. G.Geschonke CERN / PS Introduction to CTF3 G.Geschonke CERN / PS Aim of review: Review the technical solutions are they realistic? Give us technical advice Comment on alternatives Guide our funding bodies: CERN Collaborations

More information

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland CERN 1211 Geneva 23, Switzerland E-mail: andrew.butterworth@cern.ch O. Brunner CERN 1211 Geneva 23, Switzerland E-mail: olivier.brunner@cern.ch R. Calaga CERN 1211 Geneva 23, Switzerland E-mail: rama.calaga@cern.ch

More information

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A.Beunas and G. Faillon Thales Electron Devices, Vélizy, France S. Choroba DESY, Hamburg, Germany Abstract THALES ELECTRON DEVICES has developed

More information

Review of Pulsed RF Power Generation Theodore L. Lavine

Review of Pulsed RF Power Generation Theodore L. Lavine . Review of Pulsed RF Power Generation Theodore L. Lavine Stanford Linear Accelerator Center, Stanford, CA 94309, USA am going to talk about pulsed high-power rf generation for normal-conducting electron

More information

Linac upgrade plan using a C-band system for SuperKEKB

Linac upgrade plan using a C-band system for SuperKEKB Linac upgrade plan using a C-band system for SuperKEKB S. Fukuda, M. Akemono, M. Ikeda, T. Oogoe, T. Ohsawa, Y. Ogawa, K. Kakihara, H. Katagiri, T. Kamitani, M. Sato, T. Shidara, A. Shirakawa, T. Sugimura,

More information

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer

Suggested ILC Beam Parameter Range Rev. 2/28/05 Tor Raubenheimer The machine parameters and the luminosity goals of the ILC were discussed at the 1 st ILC Workshop. In particular, Nick Walker noted that the TESLA machine parameters had been chosen to achieve a high

More information

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

Status of SOLARIS Arkadiusz Kisiel

Status of SOLARIS Arkadiusz Kisiel Status of SOLARIS Arkadiusz Kisiel Solaris National Synchrotron Light Source Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl Arkadiusz.Kisiel@uj.edu.pl On behalf of SOLARIS

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

TESLA FEL-Report

TESLA FEL-Report Determination of the Longitudinal Phase Space Distribution produced with the TTF Photo Injector M. Geitz a,s.schreiber a,g.von Walter b, D. Sertore a;1, M. Bernard c, B. Leblond c a Deutsches Elektronen-Synchrotron,

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

High Rep Rate Guns: FZD Superconducting RF Photogun

High Rep Rate Guns: FZD Superconducting RF Photogun High Rep Rate Guns: FZD Superconducting RF Photogun J. Teichert, A. Arnold, H. Büttig, D. Janssen, M. Justus, U. Lehnert, P. Michel, K. Moeller, P. Murcek, Ch. Schneider, R. Schurig, G. Staats, F. Staufenbiel,

More information

!"!3

!!3 Abstract A single-mode 500 MHz superconducting cavity cryomodule has been developed at Cornell for the electronpositron collider/synchrotron light source CESR. The Cornell B-cell cavity belongs to the

More information

45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests*

45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests* US High Gradient Research Collaboration Workshop. SLAC, May 23-25, 2007 45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests* V.P. Yakovlev 1, S.Yu. Kazakov 1,2, and J.L. Hirshfield 1,3 1

More information

XFEL High Power RF System Recent Developments

XFEL High Power RF System Recent Developments XFEL High Power RF System Recent Developments for the XFEL RF Group Outline XFEL RF System Requirements Overview Basic Layout RF System Main Components Multibeam Klystrons Modulator RF Waveguide Distribution

More information

Design of a 50 MW Klystron at X-Band*

Design of a 50 MW Klystron at X-Band* SLAC-PUB-954676 July 1995 Background Eight Next Linear Collider (NLC) prototype klystrons, known as the XC-series Design of a 50 MW Klystron at X-Band* klystrons, have been evaluated at SLAC with a goal

