International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE)

Size: px
Start display at page:

Download "International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE)"

Transcription

1 International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE) Course Code: EEE 3518 Course Title: Embedded System Sessional EXPERIMENT NO. 8 Name of the Experiment: Analog to digital conversion (ADC) by PIC 16F887 microcontroller. 8.1 Objective: The objectives of this experiment are- (a) To know the basic procedure of converting analog signal to digital signal. (b) Converting analog voltage into digital by PIC16F887 microcontroller. 8.2 Related Literature: Analog signals are continuously valued signal, with infinite possible values in between. Signals in the real world are analog: light, sound, temperature etc. So, realworld signals must be converted into digital (discretely valued signal), using a circuit called ADC (Analog-to-Digital Converter), before they can be manipulated by digital equipment Why digital? : There are some basic reasons to use digital signals instead of analog, noise being the number one. Since analog signals can assume any value, noise is interpreted as being part of the original signal. Digital systems, on the other hand, can only understand two numbers, zero and one. Anything different from this is discarded. In order to manipulate the data using a microprocessor, we need to convert the analog signals to the digital signals, so that the microprocessor will be able to read, understand and manipulate the data. Another advantage of digital system against analog is the data compression capability. Since the digital counterpart of an analog signal is just a bunch of numbers, these numbers can be compressed, just like you would compress a Word file using WinZip to shrink down the file size, for example. The compression can be done to save storage space or bandwidth.

2 8.2.2 Steps of ADC An analog signal is continuous in both time and amplitude, whereas a digital signal is discrete in time as well as in amplitude. Logically, an ADC has to covert an analog signal to an equivalent digital one in three steps: (a) Sampling: Converting the analog signal to a discrete in time signal which is called sampling. (b) Quantization: Converting the discrete time signal into a discrete in amplitude signal which is called quantization. (c) Coding: Finally every sample is represented by an n-bit digital code. Amplitude Time Figure: Analog Signal Amplitude Time Figure: Sampling

3 Amplitude Time Figure: Quantization and coding Analog Modules in PIC16F887 The A/D converter module has the following features: The converter generates a 10-bit binary result using the method of successive approximation and stores the conversion results into the ADC registers (ADRESL and ADRESH); There are 14 separate analog inputs; The A/D converter converts an analog input signal into a 10-bit binary number; The minimum resolution or quality of conversion may be adjusted to various needs by selecting voltage references Vref- and Vref+.

4 A/D CONVERTER The operation of A/D converter is in control of the bits of four registers: ADRESH Contains high byte of conversion result; ADRESL Contains low byte of conversion result; ADCON0 Control register 0; and ADCON1 Control register ADRESH and ADRESL Registers The result obtained after converting an analog value into digital is a10-bit number that is to be stored in the ADRESH and ADRESL registers. There are two ways of handling it - left and right justification which simplifies its use to a great extent. The format of conversion result depends on the ADFM bit of the ADCON1 register. In the event that the A/D converter is not used, these registers may be used as general-purpose registers.

5 HOW TO USE THE A/D CONVERTER? In order to enable the A/D converter to run without problems as well as to avoid unexpected results, it is necessary to consider the following: A/D converter does not differ between digital and analog signals. In order to avoid errors in measurement or chip damage, pins should be configured as analog inputs before the process of conversion starts. Bits used for this purpose are stored in the TRIS and ANSEL (ANSELH) registers; When reading the port with analog inputs, the state of the corresponding bits will be read as a logic zero (0); and Roughly speaking, voltage measurement in the converter is based on comparing input voltage with internal scale which has 1024 marks (2 10 = 1024). The lowest scale mark stands for the Vref- voltage, whilst its highest mark stands for the Vref+ voltage ADC control registers ADCON0 Register ADCS1, ADCS0 - A/D Conversion Clock Select bits select clock frequency used for internal synchronization of A/D converter. It also affects duration of conversion. ADCS1 ADCS2 CLOCK 0 0 Fosc/2

6 0 1 Fosc/8 1 0 Fosc/ RC * * Clock is generated by internal oscillator which is built in the converter. CHS3-CHS0 - Analog Channel Select bits select a pin or an analog channel for A/D conversion, i.e. voltage measurement: CHS3 CHS2 CHS1 CHS0 CHAN NE L PI N RA0/AN RA1/AN RA2/AN RA3/AN RA5/AN RE0/AN RE1/AN RE2/AN RB2/AN RB3/AN RB1/AN RB4/AN RB0/AN RB5/AN CVref Vref = 0.6V GO/DONE - A/D Conversion Status bit determines current status of conversion: 1 - A/D conversion is in progress. 0 - A/D conversion is complete. This bit is automatically cleared by hardware when the A/D conversion is complete. ADON - A/D On bit enables A/D converter. 1 - A/D converter is enabled. 0 - A/D converter is disabled.

