Outline. Annual Sales. A Brief History. Transistor Types. Invention of the Transistor. Lecture 1: Circuits & Layout. Introduction to CMOS VLSI Design

Size: px
Start display at page:

Download "Outline. Annual Sales. A Brief History. Transistor Types. Invention of the Transistor. Lecture 1: Circuits & Layout. Introduction to CMOS VLSI Design"

Transcription

1 Introduction to MO VLI esin Lecture : ircuits & Lyout vid Hrris Outline rief History MO Gte esin Pss Trnsistors MO Ltches & Flip-Flops tndrd ell Lyouts tick irms Hrvey Mudd ollee prin lide rief History 958: First interted circuit Flip-flop usin two trnsistors uilt y Jck Kily t Texs Instruments 3 Intel Pentium µprocessor (55 million trnsistors) 5 Mit RM (>.5 illion trnsistors) 53% compound nnul rowth rte over 5 yers No other technoloy hs rown so fst so lon riven y minituriztion of trnsistors mller is cheper, fster, lower in power! Revolutionry effects on society lide 3 nnul les 8 trnsistors mnufctured in 3 million for every humn on the plnet Glol emiconductor illins (illions of U$) er lide Invention of the Trnsistor Vcuum tues ruled in first hlf of th century Lre, expensive, power-hunry, unrelile 97: first point contct trnsistor John rdeen nd Wlter rttin t ell Ls Red rystl Fire y Riordn, Hoddeson Trnsistor Types ipolr trnsistors npn or pnp silicon structure mll current into very thin se lyer controls lre currents etween emitter nd collector se currents limit intertion density Metl Oxide emiconductor Field Effect Trnsistors nmo nd pmo MOFET Volte pplied to insulted te controls current etween source nd drin Low power llows very hih intertion lide 5 lide 6

2 MO Interted ircuits 97 s processes usully hd only nmo trnsistors Inexpensive, ut consume power while idle Moore s Lw 965: Gordon Moore plotted trnsistor on ech chip Fit striht line on semilo scle Trnsistor counts hve douled every 6 months Intel 56-it RM Intel -it µproc 98s-present: MO processes for low idle power Trnsistors,,,,,,,,,,,, Intel386 Intel86 Pentium Pentium III Pentium II Pentium Pro Pentium er Intertion Levels I: tes MI: tes LI:, tes VLI: > k tes lide 7 lide 8 orollries Mny other fctors row exponentilly Ex: clock frequency, processor performnce, MO Gte esin ctivity: ketch -input MO NN te, 88 lock peed (MHz) Intel386 Intel86 Pentium Pentium Pro/II/III Pentium er lide 9 lide MO Gte esin omplementry MO ctivity: ketch -input MO NOR te omplementry MO loic tes nmo pull-down network pmo pull-up network.k.. sttic MO Pull-down ON Pull-up OFF Pull-down OFF Z (flot) Pull-up ON X (crowr) inputs pmo pull-up network nmo pull-down network output lide lide

3 eries nd Prllel onduction omplement nmo: = ON pmo: = ON eries: oth must e ON Prllel: either cn e ON () () (c) OFF OFF OFF ON ON OFF OFF OFF OFF ON ON ON omplementry MO tes lwys produce or Ex: NN te eries nmo: = when oth inputs re Thus = when either input is Requires prllel pmo Rule of onduction omplements Pull-up network is dul of pull-down Prllel -> series, series -> prllel (d) ON ON ON OFF lide 3 lide ompound Gtes ompound tes cn do ny invertin function Ex: = + (N-N-OR-INVERT, OI) = ( + + ) Exmple: O3I () () (c) (d) (f) (e) lide 5 lide 6 = ( + + ) Exmple: O3I inl trenth trenth of sinl How close it pproximtes idel volte source V nd GN rils re stronest nd nmo pss stron ut derded or wek pmo pss stron ut derded or wek Thus nmo re est for pull-down network lide 7 lide 8 3