More information

Beam Losses During LCLS Injector Phase-1 1 Operation

Beam Losses During LCLS Injector Phase-1 1 Operation Beam Losses During LCLS Injector Phase-1 1 Operation & Paul Emma September 28, 2006 Radiation Safety Committee Review Scope of Phase 1 Operation Request for Three Operating Modes Operating Plan for Phase

More information

New Filling Pattern for SLS-FEMTO

New Filling Pattern for SLS-FEMTO SLS-TME-TA-2009-0317 July 14, 2009 New Filling Pattern for SLS-FEMTO Natalia Prado de Abreu, Paul Beaud, Gerhard Ingold and Andreas Streun Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland A new

More information

Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project

Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project Operational experience with the SOLEIL LINAC and Status of the ThomX LINAC project 16/11/2016 20th ELS-RF Workshop Pollina JP 1 and Status of the ThomX LINAC project Operational experience with the SOLEIL

More information

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN E. Chiaveri, CERN, Geneva, Switzerland Abstract The conceptual design of a superconducting H - linear accelerator at CERN for a beam energy of 2.2 GeV

More information

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac

First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac First Simultaneous Top-up Operation of Three Different Rings in KEK Injector Linac Masanori Satoh (Acc. Lab., KEK) for the injector upgrade group 2010/9/16 1 Overview of Linac Beam Operation 2010/9/16

More information

Jae-Young Choi On behalf of PLS-II Linac team

Jae-Young Choi On behalf of PLS-II Linac team PLS-II Linac 2015. 4. 8. Jae-Young Choi On behalf of PLS-II Linac team Accelerators in Pohang Accelerator Laboratory XFEL (under construction) 400 M$ Machines under installation PLS-II PAL : Chronology

More information

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR Rong Xiang On behalf of the BESSY-DESY-FZD-MBI collaboration and the ELBE team FEL 2009, Liverpool, United Kingdom, August 23 ~ 28, 2009 Outline Introduction

More information

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics High Brightness Injector Development and ERL Planning at Cornell Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics June 22, 2006 JLab CASA Seminar 2 Background During 2000-2001,

More information

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC L-Band RF R&D SLAC DOE Review June 15 th, 2005 Chris Adolphsen SLAC International Linear Collider (ILC) RF Unit (TESLA TDR Layout) Gradient = 23.4 MV/m Bunch Spacing = 337 ns Fill Time = 420 µs Train Length

More information

STATUS OF THE INTERNATIONAL LINEAR COLLIDER

STATUS OF THE INTERNATIONAL LINEAR COLLIDER STATUS OF THE INTERNATIONAL LINEAR COLLIDER K. Yokoya, KEK, Tsukuba, Japan Abstract The International Linear Collider (ILC) is the nextgeneration electron-positron collider. Since the publication of the

More information

P. Emma, et al. LCLS Operations Lectures

P. Emma, et al. LCLS Operations Lectures P. Emma, et al. LCLS Operations Lectures LCLS 1 LCLS Accelerator Schematic 6 MeV 135 MeV 250 MeV σ z 0.83 mm σ z 0.83 mm σ z 0.19 mm σ δ 0.05 % σ δ 0.10 % σ δ 1.6 % Linac-0 L =6 m rf gun L0-a,b Linac-1

More information

THE X-BAND KLYSTRON PROGRAM AT SLAC'

THE X-BAND KLYSTRON PROGRAM AT SLAC' SLAC-PUB-7 146 April 1996 THE X-BAND KLYSTRON PROGRAM AT SLAC' George Caryotakis ' Stanford Linear Accelerator Center Stanford University, Stanford, CA 9439 The X-band r f source development at SLAC can

More information

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh Design and Simulation of High Power RF Modulated Triode Electron Gun A. Poursaleh National Academy of Sciences of Armenia, Institute of Radio Physics & Electronics, Yerevan, Armenia poursaleh83@yahoo.com