7 ADCON1 Register ADFM - A/D Result Format Select bit 1 - Conversion result is right justified. Six most significant bits of the ADRESH are not used. 0 - Conversion result is left justified. Six least significant bits of the ADRESL are not used. VCFG1 - Voltage Reference bit selects negative voltage reference source needed for the operation of A/D converter. 1 - Negative voltage reference is applied to the Vref- pin. 0 - Power supply voltage Vss is used as negative voltage reference source. VCFG0 - Voltage Reference bit selects positive voltage reference source needed for the operation of A/D converter. 1 - Positive voltage reference is applied to the Vref+ pin. 0 - Power supply voltage Vdd is used as positive voltage reference source. In Short In order to measure voltage on an input pin by the A/D converter, the following should be done: Step 1 - Port configuration: Write a logic one (1) to a bit of the TRIS register, thus configuring the appropriate pin as an input. Write a logic one (1) to a bit of the ANSEL register, thus configuring the appropriate pin as an analog input. Step 2 - ADC module configuration: Configure voltage reference in the ADCON1 register. Select ADC conversion clock in the ADCON0 register. Select one of input channels CH0-CH13 of the ADCON0 register. Select data format using the ADFM bit of the ADCON1 register. Enable A/D converter by setting the ADON bit of the ADCON0 register. Step 3 - ADC interrupt configuration (optionally): Clear the ADIF bit. Set the ADIE, PEIE and GIE bits. Step 4 - Wait for the required acquisition time to pass (approximately 20uS).

8 Step 5 - Start conversion by setting the GO/DONE bit of the ADCON0 register. Step 6 - Wait for ADC conversion to complete. It is necessary to check in the program loop whether the GO/DONE pin is cleared or wait for an A/D interrupt (must be previously enabled). Step 7 - Read ADC results: Read the ADRESH and ADRESL registers ADC library in MikroC PRO ADC_Init Prototype Returns void ADC_Init(); Nothing. Description This routine initializes PIC s internal ADC module to work with RC clock. Clock determines the time period necessary for performing AD conversion (min 12TAD). Requires MCU with built-in ADC module. Example ADC_Init(); // Initialize ADC module with default settings ADC_Get_Sample Prototype Returns unsigned ADC_Get_Sample(unsigned short channel); 10 or 12-bit unsigned value read from the specified channel (MCU dependent). Description The function aquires analog value from the specified channel. Parameter channel represents the channel from which the analog value is to be acquired. Refer to the appropriate datasheet for channel-to-pin mapping. Note : This function doesn't work with the external voltage reference source, only with the internal voltage reference. Parameters channel represents the channel from which the analog value is to be acquired. Requires The MCU with built-in ADC module. Prior to using this routine, ADC module needs to be initialized. See ADC_Init.

9 Before using the function, be sure to configure the appropriate TRISx bits to designate pins as inputs. Example unsigned adc_value;... adc_value = ADC_Get_Sample(2); channel 2 // read analog value from ADC module ADC_Read Prototype Returns unsigned ADC_Read(unsigned short channel); 10 or 12-bit unsigned value read from the specified channel (MCU dependent). Description Initializes PIC s internal ADC module to work with RC clock. Clock determines the time period necessary for performing AD conversion (min 12TAD). Parameter channel represents the channel from which the analog value is to be acquired. Refer to the appropriate datasheet for channel-to-pin mapping. Note : This function doesn't work with the external voltage reference source, only with the internal voltage reference. Requires Example Nothing. unsigned tmp;... tmp = ADC_Read(2); // Read analog value from channel 2

10 8.3 Measuring light Intensity Circuit Diagram Program: unsigned int light; void main() { ANSEL = 0x04; ANSELH = 0; C1ON_bit = 0; // Configure AN2 pin as analog // Configure other AN pins as digital I/O // Disable comparators C2ON_bit = 0; TRISA = 0xFF; TRISB = 0; // PORTA is input // PORTB is output while(1)

11 { light = ADC_Read(2); // Get 10-bit results of AD conversion if(light<100) PORTB=0x6F; else if(light<200) PORTB=0x7F; else if(light<300) PORTB=0x07; else if(light<400) PORTB=0x7D; else if(light<500) PORTB=0x6D; else if(light<600) PORTB=0x66; else if(light<700) PORTB=0x4F; else if(light<800) PORTB=0x5B; else if(light<900) PORTB=0x06; else PORTB=0x3F; } }

ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion. Eng. Salma Hesham

ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion. Eng. Salma Hesham ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion 7-Segment LED Display g f com a b e d com c P 7-Segment LED Display Common Cathode - Com Pin = Gnd - Active high inputs - Example