4 Pss Trnsistors Trnsistors cn e used s switches Pss Trnsistors Trnsistors cn e used s switches s d s d = s d = s d Input = Output stron = derded s d s d = s d = s d Input Output = derded = stron lide 9 lide Trnsmission Gtes Pss trnsistors produce derded outputs Trnsmission tes pss oth nd well Trnsmission Gtes Pss trnsistors produce derded outputs Trnsmission tes pss oth nd well =, = =, = Input Output =, = stron =, = stron lide lide Tristtes Tristte uffer produces Z when not enled Tristtes Tristte uffer produces Z when not enled Z Z lide 3 lide

5 Nonrestorin Tristte Trnsmission te cts s tristte uffer Only two trnsistors ut nonrestorin Noise on is pssed on to Tristte Inverter Tristte inverter produces restored output Violtes conduction complement rule ecuse we wnt Z output lide 5 lide 6 Tristte Inverter Multiplexers Tristte inverter produces restored output Violtes conduction complement rule ecuse we wnt Z output : multiplexer chooses etween two inputs X X X X = = 'Z' = = lide 7 lide 8 Multiplexers Gte-Level Mux esin : multiplexer chooses etween two inputs X X X X = + (too mny trnsistors) How mny trnsistors re needed? lide 9 lide 3 5

6 Gte-Level Mux esin = + (too mny trnsistors) How mny trnsistors re needed? Gte-Level Mux esin = + (too mny trnsistors) How mny trnsistors re needed? lide 3 lide 3 Trnsmission Gte Mux Nonrestorin mux uses two trnsmission tes Trnsmission Gte Mux Nonrestorin mux uses two trnsmission tes Only trnsistors lide 33 lide 3 Invertin Mux Invertin multiplexer Use compound OI Or pir of tristte inverters Essentilly the sme thin Noninvertin multiplexer dds n inverter : Multiplexer : mux chooses one of inputs usin two selects lide 35 lide 36 6

7 : Multiplexer : mux chooses one of inputs usin two selects Two levels of : muxes Or four tristtes Ltch When =, ltch is trnsprent flows throuh to like uffer When =, the ltch is opque holds its old vlue independent of.k.. trnsprent ltch or level-sensitive ltch 3 3 Ltch lide 37 lide 38 Ltch esin Ltch Opertion Multiplexer chooses or old = = lide 39 lide Flip-flop Flip-flop esin When rises, is copied to t ll other times, holds its vlue.k.. positive ede-triered flip-flop, mster-slve flip-flop uilt from mster nd slve ltches M Ltch M Ltch Flop lide lide 7

8 Flip-flop Opertion Rce ondition = M M ck-to-ck flops cn mlfunction from clock skew econd flip-flop fires lte ees first flip-flop chne nd cptures its result lled hold-time filure or rce condition = Flop Flop lide 3 lide Nonoverlppin locks Nonoverlppin clocks cn prevent rces s lon s nonoverlp exceeds clock skew ou cn use them if you like for sfe desin Industry mnes skew more crefully insted φ φ M φ φ φ φ φ φ φ φ lide 5 8

Outline. Circuits & Layout. CMOS VLSI Design

Outline. Circuits & Layout. CMOS VLSI Design CMO VLI esign Circuits & Lyout Outline Brief History CMO Gte esign Pss Trnsistors CMO Ltches & Flip-Flops tndrd Cell Lyouts tick igrms lide 2 Brief History 958: First integrted circuit Flip-flop using

More information

Homework 1. Homework 1: Measure T CK-Q delay

Homework 1. Homework 1: Measure T CK-Q delay Homework Find the followin for 3nm, 9nm, 65nm nd 45nm, 32nm, 22nm MO technoloies Effective chnnel lenth Equivlent nd physicl oxide thickness upply volte (Vdd) rw the lyout for the followin Flip-Flop (use

More information

Lecture 3: Circuits & Layout

Lecture 3: Circuits & Layout Lecture 3: Circuits & Lyout Slides courtesy of eming Chen Slides sed on the initil set from vid Hrris CMOS VLSI esign Outline CMOS Gte esign Pss Trnsistors CMOS Ltches & Flip-Flops Stndrd Cell Lyouts Stick

More information

Lecture 1: Intro to CMOS Circuits

Lecture 1: Intro to CMOS Circuits Introduction to CMOS VLSI esign Lecture : Intro to CMOS Circuits avid Harris Steven Levitan Fall 28 Harvey Mudd College Spring 24 Outline A Brief History CMOS Gate esign Pass Transistors CMOS Latches &

More information

Lecture 1: Circuits & Layout

Lecture 1: Circuits & Layout Lecture 1: Circuits & Layout Outline A Brief History CMOS Gate esign Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick iagrams 2 A Brief History 1958: First integrated circuit Flip-flop

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITL TECHNICS Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 10. LECTURE (LOGIC CIRCUITS, PRT 2): MOS DIGITL CIRCUITS II 2016/2017 10. LECTURE: MOS DIGITL CIRCUITS II 1.