More information

Status of KEK X-band Test Facility and its future plans

Status of KEK X-band Test Facility and its future plans Status of KEK X-band Test Facility and its future plans Shuji Matsumoto Accelerator Lab., KEK 5/30/2007 US High Field Gradient Collaboration Workshop, SLAC. 1 Contents The New X-band Test Facility (XTF)

More information

OF THIS DOCUMENT IS W8.MTO ^ SF6

OF THIS DOCUMENT IS W8.MTO ^ SF6 fflgh PEAK POWER TEST OF S-BAND WAVEGUIDE SWITCHES A. Nassiri, A. Grelick, R. L. Kustom, and M. White CO/0 ^"^J} 5, t * y ^ * Advanced Photon Source, Argonne National Laboratory» \^SJ ^ ^ * **" 9700 South

More information

RF Power Generation II

RF Power Generation II RF Power Generation II Klystrons, Magnetrons and Gyrotrons Professor R.G. Carter Engineering Department, Lancaster University, U.K. and The Cockcroft Institute of Accelerator Science and Technology Scope

More information

LEP OPERATION AND PERFORMANCE WITH ELECTRON-POSITRON COLLISIONS AT 209 GEV

LEP OPERATION AND PERFORMANCE WITH ELECTRON-POSITRON COLLISIONS AT 209 GEV LEP OPERATION AND PERFORMANCE WITH ELECTRON-POSITRON COLLISIONS AT 29 GEV R. W. Aßmann, CERN, Geneva, Switzerland Abstract The Large Electron-Positron Collider (LEP) at CERN completed its operation in

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

PEP II STATUS AND PLANS *

PEP II STATUS AND PLANS * PEP II STATUS AND PLANS * John T. Seeman + Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA The PEP II B-Factory 1 project is an e + e - colliding beam storage ring complex

More information

Design Studies For The LCLS 120 Hz RF Gun Injector

Design Studies For The LCLS 120 Hz RF Gun Injector BNL-67922 Informal Report LCLS-TN-01-3 Design Studies For The LCLS 120 Hz RF Gun Injector X.J. Wang, M. Babzien, I. Ben-Zvi, X.Y. Chang, S. Pjerov, and M. Woodle National Synchrotron Light Source Brookhaven

More information

ILC-LNF TECHNICAL NOTE

ILC-LNF TECHNICAL NOTE IL-LNF EHNIAL NOE Divisione Acceleratori Frascati, July 4, 2006 Note: IL-LNF-001 RF SYSEM FOR HE IL DAMPING RINGS R. Boni, INFN-LNF, Frascati, Italy G. avallari, ERN, Geneva, Switzerland Introduction For

More information

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 Low Level RF for PIP-II Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 PIP-II LLRF Team Fermilab Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah Holzbauer, Dan Klepec, Yuriy Pischalnikov,

More information

SLAC ILC Accelerator R&D Program

SLAC ILC Accelerator R&D Program SLAC ILC Accelerator R&D Program SLUO Meeting September 26 th, 2005 Tor Raubenheimer SLAC 2005 ILC Program NLC group was redirected towards ILC Developed a program aimed at the topics identified in the

More information

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University Development of beam-collision feedback systems for future lepton colliders P.N. Burrows 1 John Adams Institute for Accelerator Science, Oxford University Denys Wilkinson Building, Keble Rd, Oxford, OX1

More information

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The basic parameters of the pre-injector are listed in the Table below. 100 MeV 3.3 The Pre-injector The high design brightness of the SLS requires very high phase space density of the stored electrons, leading to a comparatively short lifetime of the beam in the storage ring. This,

More information

The TESLA RF System. S. Choroba. for the TESLA Collaboration. DESY Notkestr. 85, D Hamburg, Germany

The TESLA RF System. S. Choroba. for the TESLA Collaboration. DESY Notkestr. 85, D Hamburg, Germany The TESLA RF System S. Choroba for the TESLA Collaboration DESY Notkestr. 85, D-22603 Hamburg, Germany Abstract. The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear

More information

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team Status of SOLARIS Paweł Borowiec On behalf of Solaris Team e-mail: pawel.borowiec@uj.edu.pl XX ESLS-RF Meeting, Villingen 16-17.11.2016 Outline 1. Timeline 2. Injector 3. Storage ring 16-17.11.2016 XX

More information

5 Project Costs and Schedule

5 Project Costs and Schedule 93 5 Project Costs and Schedule 5.1 Overview The cost evaluation for the integrated version of the XFEL with 30 experiments and 35 GeV beam energy as described in the TDR-2001 yielded 673 million EUR for

More information

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Bingxin Yang, Alex H. Lumpkin, Katherine Harkay, Louis Emery, Michael Borland, and Frank Lenkszus Advanced

More information

A SHEET-BEAM KLYSTRON PAPER DESIGN

A SHEET-BEAM KLYSTRON PAPER DESIGN SLAC-PUB-8967 A SHEET-BEAM KLYSTRON PAPER DESIGN G. Caryotakis Stanford Linear Accelerator Center, Stanford University, Stanford Ca. 94309 Abstract What may be the first detailed cold test and computer

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH. A 50 Hz LOW-POWER SOLID-STATE KLYSTRON-MODULATOR

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH. A 50 Hz LOW-POWER SOLID-STATE KLYSTRON-MODULATOR CERN EUROPEAN ORGANIZATION FOR NUCLEAR REEARCH CTF3 Note 051(Tech.) (IGCT witch) A 50 Hz LOW-POWER OLID-TATE KLYTRON-MODULATOR P. Pearce, L. ermeus, L. hen Abstract A solid-state klystron-modulator has

More information

RF POWER GENERATION FOR FUTURE LINEAR COLLIDERS* 1. Introduction

RF POWER GENERATION FOR FUTURE LINEAR COLLIDERS* 1. Introduction SLAC-PUB-5282 June 1990 (A) RF POWER GENERATION FOR FUTURE LINEAR COLLIDERS* W. R. Fowkes, M. A. Allen, R. S. Callin, G. Caryotakis, K. R. Eppley, K. S. Fant, Z. D. Farkas, J. Feinstein, K. Ko, R. F. Koontz,

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

Conceptual Design for the New RPI 2020 Linac

Conceptual Design for the New RPI 2020 Linac !! SLAC&PUB&16137! Conceptual Design for the New RPI 2020 Linac RPI 2020 Linac Design Study Group October 29, 2014 Prepared for BMPC-KAPL under purchase order number 103313 by SLAC National Accelerator

More information

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin RF plans for ESS Morten Jensen ESLS-RF 2013 Berlin Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average beam power will be 5 MW which is five

More information

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Introduction The PITZ RF Photo Gun Field simulations Dark current simulations Multipacting simulations Summary Igor Isaev

More information

PEP II Status and Plans

PEP II Status and Plans SLAC-PUB-6854 September 1998 PEP II Status and Plans By John T. Seeman Invited talk presented at the 16th IEEE Particle Accelerator Conference (PAC 95) and International Conference on High Energy Accelerators,

More information

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi)

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) Commissioning of Accelerators Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) www.europeanspallationsource.se 6 July, 2017 Contents General points Definition of Commissioning

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL*

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* D. Kayran #,1,2, Z. Altinbas 1, D. Beavis 1, S. Belomestnykh 1,2, I. Ben-Zvi 1,2, S. Deonarine 1, D.M. Gassner 1, R. C. Gupta 1, H. Hahn 1,L.R. Hammons

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

HIGH-GRADIENT ELECTRON ACCELERATOR POWERED BY A RELATIVISTIC KLYSTRON*

HIGH-GRADIENT ELECTRON ACCELERATOR POWERED BY A RELATIVISTIC KLYSTRON* SLAC-PUB-5039 UCRL-101687 LBL-27718 August 1989 (A/E) HIGH-GRADIENT ELECTRON ACCELERATOR POWERED BY A RELATIVISTIC KLYSTRON* M. A. Allen,(a) J. K. Boyd,@) R. S. Callin, H. Deruyter,( ) K. R. Eppley,ca)

More information