More information

Data Conversion and Lab (17.368) Fall Lecture Outline

Data Conversion and Lab (17.368) Fall Lecture Outline Data Conversion and Lab (17.368) Fall 2013 Lecture Outline Class # 11 November 14, 2013 Dohn Bowden 1 Today s Lecture Outline Administrative Detailed Technical Discussions Lab Microcontroller and Sensors

More information

Chapter 11 Sections 1 3 Dr. Iyad Jafar

Chapter 11 Sections 1 3 Dr. Iyad Jafar Data Acquisition and Manipulation Chapter 11 Sections 1 3 Dr. Iyad Jafar Outline Analog and Digital Quantities The Analog to Digital Converter Features of Analog to Digital Converter The Data Acquisition

More information

Section bit Analog-to-Digital Converter (ADC)

Section bit Analog-to-Digital Converter (ADC) Section 17. 10-bit Analog-to-Digital Converter (ADC) HIGHLIGHTS This section of the manual contains the following major topics: 17 17.1 Introduction...17-2 17.2 Control Registers...17-4 17.3 ADC Operation,

More information

Converting between Analog and Digital Domains

Converting between Analog and Digital Domains Converting between Analog and Digital Domains Chapter 6 Renesas Electronics America Inc. Advanced Embedded Systems using the RX63N Rev. 0.1 00000-A Topics Need Reference voltage Resolution Sample and Hold

More information

Section Bit ADC with 4 Simultaneous Conversions

Section Bit ADC with 4 Simultaneous Conversions Section 49. 10-Bit ADC with 4 Simultaneous Conversions HIGHLIGHTS This section of the manual contains the following major topics: 49.1 Introduction...1-2 49.2 Control Registers...1-4 49.3 Overview of and

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example Successive Approximation Converter A successive approximation converter provides a fast conversion of a momentary value of the input signal. It works by first comparing the input with a voltage which is

More information

Introduction to PIC Programming

Introduction to PIC Programming Introduction to PIC Programming Baseline Architecture and Assembly Language by David Meiklejohn, Gooligum Electronics Lesson 10: Analog-to-Digital Conversion We saw in the last lesson how a comparator

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? A means to convert

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

TV Synchronism Generation with PIC Microcontroller

TV Synchronism Generation with PIC Microcontroller TV Synchronism Generation with PIC Microcontroller With the widespread conversion of the TV transmission and coding standards, from the early analog (NTSC, PAL, SECAM) systems to the modern digital formats

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design E.g. Port A, Port B Used to interface with many devices Switches LEDs LCD Keypads Relays Stepper Motors Interface with digital IO requires us to connect the devices correctly and write code to interface

More information

Experiment 3: Basic Embedded System Analysis and Design

Experiment 3: Basic Embedded System Analysis and Design University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 3 Experiment 3: Basic Embedded System Analysis and Design Objectives Empowering

More information

EXPERIMENT 2: Elementary Input Output Programming

EXPERIMENT 2: Elementary Input Output Programming EXPERIMENT 2: Elementary Input Output Programming Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing with digital inputs and outputs such as switches, LEDs and 7-segment.

More information

Embedded Systems. Interfacing PIC with external devices 7-Segment display. Eng. Anis Nazer Second Semester

Embedded Systems. Interfacing PIC with external devices 7-Segment display. Eng. Anis Nazer Second Semester Embedded Systems Interfacing PIC with external devices 7-Segment display Eng. Anis Nazer Second Semester 2017-2018 PIC interfacing In any embedded system, the microcontroller should be connected to other

More information

Radio Clock with DCF77

Radio Clock with DCF77 Radio Clock with DCF77 by Nicolas L. F. September 2011 Abstract Since the 1980s radio clocks have been popular, and in this article Nicolas guides us through the creation of his own radio clock using the

More information

Part 2 -- A digital thermometer or talk I2C to your atmel microcontroller

Part 2 -- A digital thermometer or talk I2C to your atmel microcontroller Home Electronics Graphics, Film & Animation E-cards Other Linux stuff Photos Online-Shop Content: The new things The LCD display A little GUI How it works: Analog to digital conversion How it works: I2C

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE - To explain how to configure and use the in common applications OBJECTIVES: - Identify the steps to set up and configure the. - Identify techniques for maximizing the accuracy

More information

B I O E N / Biological Signals & Data Acquisition

B I O E N / Biological Signals & Data Acquisition B I O E N 4 6 8 / 5 6 8 Lectures 1-2 Analog to Conversion Binary numbers Biological Signals & Data Acquisition In order to extract the information that may be crucial to understand a particular biological

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

Fig. 1 Analog pins of Arduino Mega

Fig. 1 Analog pins of Arduino Mega Laboratory 7 Analog signals processing An analog signals is variable voltage over time and is usually the output of a sensor that monitors the environment. Such a signal can be processed and interpreted