More information

ECE 274 Digital Logic. Digital Design. Datapath Components Registers. Datapath Components Register with Parallel Load

ECE 274 Digital Logic. Digital Design. Datapath Components Registers. Datapath Components Register with Parallel Load ECE 274 igitl Logic Multifunction Registers igitl esign 4. 4.2 igitl esign Chpter 4: Slides to ccompny the textbook igitl esign, First Edition, by Frnk Vhid, John Wiley nd Sons Publishers, 27. http://www.ddvhid.com

More information

CPE 200L LABORATORY 2: DIGITAL LOGIC CIRCUITS BREADBOARD IMPLEMENTATION UNIVERSITY OF NEVADA, LAS VEGAS GOALS:

CPE 200L LABORATORY 2: DIGITAL LOGIC CIRCUITS BREADBOARD IMPLEMENTATION UNIVERSITY OF NEVADA, LAS VEGAS GOALS: CPE 200L LABORATORY 2: DIGITAL LOGIC CIRCUITS BREADBOARD IMPLEMENTATION DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: In this l, the sic logic circuits will e

More information

Chapter 5. Synchronous Sequential Logic. Outlines

Chapter 5. Synchronous Sequential Logic. Outlines Chpter 5 Synchronous Sequentil Logic Outlines Sequentil Circuits Ltches Flip-Flops Anlysis of Clocke Sequentil Circuits Stte Reuction n Assignment Design Proceure 2 5. Sequentil Circuits Sequentil circuits

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential ircuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking locked inverters Krish hakrabarty 1 Sequential Logic FFs

More information

ECE 274 Digital Logic. Digital Design. Sequential Logic Design Controller Design: Laser Timer Example

ECE 274 Digital Logic. Digital Design. Sequential Logic Design Controller Design: Laser Timer Example ECE 274 Digitl Logic Sequentil Logic Design Sequentil Logic Design Process Digitl Design 3.4 3.5 Digitl Design Chpter 3: Sequentil Logic Design -- Controllers Slides to ccompny the tetook Digitl Design,

More information

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power EECS150 - Digital Design Lecture 17 - Circuit Timing March 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec16-timing Page 1 Performance, Cost, Power How do we measure performance? operations/sec? cycles/sec?

More information

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate Lecture 19: November 5, 2001 Midterm in Class Wed. Nov 7 th Covers Material 6 th -10 th week including W#10 Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

Logic Circuits. A gate is a circuit element that operates on a binary signal.

Logic Circuits. A gate is a circuit element that operates on a binary signal. Logic Circuits gate is a circuit element that operates on a binary signal. Logic operations typically have three methods of description:. Equation symbol 2. Truth table 3. Circuit symbol The binary levels

More information

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor 14 12 10 8 6 IBM ES9000 Bipolar Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP)

More information

Chapter 1: Introduction

Chapter 1: Introduction Chpter : Introduction Slides to ccompny the textbook, First Edition, by, John Wiley nd Sons Publishers, 7. http://www.ddvhid.com Copyright 7 Instructors of courses requiring Vhid's textbook (published

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential Circuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking Clocked inverters James Morizio 1 Sequential Logic FFs

More information

Computer Organization & Architecture Lecture #5

Computer Organization & Architecture Lecture #5 Computer Organization & Architecture Lecture #5 Shift Register A shift register is a register in which binary data can be stored and then shifted left or right when a shift signal is applied. Bits shifted

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada 2011/12/19 1 What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails.

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails. Currently,

More information

Chapter 3: Sequential Logic Design -- Controllers

Chapter 3: Sequential Logic Design -- Controllers Chpter 3: Sequentil Logic Design -- Controllers Slides to ccompny the textbook, First Edition, by, John Wiley nd Sons Publishers, 27. http://www.ddvhid.com Copyright 27 Instructors of courses requiring

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

What do these sentences describe? Write P for plants, A for animals or B for both next to each sentence below. They ve got roots.

What do these sentences describe? Write P for plants, A for animals or B for both next to each sentence below. They ve got roots. Unit Nture Lerning Link In this unit you will lern words nd phrses to help you tlk out the nturl world. to tell story using pictures. to write letter out dy out in the countryside. to use the Pst Simple

More information

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #9: Sequential Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Review: Static CMOS Logic Finish Static CMOS transient analysis Sequential

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 25: Sequential Logic: Flip-flop Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

Logic Design IS1200, spring 2015 Review Slides

Logic Design IS1200, spring 2015 Review Slides 2 I2, spring 25 Review lides ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of alifornia, erkeley genda I lides version. I 3 umber ystems (/3) ecimal and inary

More information

Sequential logic circuits

Sequential logic circuits Computer Mathematics Week 10 Sequential logic circuits College of Information Science and Engineering Ritsumeikan University last week combinational digital circuits signals and busses logic gates and,

More information

Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation

Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation Harris Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University

More information

REPEAT EXAMINATIONS 2004 SOLUTIONS

REPEAT EXAMINATIONS 2004 SOLUTIONS REPET EXMINTIONS 24 SOLUTIONS MODULE: EE Digital Electronics COURSE:.Eng. in Electronic Engineering (year ).Eng. in Info and Communications Engineering (year ).Eng. in Mechatronic Engineering (year 2).Eng.

More information

LAERSKOOL RANDHART ENGLISH GRADE 5 DEMARCATION FOR EXAM PAPER 2

LAERSKOOL RANDHART ENGLISH GRADE 5 DEMARCATION FOR EXAM PAPER 2 LAERSKOOL RANDHART ENGLISH GRADE 5 DEMARCATION FOR EXAM PAPER 2 Dte: 15 Octoer 2018 Time: 2 hours Totl: 25 mrks SECTION C: ESSAY (15 MARKS) Write n essy out one of the given topics. Your essy should e

More information

Summary of Selected EMCR650 Projects for Fall 2005 Mike Aquilino Dr. Lynn Fuller

Summary of Selected EMCR650 Projects for Fall 2005 Mike Aquilino Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Summary of Selected EMCR650 Projects for Fall 2005 Mike quilino Dr. Lynn Fuller http://www.rit.edu/~lffeee 82 Lomb Memorial Drive Rochester,

More information

Sequencer devices. Philips Semiconductors Programmable Logic Devices

Sequencer devices. Philips Semiconductors Programmable Logic Devices hilips emiconductors rogrmmle Logic Devices equencer devices INTODUTION Ten yers go, in their serch for strightforwrd solution to complex sequentil prolems, hilips emiconductors originted rogrmmle Logic

More information

CPSC 121: Models of Computation Lab #2: Building Circuits

CPSC 121: Models of Computation Lab #2: Building Circuits CSC 121: Models of Computti L #2: Building Circuits Ojectives In this l, ou will get more eperience with phsicl logic circuits using The Mgic Bo. You will lso get our first eposure to Logisim, tool for

More information

Applications to Transistors

Applications to Transistors CS/EE1012 INTRODUCTION TO COMPUTER ENGINEERING SPRING 2013 LAYERED COMPUTER DESIGN 1. Introduction CS/EE1012 will study complete computer system, from pplictions to hrdwre. The study will e in systemtic,

More information

Synchronous Digital Logic Systems. Review of Digital Logic. Philosophy. Combinational Logic. A Full Adder. Combinational Logic

Synchronous Digital Logic Systems. Review of Digital Logic. Philosophy. Combinational Logic. A Full Adder. Combinational Logic Synchronous igital Logic Systems Review of igital Logic Prof. Stephen. Edwards Raw materials: MOS transistors and wires on Is Wires are excellent conveyors of voltage Little leakage Fast, but not instantaneous

More information

Digital Phase Adjustment Scheme 0 6/3/98, Chaney. A Digital Phase Adjustment Circuit for ATM and ATM- like Data Formats. by Thomas J.