More information

DESIGN AND DEVELOPMENT OF A MICROCONTROLLER BASED PORTABLE ECG MONITOR

DESIGN AND DEVELOPMENT OF A MICROCONTROLLER BASED PORTABLE ECG MONITOR Bangladesh Journal of Medical Physics Vol. 4, No.1, 2011 DESIGN AND DEVELOPMENT OF A MICROCONTROLLER BASED PORTABLE ECG MONITOR Nahian Rahman 1, A K M Bodiuzzaman, A Raihan Abir, K Siddique-e Rabbani Department

More information

Embedded Systems. Interfacing PIC with external devices 7-Segment display. Eng. Anis Nazer Second Semester

Embedded Systems. Interfacing PIC with external devices 7-Segment display. Eng. Anis Nazer Second Semester Embedded Systems Interfacing PIC with external devices 7-Segment display Eng. Anis Nazer Second Semester 2016-2017 PIC interfacing The PIC needs to be connected to other devices such as: LEDs Switches

More information

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter ME6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Analog to Digital Converter Analog and Digital Signals Analog signals have infinite states available mercury thermometer

More information

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used to convert the external analog voltage-like sensor

More information

Point System (for instructor and TA use only)

Point System (for instructor and TA use only) EEL 4744C - Drs. George and Gugel Spring Semester 2002 Final Exam NAME SS# Closed book and closed notes examination to be done in pencil. Calculators are permitted. All work and solutions are to be written

More information

SUBSYSTEMS FOR DATA ACQUISITION #39. Analog-to-Digital Converter (ADC) Function Card

SUBSYSTEMS FOR DATA ACQUISITION #39. Analog-to-Digital Converter (ADC) Function Card SUBSYSTEMS FOR DATA ACQUISITION #39 Analog-to-Digital Converter (ADC) Function Card Project Scope Design an ADC function card for an IEEE 488 interface box built by Dr. Robert Kolbas. ADC card will add

More information

Analog input and output

Analog input and output Analog input and output DRAFT VERSION - This is part of a course slide set, currently under development at: http://mbed.org/cookbook/course-notes We welcome your feedback in the comments section of the

More information

Solutions to Embedded System Design Challenges Part II

Solutions to Embedded System Design Challenges Part II Solutions to Embedded System Design Challenges Part II Time-Saving Tips to Improve Productivity In Embedded System Design, Validation and Debug Hi, my name is Mike Juliana. Welcome to today s elearning.

More information

Analog-to-Digital Conversion

Analog-to-Digital Conversion ADC-DAC ผศ.ดร. ส ร นทร ก ตต ธรก ล และ อ.สรย ทธ กลมกล อม ภาคว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร สถาบ นเทคโนโลย พระจอมเกล าเจ าค ณทหารลาดกระบ ง Computer Interfacing, KMITL ADC-DAC 1 Analog-to-Digital

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE On Industrial Automation and Control By Prof. S. Mukhopadhyay Department of Electrical Engineering IIT Kharagpur Topic Lecture

More information

Model Solution and marking scheme for Examination Paper EEE305J1: Microcontroller Systems 2004/5 General Observations

Model Solution and marking scheme for Examination Paper EEE305J1: Microcontroller Systems 2004/5 General Observations Model Solution and marking scheme for Examination Paper EEE305J1: Microcontroller Systems 2004/5 General Observations Design questions like A1 below are extremely difficult to mark, not least because there

More information

Technical Data. HF Tuner WJ-9119 WATKINS-JOHNSON. Features

Technical Data. HF Tuner WJ-9119 WATKINS-JOHNSON. Features May 1996 Technical Data WATKINS-JOHNSON HF Tuner WJ-9119 WJ designed the WJ-9119 HF Tuner for applications requiring maximum dynamic range. The tuner specifically interfaces with the Hewlett-Packard E1430A

More information

Integrated Circuit for Musical Instrument Tuners

Integrated Circuit for Musical Instrument Tuners Document History Release Date Purpose 8 March 2006 Initial prototype 27 April 2006 Add information on clip indication, MIDI enable, 20MHz operation, crystal oscillator and anti-alias filter. 8 May 2006

More information

CPE 310L EMBEDDED SYSTEM DESIGN (CPE)

CPE 310L EMBEDDED SYSTEM DESIGN (CPE) CPE 310L EMBEDDED SYSTEM DESIGN (CPE) LABORATORY 8 ANALOG DIGITAL CONVERTER DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL The goal of this lab is to understand

More information

This document describes a program for 7-segment LED display (dynamic lighting) and key matrix and input.