Digital Phase Adjustment Scheme 0 6/3/98, Chaney. A Digital Phase Adjustment Circuit for ATM and ATM- like Data Formats. by Thomas J. igital Phase Adjustment Scheme 6/3/98, haney A igital Phase Adjustment ircuit for ATM and ATM- like ata Formats by Thomas J. haney epartment of omputer Science University St. Louis, Missouri 633 tom@arl.wustl.edu

More information

92.507/1. EYR 203, 207: novaflex universal controller. Sauter Systems

92.507/1. EYR 203, 207: novaflex universal controller. Sauter Systems 92.507/1 EYR 203, 207: novflex universl controller novflex, universl controller of the EY3600 fmily, is used in HVAC control systems. The EYR 203 hs totl of 18 inputs nd 10 outputs, while the EYR 207 hs

More information

Designing of VLSI Circuits with MOS and CMOS

Designing of VLSI Circuits with MOS and CMOS Designing of VLSI Circuits with MOS and CMOS D. Naresh Kumar 1, N. Vasudheva Reddy 2,G. Sravan Kumar 3 1 Assistant Professor, ECE Department, MLR Institute of Technology, Dundigal, Hyderabad, Andhra Pradesh,

More information

An Introduction to VLSI (Very Large Scale Integrated) Circuit Design

An Introduction to VLSI (Very Large Scale Integrated) Circuit Design An Introduction to VLSI (Very Large Scale Integrated) Circuit Design Presented at EE1001 Oct. 16th, 2018 By Hua Tang The first electronic computer (1946) 2 First Transistor (Bipolar) First transistor Bell

More information

Overview of Chapter 4

Overview of Chapter 4 Overview of hapter 4 Types of equential ircuits torage Elements Latches Flip-Flops equential ircuit nalysis tate Tables tate iagrams equential ircuit esign pecification ssignment of tate odes Implementation

More information

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June EES 270 Group Homework 4 ue Friday. June 1st @9:45am, half credit if turned in by June 1st @4pm. Name: unique name: Name: unique name: Name: unique name: This is a group assignment; all of the work should

More information

Saturated Non Saturated PMOS NMOS CMOS RTL Schottky TTL ECL DTL I I L TTL

Saturated Non Saturated PMOS NMOS CMOS RTL Schottky TTL ECL DTL I I L TTL EC6302-DIGITAL ELECTRONICS UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES 1. Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets

More information

EE273 Lecture 11 Pipelined Timing Closed-Loop Timing November 2, Today s Assignment

EE273 Lecture 11 Pipelined Timing Closed-Loop Timing November 2, Today s Assignment EE273 Lecture 11 Pipelined Timing Closed-Loop Timing November 2, 1998 William J. ally Computer Systems Laboratory Stanford University billd@csl.stanford.edu Copyright (C) by William J. ally, All Rights

More information

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking.

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking. EE141-Fall 2011 Digital Integrated Circuits Lecture 2 Clock, I/O Timing 1 4 Administrative Stuff Pipelining Project Phase 4 due on Monday, Nov. 21, 10am Homework 9 Due Thursday, December 1 Visit to Intel

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 5 Sequential circuits design - Timing issues ELEN0040 5-228 1 Sequential circuits design 1.1 General procedure 1.2

More information

Clocking Spring /18/05

Clocking Spring /18/05 ing L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle L06 s 2 igital Systems Timing Conventions All digital systems need a convention

More information

VLSI Design Digital Systems and VLSI

VLSI Design Digital Systems and VLSI VLSI Design Digital Systems and VLSI Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author 1 Overview Why VLSI? IC Manufacturing CMOS Technology

More information

Soft Error Derating Computation in Sequential Circuits

Soft Error Derating Computation in Sequential Circuits Soft Error Derting Computtion in Sequentil Circuits Hossein Asdi Northestern University, ECE Dept. Boston, MA 02115 gsdi@ece.neu.edu Mehdi B. Thoori Northestern University, ECE Dept. Boston, MA 02115 mthoori@ece.neu.edu

More information

Lecture 11: Sequential Circuit Design

Lecture 11: Sequential Circuit Design Lecture 11: Sequential Circuit esign Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing q Two-Phase Clocking 2 Sequencing q Combinational logic output depends

More information

EE241 - Spring 2005 Advanced Digital Integrated Circuits

EE241 - Spring 2005 Advanced Digital Integrated Circuits EE241 - Spring 2005 Advanced Digital Integrated Circuits Lecture 21: Asynchronous Design Synchronization Clock Distribution Self-Timed Pipelined Datapath Req Ack HS Req Ack HS Req Ack HS Req Ack Start

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180A DIGITAL SYSTEMS I Winter 2006

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180A DIGITAL SYSTEMS I Winter 2006 UNIVERSIT OF CLIFORNI, DVIS Department of Electrical and Computer Engineering EEC180 DIGITL SSTEMS I Winter 2006 L 5: STTIC HZRDS, LTCHES ND FLIP-FLOPS The purpose of this lab is to introduce a phenomenon

More information

Your Summer Holiday Resource Pack: English

Your Summer Holiday Resource Pack: English Messge Activity to Prents: Sheet The summer holidys re here! To help keep your child entertined, we ve put together Summer Holidy Resource Pck. It s een produced to reduce summer holidy lerning loss nd

More information

Clock - key to synchronous systems. Lecture 7. Clocking Strategies in VLSI Systems. Latch vs Flip-Flop. Clock for timing synchronization

Clock - key to synchronous systems. Lecture 7. Clocking Strategies in VLSI Systems. Latch vs Flip-Flop. Clock for timing synchronization Clock - key to synchronous systems Lecture 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where

More information

Last time, we saw how latches can be used as memory in a circuit

Last time, we saw how latches can be used as memory in a circuit Flip-Flops Last time, we saw how latches can be used as memory in a circuit Latches introduce new problems: We need to know when to enable a latch We also need to quickly disable a latch In other words,

More information

P.Akila 1. P a g e 60

P.Akila 1. P a g e 60 Designing Clock System Using Power Optimization Techniques in Flipflop P.Akila 1 Assistant Professor-I 2 Department of Electronics and Communication Engineering PSR Rengasamy college of engineering for

More information

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock. Topics! Memory elements.! Basics of sequential machines. Memory elements! Stores a value as controlled by clock.! May have load signal, etc.! In CMOS, memory is created by:! capacitance (dynamic);! feedback

More information

Clock - key to synchronous systems. Topic 7. Clocking Strategies in VLSI Systems. Latch vs Flip-Flop. Clock for timing synchronization

Clock - key to synchronous systems. Topic 7. Clocking Strategies in VLSI Systems. Latch vs Flip-Flop. Clock for timing synchronization Clock - key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where

More information

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS * SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEUENTIAL CIRCUITS * Wu Xunwei (Department of Electronic Engineering Hangzhou University Hangzhou 328) ing Wu Massoud Pedram (Department of Electrical

More information

WE SERIES DIRECTIONAL CONTROL VALVES

WE SERIES DIRECTIONAL CONTROL VALVES WE SERIES DIRECTIONL CONTROL VLVES ISO4401 Size 03 ulletin 80340- DESIGNTION PGE Fetures nd Generl Description 3 Specifictions 4 Operting Limits 5 Tle of Contents Performnce Dt 6 Stndrd Models 7-8 Dimensions

More information

Microcontrollers and Interfacing week 7 exercises

Microcontrollers and Interfacing week 7 exercises SERIL TO PRLLEL CONVERSION Serial to parallel conversion Microcontrollers and Interfacing week exercises Using many LEs (e.g., several seven-segment displays or bar graphs) is difficult, because only a

More information

GRABLINKTM. FullTM. - DualBaseTM. - BaseTM. GRABLINK Full TM. GRABLINK DualBase TM. GRABLINK Base TM

GRABLINKTM. FullTM. - DualBaseTM. - BaseTM. GRABLINK Full TM. GRABLINK DualBase TM. GRABLINK Base TM GRLINKTM FullTM - DulseTM - setm Full-Fetured se, Medium nd Full Cmer Link Frme Grbbers GRLINK Full TM GRLINK Dulse TM GRLINK se TM www.euresys.com info@euresys.com Copyright 011 Euresys s.. elgium. Euresys

More information

SeSSION 9. This session is adapted from the work of Dr.Gary O Reilly, UCD. Session 9 Thinking Straight Page 1