This document describes a program for 7-segment LED display (dynamic lighting) and key matrix and input. R8C/25 Group 1. Abstract This document describes a program for 7-segment LED display (dynamic lighting) and key matrix and input. 2. Introduction The application example described in this document applies

More information

AN919: Using the EFM8LB1 ADC

AN919: Using the EFM8LB1 ADC This application note shows general operation and usage of the EFM8LB1's and EFM8BB3's ADC. In addition, this document describes the advanced features of the ADC including Window Compare, Autoscan mode,

More information

Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li

Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li Sponsored by: Department of Electrical Engineering & Computer Science at UCF What is the DAC? The DAC is an array of

More information

Digital Systems Principles and Applications. Chapter 1 Objectives

Digital Systems Principles and Applications. Chapter 1 Objectives Digital Systems Principles and Applications TWELFTH EDITION CHAPTER 1 Introductory Concepts Modified -J. Bernardini Chapter 1 Objectives Distinguish between analog and digital representations. Describe

More information

TV Character Generator

TV Character Generator TV Character Generator TV CHARACTER GENERATOR There are many ways to show the results of a microcontroller process in a visual manner, ranging from very simple and cheap, such as lighting an LED, to much

More information

This document describes a program for 7-segment LED display (dynamic lighting).

This document describes a program for 7-segment LED display (dynamic lighting). R8C/25 Group 1. Abstract This document describes a program for 7-segment LED display (dynamic lighting). 2. Introduction The application example described in this document applies to the following MCU

More information

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, TIMERS, SPI

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, TIMERS, SPI 8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, TIMERS, SPI Memories.5K bytes single voltage Flash Program memory with read-out protection, In-Circuit Programming and In-Application Programming

More information

Simple PICTIC Commands

Simple PICTIC Commands The Simple PICTIC Are you an amateur bit by the Time-Nut bug but can t afford a commercial time interval counter with sub nanosecond resolution and a GPIB interface? Did you find a universal counter on

More information

Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

More information

Digital Signal Processing Lecture One Introduction to Digital Signal Processing Third Stage Prepared by: Marwah Kareem

Digital Signal Processing Lecture One Introduction to Digital Signal Processing Third Stage Prepared by: Marwah Kareem Lecture One Introduction to Digital Signal Processing Third Stage Prepared by: Marwah Kareem Digital Signal Processing Digital signal processing (DSP) technology and its advancements have dramatically

More information

Analog Input & Output

Analog Input & Output EEL 4744C: Microprocessor Applications Lecture 10 Part 1 Analog Input & Output Dr. Tao Li 1 Read Assignment M&M: Chapter 11 Dr. Tao Li 2 To process continuous signals as functions of time Advantages free

More information

Lab 1 Introduction to the Software Development Environment and Signal Sampling

Lab 1 Introduction to the Software Development Environment and Signal Sampling ECEn 487 Digital Signal Processing Laboratory Lab 1 Introduction to the Software Development Environment and Signal Sampling Due Dates This is a three week lab. All TA check off must be completed before

More information

Troubleshooting EMI in Embedded Designs White Paper

Troubleshooting EMI in Embedded Designs White Paper Troubleshooting EMI in Embedded Designs White Paper Abstract Today, engineers need reliable information fast, and to ensure compliance with regulations for electromagnetic compatibility in the most economical

More information

Ocean Sensor Systems, Inc. Wave Staff, OSSI F, Water Level Sensor With 0-5V, RS232 & Alarm Outputs, 1 to 20 Meter Staff

Ocean Sensor Systems, Inc. Wave Staff, OSSI F, Water Level Sensor With 0-5V, RS232 & Alarm Outputs, 1 to 20 Meter Staff Ocean Sensor Systems, Inc. Wave Staff, OSSI-010-002F, Water Level Sensor With 0-5V, RS232 & Alarm Outputs, 1 to 20 Meter Staff General Description The OSSI-010-002E Wave Staff is a water level sensor that

More information

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control Broadband frequency range from 20Mbps 18.0Gbps Minimal insertion jitter Fast rise and

More information

AD16-64(LPCI)LA. Non-isolated high precision analog input board for Low Profile PCI AD16-64(LPCI)LA 1. Ver.1.01

AD16-64(LPCI)LA. Non-isolated high precision analog input board for Low Profile PCI AD16-64(LPCI)LA 1. Ver.1.01 Non-isolated high precision analog board for Low Profile PCI AD16-64(LPCI)LA * Specifications, color and design of the products are subject to change without notice. This product is a PCI bus compatible

More information

Converters: Analogue to Digital

Converters: Analogue to Digital Converters: Analogue to Digital Presented by: Dr. Walid Ghoneim References: Process Control Instrumentation Technology, Curtis Johnson Op Amps Design, Operation and Troubleshooting. David Terrell 1 - ADC

More information

Ocean Sensor Systems, Inc. Wave Staff III, OSSI With 0-5V & RS232 Output and A Self Grounding Coaxial Staff