SeSSION 9. This session is adapted from the work of Dr.Gary O Reilly, UCD. Session 9 Thinking Straight Page 1 G N I K N I THmily TrHeeT FSTRAIG SeSSION 9 This session is dpted from the work of Dr.Gry O Reilly, UCD Session 9 Thinking Stright Pge 1 Lerning Objectives ful thinking tht To look t how we cn spot unhelp

More information

Topic 8. Sequential Circuits 1

Topic 8. Sequential Circuits 1 Topic 8 Sequential Circuits 1 Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Rabaey Chapter 7 URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk 1 Based on

More information

DRAFT. Vocal Music AOS 2 WB 3. Purcell: Music for a While. Section A: Musical contexts. How is this mood achieved through the following?

DRAFT. Vocal Music AOS 2 WB 3. Purcell: Music for a While. Section A: Musical contexts. How is this mood achieved through the following? Purcell: Music for While Section A: Musicl contexts Like the Bch Brndenurg Concerto No. 5 in Workook 1, this song y Henry Purcell ws composed during the Broque er. To understnd the music it is helpful

More information

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs ECEN454 igital Integrated Circuit esign Sequential Circuits ECEN 454 Combinational logic Sequencing Output depends on current inputs Sequential logic Output depends on current and previous inputs Requires

More information

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction 1 Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 2 Course Overview Lecturer Teaching Assistant Course Team E-mail:

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

Logic Symbols with Truth Tables

Logic Symbols with Truth Tables Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR 6.7 Digital Logic, Spring 22 XNOR Digital logic can be described in terms of standard logic symbols and their corresponding truth tables.

More information

Exercise 2: D-Type Flip-Flop

Exercise 2: D-Type Flip-Flop Flip-Flops Digital Logic Fundamentals Exercise 2: D-Type Flip-Flop EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the characteristics of a D-type results with an

More information

walking. Rhythm is one P-.bythm is as Rhythm is built into our pitch, possibly even more so. heartbeats, or as fundamental to mu-

walking. Rhythm is one P-.bythm is as Rhythm is built into our pitch, possibly even more so. heartbeats, or as fundamental to mu- Ir melody- is sung without its rhythm, it immeditely loses much of its essence. P-.bythm is s fundmentl to mu- sic s pitch, possibly even more so. Rhythm is built into our bodies s hertbets, or s the motion

More information

11. Sequential Elements

11. Sequential Elements 11. Sequential Elements Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 11, 2017 ECE Department, University of Texas at Austin

More information

Digital Integrated Circuits A Design Perspective Solution

Digital Integrated Circuits A Design Perspective Solution We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with digital integrated circuits

More information

Course Administration

Course Administration EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture 5: Sequential Logic - 2 Analysis of Clocked Sequential Systems 4/2/2 Avinash Kodi, kodi@ohio.edu Course Administration 2 Hw 2 due on today

More information

Digital Principles and Design

Digital Principles and Design Digital Principles and Design Donald D. Givone University at Buffalo The State University of New York Grauu Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota

More information

IC TECHNOLOGY Lecture 2.

IC TECHNOLOGY Lecture 2. IC TECHNOLOGY Lecture 2. IC Integrated Circuit Technology Integrated Circuit: An integrated circuit (IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor

More information

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau,

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau, CHAPTER I- CHAPTER I WELCOME TO ECE 23: Introduction to Computer Engineering* Richard M. Dansereau rdanse@pobox.com Copyright by R.M. Dansereau, 2-2 * ELEMENTS OF NOTES AFTER W. KINSNER, UNIVERSITY OF

More information

CS Part 1 1 Dr. Rajesh Subramanyan, 2005

CS Part 1 1 Dr. Rajesh Subramanyan, 2005 CS25 -- Part Dr. Rajesh Subramanyan, 25 Basics Chapter 2 Digital Logic CS25 -- Part 2 Dr. Rajesh Subramanyan, 25 Topics Voltage And Current Transistor Logic Gates Symbols Used For Gates Interconnection

More information

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division Objectives In this lab, you will see two types of sequential circuits: latches and flip-flops. Latches and flip-flops can be used

More information

CSE 352 Laboratory Assignment 3

CSE 352 Laboratory Assignment 3 CSE 352 Laboratory Assignment 3 Introduction to Registers The objective of this lab is to introduce you to edge-trigged D-type flip-flops as well as linear feedback shift registers. Chapter 3 of the Harris&Harris

More information

Reverse Polarity Amphenol

Reverse Polarity Amphenol Reverse Polrity Description Reverse Polrity is keying system ccomplishe with reverse interfce. This ensures, for exmple, Reverse Polrity SMA oes not mte with Stnr SMA. Amphenol s RP Plugs hve femle contct;

More information

Area Efficient Level Sensitive Flip-Flops A Performance Comparison

Area Efficient Level Sensitive Flip-Flops A Performance Comparison Area Efficient Level Sensitive Flip-Flops A Performance Comparison Tripti Dua, K. G. Sharma*, Tripti Sharma ECE Department, FET, Mody University of Science & Technology, Lakshmangarh, Rajasthan, India

More information

CMOS Latches and Flip-Flops

CMOS Latches and Flip-Flops CMOS Latches and Flip-Flops João Canas Ferreira University of Porto Faculty of Engineering 2016-05-04 Topics 1 General Aspects 2 Circuits based on positive feedback 3 Circuits based on charge storage João

More information

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 29 Minimizing Switched Capacitance-III. (Refer

More information

Lecture 1: Introduction to Digital Logic Design. CK Cheng CSE Dept. UC San Diego

Lecture 1: Introduction to Digital Logic Design. CK Cheng CSE Dept. UC San Diego Lecture 1: Introduction to Digital Logic Design CK Cheng CSE Dept. UC San Diego 1 Outlines Administration Motivation Scope 2 Administration Web site: http://www.cse.ucsd.edu/classes/fa12/cse140-a/ WebCT:

More information

UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 1. Briefly explain the stream lined method of converting binary to decimal number with example. 2. Give the Gray code for the binary number (111) 2. 3.

More information

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1 Slide Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR XNOR 6.7 Digital Logic Digital logic can be described in terms of standard logic symbols and their corresponding truth tables. The

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

Digital Circuit And Logic Design I. Lecture 8

Digital Circuit And Logic Design I. Lecture 8 Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Analysis Panupong Sornkhom, 2005/2

More information

Digital Circuit And Logic Design I

Digital Circuit And Logic Design I Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Panupong Sornkhom, 2005/2 2 1 Sequential

More information

EECS 270 Midterm 1 Exam Closed book portion Winter 2017

EECS 270 Midterm 1 Exam Closed book portion Winter 2017 EES 270 Midterm 1 Exam losed book portion Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of

More information

EXPERIMENT #6 DIGITAL BASICS

EXPERIMENT #6 DIGITAL BASICS EXPERIMENT #6 DIGITL SICS Digital electronics is based on the binary number system. Instead of having signals which can vary continuously as in analog circuits, digital signals are characterized by only

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

Digital Circuits. Innovation Fellows Program

Digital Circuits. Innovation Fellows Program Innovation Fellows Program Digital Circuits, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics TTL and CMOS Logic National Instrument s

More information

Digital System Clocking: High-Performance and Low-Power Aspects

Digital System Clocking: High-Performance and Low-Power Aspects Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Chapter 9: Microprocessor Examples Wiley-Interscience and

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 7

ELE2120 Digital Circuits and Systems. Tutorial Note 7 ELE2120 Digital Circuits and Systems Tutorial Note 7 Outline 1. Sequential Circuit 2. Gated SR Latch 3. Gated D-latch 4. Edge-Triggered D Flip-Flop 5. Asynchronous and Synchronous reset Sequential Circuit

More information

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division Objectives In this lab, we will see the sequential circuits latches and flip-flops. Latches and flip-flops can be used to build

More information

VU Mobile Powered by S NO Group

VU Mobile Powered by S NO Group Question No: 1 ( Marks: 1 ) - Please choose one A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register.

More information

COMP sequential logic 1 Jan. 25, 2016

COMP sequential logic 1 Jan. 25, 2016 OMP 273 5 - sequential logic 1 Jan. 25, 2016 Sequential ircuits All of the circuits that I have discussed up to now are combinational digital circuits. For these circuits, each output is a logical combination

More information