Ocean Sensor Systems, Inc. Wave Staff III, OSSI With 0-5V & RS232 Output and A Self Grounding Coaxial Staff Ocean Sensor Systems, Inc. Wave Staff III, OSSI-010-008 With 0-5V & RS232 Output and A Self Grounding Coaxial Staff General Description The OSSI-010-008 Wave Staff III is a water level sensor that combines

More information

NanoCom ADS-B. Datasheet An ADS-B receiver for space applications

NanoCom ADS-B. Datasheet An ADS-B receiver for space applications NanoCom ADS-B Datasheet An ADS-B receiver for space applications 1 Table of contents 1 TABLE OF CONTENTS... 2 2 CHANGELOG... 3 3 INTRODUCTION... 4 4 OVERVIEW... 4 4.1 HIGHLIGHTED FEATURES... 4 4.2 BLOCK

More information

Low-speed serial buses are used in wide variety of electronics products. Various low-speed buses exist in different

Low-speed serial buses are used in wide variety of electronics products. Various low-speed buses exist in different Low speed serial buses are widely used today in mixed-signal embedded designs for chip-to-chip communication. Their ease of implementation, low cost, and ties with legacy design blocks make them ideal

More information

Power Supply and Watchdog Timer Monitoring Circuit ADM9690

Power Supply and Watchdog Timer Monitoring Circuit ADM9690 a FEATURES Precision Voltage Monitor (4.31 V) Watchdog Timeout Monitor Selectable Watchdog Timeout 0.75 ms, 1.5 ms, 12.5 ms, 25 ms Two RESET Outputs APPLICATIONS Microprocessor Systems Computers Printers

More information

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS 8-Bit esolution atiometric Conversion 100-µs Conversion Time 135-ns Access Time No Zero Adjust equirement On-Chip Clock Generator Single 5-V Power Supply Operates With Microprocessor or as Stand-Alone

More information

Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Analog-to-Digital Conversion (Part 2) Charge redistribution network Instead of a resistor ladder for the D/A converter, the microcontroller uses an-all capacitor system to generate the known voltages It

More information

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab Experiment #5 Shift Registers, Counters, and Their Architecture 1. Introduction: In Laboratory Exercise # 4,

More information

PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4

PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4 PCM ENCODING PREPARATION... 2 PCM... 2 PCM encoding... 2 the PCM ENCODER module... 4 front panel features... 4 the TIMS PCM time frame... 5 pre-calculations... 5 EXPERIMENT... 5 patching up... 6 quantizing

More information

Digital Signal. Continuous. Continuous. amplitude. amplitude. Discrete-time Signal. Analog Signal. Discrete. Continuous. time. time.

Digital Signal. Continuous. Continuous. amplitude. amplitude. Discrete-time Signal. Analog Signal. Discrete. Continuous. time. time. Discrete amplitude Continuous amplitude Continuous amplitude Digital Signal Analog Signal Discrete-time Signal Continuous time Discrete time Digital Signal Discrete time 1 Digital Signal contd. Analog

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise 4 Polling and Interrupts The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two methods used to indicate whether or not data can be

More information

Workshop 4 (A): Telemetry and Data Acquisition

Workshop 4 (A): Telemetry and Data Acquisition Workshop 4 (A): Telemetry and Data Acquisition Mahidol University June 13, 2008 Paul Evenson University of Delaware Bartol Research Institute 1 Workshop Series Idea Introduce students to technical aspects

More information

SignalTap Plus System Analyzer

SignalTap Plus System Analyzer SignalTap Plus System Analyzer June 2000, ver. 1 Data Sheet Features Simultaneous internal programmable logic device (PLD) and external (board-level) logic analysis 32-channel external logic analyzer 166

More information

Evaluating Oscilloscopes to Debug Mixed-Signal Designs

Evaluating Oscilloscopes to Debug Mixed-Signal Designs Introduction Evaluating Oscilloscopes to Debug Mixed-Signal Designs Our thanks to Agilent for allowing us to reprint the following article. Today s embedded designs based on microcontrollers (MCUs) and

More information

ExtIO Plugin User Guide

ExtIO Plugin User Guide Overview The SDRplay Radio combines together the Mirics flexible tuner front-end and USB Bridge to produce a SDR platform capable of being used for a wide range of worldwide radio and TV standards. This

More information

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses GHz PLL with I 2 C Bus and Four Chip Addresses Preliminary Data Features 1-chip system for MPU control (I 2 C bus) 4 programmable chip addresses Short pull-in time for quick channel switch-over and optimized

More information

2 MHz Lock-In Amplifier

2 MHz Lock-In Amplifier 2 MHz Lock-In Amplifier SR865 2 MHz dual phase lock-in amplifier SR865 2 MHz Lock-In Amplifier 1 mhz to 2 MHz frequency range Dual reference mode Low-noise current and voltage inputs Touchscreen data display

More information

Lab 2: A/D, D/A, and Sampling Theorem

Lab 2: A/D, D/A, and Sampling Theorem Lab 2: A/D, D/A, and Sampling Theorem Introduction The purpose of this lab is to explore the principles of analog-to-digital conversion, digital-to-analog conversion, and the sampling theorem. It will

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

Vorne Industries. 87/719 Analog Input Module User's Manual Industrial Drive Itasca, IL (630) Telefax (630)

Vorne Industries. 87/719 Analog Input Module User's Manual Industrial Drive Itasca, IL (630) Telefax (630) Vorne Industries 87/719 Analog Input Module User's Manual 1445 Industrial Drive Itasca, IL 60143-1849 (630) 875-3600 Telefax (630) 875-3609 . 3 Chapter 1 Introduction... 1.1 Accessing Wiring Connections

More information

The 9S12 A/D converter Huang Section ATD_10B8C Block User Guide

The 9S12 A/D converter Huang Section ATD_10B8C Block User Guide The 9S2 A/D converter Huang Section 23-24 ATD_B8C Block User Guide Analog/Digital Converters A -bit A/D converter is used to convert an input voltage The reference voltages are V RL = V and V RH = 5V What

More information

4.3 8 bit TFT Digital Driver Board Specification

4.3 8 bit TFT Digital Driver Board Specification OZDISAN ELECTRONIC A.S. 4.3 8 bit TFT Digital Driver Board Specification TDDB-SSD-4.3-40P-8B-V4 Doc.Version : 1.0 OLAB Ozdisan Electronic R&D and Technical Support Department Email: ts@ozdisan.com Tel:

More information

Analog-to-Digital Converter

Analog-to-Digital Converter 5 5.1 Objectives: The TM4C is equipped with an analog-to-digital (ATD) conversion system that samples an analog (continuous) signal at regular intervals and then converts each of these analog samples into

More information

Chapter 1. Introduction to Digital Signal Processing

Chapter 1. Introduction to Digital Signal Processing Chapter 1 Introduction to Digital Signal Processing 1. Introduction Signal processing is a discipline concerned with the acquisition, representation, manipulation, and transformation of signals required

More information

Counter/timer 2 of the 83C552 microcontroller

Counter/timer 2 of the 83C552 microcontroller INTODUCTION TO THE 83C552 The 83C552 is an 80C51 derivative with several extended features: 8k OM, 256 bytes AM, 10-bit A/D converter, two PWM channels, two serial I/O channels, six 8-bit I/O ports, and

More information

GFT Channel Digital Delay Generator

GFT Channel Digital Delay Generator Features 20 independent delay Channels 100 ps resolution 25 ps rms jitter 10 second range Output pulse up to 6 V/50 Ω Independent trigger for every channel Fours Triggers Three are repetitive from three

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 65 MSPS DUAL ADC

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 65 MSPS DUAL ADC LTC2286, LTC2287, LTC2288, LTC2290, LTC2291, LTC2292, LTC2293, LTC2294, LTC2295, LTC2296, LTC2297, LTC2298 or LTC2299 DESCRIPTION Demonstration circuit 816 supports a family of s. Each assembly features

More information

ES /2 digit with LCD

ES /2 digit with LCD Features Max. ±19,999 counts QFP-44L and DIP-40L package Input full scale range: 200mV or 2V Built-in multiplexed LCD display driver Underrange/Overrange outputs 10µV resolution on 200mV scale Display

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

AN3023 Application note

AN3023 Application note Application note Using the analog-to-digital converter of the STM8A microcontroller Introduction The purpose of this application note is to explain how to use the analog-to-digital converter implemented

More information

Digital IC Tester by Using PIC18F4550

Digital IC Tester by Using PIC18F4550 Digital IC Tester by Using PIC18F4550 Mrs. Amruta S. Dixit 1, Mrs. Aditi A. Prabhune 2 Department of Electronics & Telecommunication Pune Institute of Computer Technology, Pune, Maharashtra, India Corresponding

More information

Embedded System Training Module ABLab Solutions

Embedded System Training Module ABLab Solutions Embedded System Training Module ABLab Solutions www.ablab.in Table of Contents Course Outline... 4 1. Introduction to Embedded Systems... 4 2. Overview of Basic Electronics... 4 3. Overview of Digital

More information

Synchronizing Multiple ADC08xxxx Giga-Sample ADCs

Synchronizing Multiple ADC08xxxx Giga-Sample ADCs Application Bulletin July 19, 2010 Synchronizing Multiple 0xxxx Giga-Sample s 1.0 Introduction The 0xxxx giga-sample family of analog-to-digital converters (s) make the highest performance data acquisition

More information

Improved Synchronization System for Thermal Power Station

Improved Synchronization System for Thermal Power Station Improved Synchronization System for Thermal Power Station Lokeshkumar.C 1, Logeshkumar.E 2, Harikrishnan.M 3, Margaret 4, Dr.K.Sathiyasekar 5 UG Students, Department of EEE, S.A.Engineering College, Chennai,

More information

FM1200RTIM COMTECH TECHNOLOGY CO., LTD. 1. GENERAL SPECIFICATION. 2. STANDARD TEST CONDITION test for electrical specification shall be

FM1200RTIM COMTECH TECHNOLOGY CO., LTD. 1. GENERAL SPECIFICATION. 2. STANDARD TEST CONDITION test for electrical specification shall be 1. GENERAL SPECIFICATION 1-1 Input Frequency Range 1-3 One Input Connector 1-4 Nominal Input Impedance 1-5 Tuning Circuit 1-6 IF Frequency 1-7 IF Bandwidth 1-8 Demodulation 1-9 Video Output Polarity 1-10

More information

HT8 MCU Integrated LCD Application Example (2) C Type Bias

HT8 MCU Integrated LCD Application Example (2) C Type Bias HT8 MCU Integrated LCD Application Example (2) C Type Bias D/N: AN0413E Introduction The Holtek LCD type MCUs provide four LCD driving schemes including the R type, C type, SCOM type as well as SCOM and

More information

RX40_V1_0 Measurement Report F.Faccio

RX40_V1_0 Measurement Report F.Faccio RX40_V1_0 Measurement Report F.Faccio This document follows the previous report An 80Mbit/s Optical Receiver for the CMS digital optical link, dating back to January 2000 and concerning the first prototype

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 105 MSPS ADC

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 105 MSPS ADC LTC2280, LTC2282, LTC2284, LTC2286, LTC2287, LTC2288 LTC2289, LTC2290, LTC2291, LTC2292, LTC2293, LTC2294, LTC2295, LTC2296, LTC2297, LTC2298 or LTC2299 DESCRIPTION Demonstration circuit 851 supports a

More information

Introduction to Data Conversion and Processing

Introduction to Data Conversion and Processing Introduction to Data Conversion and Processing The proliferation of digital computing and signal processing in electronic systems is often described as "the world is becoming more digital every day." Compared

More information

Interfacing the TLC5510 Analog-to-Digital Converter to the

Interfacing the TLC5510 Analog-to-Digital Converter to the Application Brief SLAA070 - April 2000 Interfacing the TLC5510 Analog-to-Digital Converter to the TMS320C203 DSP Perry Miller Mixed Signal Products ABSTRACT This application report is a summary of the

More information

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C Digital Clock A Project By Perry Andrews Based on the PIC16F84A Micro controller. Revision C 23 rd January 2011 Contents Contents... 2 Introduction... 2 Design and Development... 3 Construction... 7 Conclusion...

More information

Combo Board.

Combo Board. Combo Board www.matrixtsl.com EB083 Contents About This Document 2 General Information 3 Board Layout 4 Testing This Product 5 Circuit Diagram 6 Liquid Crystal Display 7 Sensors 9 Circuit Diagram 10 About

More information

bit TFT Digital Driver Board Specification

bit TFT Digital Driver Board Specification OZDISAN ELECTRONIC A.S. 3.5 16 bit TFT Digital Driver Board Specification TDDB-SSD-3.5-54P-16B-V2 Doc.Version : 1.0 OLAB Ozdisan Electronic R&D and Technical Support Department Email: ts@ozdisan.com Tel:

More information

DSM GHz Linear Chirping Source

DSM GHz Linear Chirping Source DSM202 2.0 GHz GENERAL DESCRIPTION The DSM202 is a linear chirping waveform module that generates two types of chirping waveforms at 32 clocks per frequency update. The DSM202 can be controlled using a

More information

Debugging Embedded Mixed-Signal Designs Using Mixed Signal Oscilloscopes

Debugging Embedded Mixed-Signal Designs Using Mixed Signal Oscilloscopes Debugging Embedded Mixed-Signal Designs Using Mixed Signal Oscilloscopes Application Note 1562 Introduction Today s embedded designs based on microcontrollers (MCUs) and digital signal processors (DSPs)

More information

Tutorial on Technical and Performance Benefits of AD719x Family

Tutorial on Technical and Performance Benefits of AD719x Family The World Leader in High Performance Signal Processing Solutions Tutorial on Technical and Performance Benefits of AD719x Family AD7190, AD7191, AD7192, AD7193, AD7194, AD7195 This slide set focuses on

More information

Integration of Virtual Instrumentation into a Compressed Electricity and Electronic Curriculum

Integration of Virtual Instrumentation into a Compressed Electricity and Electronic Curriculum Integration of Virtual Instrumentation into a Compressed Electricity and Electronic Curriculum Arif Sirinterlikci Ohio Northern University Background Ohio Northern University Technological Studies Department

More information