Project Final Report. Z8 Arcade! 4/25/2006 James Bromwell,

Size: px
Start display at page:

Download "Project Final Report. Z8 Arcade! 4/25/2006 James Bromwell,"

Transcription

1 Project Final Report Z8 Arcade! 4/25/2006 James Bromwell, Project Abstract Z8 Arcade! is an extension of the presentation on adding a composite video output line to the Z8 project board, implementing an arcade-style block-breaking video game using an external analog controller. The video signal is generated purely in software and output using a resistor network Digital to Analog Converter (DAC). The game itself uses delay-looping to time output, and each on-screen object is drawn individually. Status While the final product looks more or less as originally intended, several major speed bumps were encountered on the path to what is pictured below. First and foremost, the original memory-mapped idea was scrapped because (at the time) it seemed impossible to get more than 20 or 30 pixels per scanline, which would have made horizontal movement appear very, very choppy. So, the code was updated to use simple delay looping draw black, wait until the paddle should be drawn, switch to white, wait, switch to black, etc. This allowed for finer-pitch control. There was a problem where the logic to decide which line was being drawn (is there a block? a ball? the paddle?) took so long the left inch or two of screen was forced to stay blank. This was solved by drawing only every other line of each field, using the odd fields to calculate what would be done in the even ones. And finally, the two original controller ideas (serial mouse and PC gameport joystick) both did not work. The serial mouse requires 7-bit serial communications, and the Z8 UART uses 8-bit. The project couldn t afford to spare enough CPU cycles to use a GPIO port as a software-controlled UART, so the mouse was abandoned. The PC gameport joystick would probably have worked out, had I found one old enough both of the ones I could find were actually USB devices that could be connected to a gameport with special drivers. Since all I was going to use on the joystick was one analog axis and a button, I went out and got a simple 300 potentiometer, and used a button on the Z8 development board instead.

2 Video Signal Before we get to know the project, we need to know a little something about black and white NTSC composite video, the kind of signal put out by the project. The below review will be brief since the report on the presentation which preceded this work has already been submitted. Overview The NTSC black and white signal is composed of 525 lines per frame, each made up of two interlaced line fields at 30 frames per sec = 60 fields per second. The definition of the NTSC signal uses Institute of Radio Engineers measurements ( IRE units ), which are defined as -40 to 100 IRE over a 1.0v scale. Thus, 1 IRE equals 1/140 volt. Four discrete voltage levels are used in the basic specification: Sync: -40 IRE = 0v Blank: 0 IRE = 0.286v Black: 10 IRE = 0.357v (NTSC-J uses BLANK) White: 100 IRE = 1.00v Each frame is structured as three lines of Pre-equalization pulses, each of which is made up of a 4.7 µsec SYNC followed by a µsec BLANK; then three lines of VSYNC, the inverse of the above (long SYNC followed by short BLANK); then three (or 3½) lines of Post-equalization pulses ; then 253 (252½) lines of (mostly) visible output The first nine lines of a field define the vertical hold time, and are shown below:

3 Scanlines Each visible line is composed of 4 parts: a Front Porch, which is1.5 µsec BLANK; a horizontal synchronization pulse (HSYNC), which is 4.7 µsec SYNC; a Back Porch, which is 4.7 µsec BLANK, and line data, which lasts the remaining 52.6 µsec and can be any voltage between BLACK and WHITE. The signal is illustrated below: Data The visible data comprises 52.6 µsec of each scanline. It is assumed to be between 10 and 100 IRE (0.357v and 1.00v), though many displays will automatically adjust gain so that the signal presented covers the entire black-to-white range. The first 21 or so lines of each frame are not drawn, as the beam drawing the image on the CRT needs time to return to the home position. Frequently, this time is used to transmit auxiliary data, like closed captioning or special color synchronization information.

4 Hardware The hardware consists of three principal components: the main control board, the digital-to-analog converter, and the game controller. Controller (Potentiometer) Main Board Z8F6403 Digital to Analog Converter (DAC) Main Board The main development board for the project is the Zilog Z8F6403. The board is based on the Zilog ez8 running at MHz. Notable features used were: 4KB register RAM 12-channel 10-bit A/D converter (controller input) Four 16-bit timers with PWMs and capture and compare (video timing control) 60 general-purpose I/Os (video signal output) 24 vectored interrupts (video timing control) On-chip debug with break and trap capability Early implementations depended on the 4KB of RAM to hold a large amount of on-screen data; this implementation was deemed too slow for reasonable use. The onchip debugger was used extensively in testing the software during development. And of course, an NTSC television is required to view the resulting signal. The only other hardware components are the resistor-based digital-to-analog converter (DAC), and the potentiometer used as a game controller.

5 Digital to Analog Converter (DAC) A digital-to-analog converter is required to output the NTSC composite video signal. As stated above, four voltage levels are needed: 0 VDC, VDC, VDC, and 1 VDC. To build this out of resistors requires 3 GPIO pins, such that with one active at a time, the three non-zero voltage levels can be generated. Two pins are not sufficient because one of the resistors in the network the impedance of the television is not under our control. The DAC looks like this: The three pins on J1 were used as PF[0:2] on the Z8. J2 represents an RCA jack, which was used as a convenient way of hooking the project up to the output device (television). R1 through R3 represent the three resistors that make up the DAC, and R4 represents the internal impedance of the television, nominally 75 ohms. Calculating the values of the three resistors is not a trivial task, so a Microsoft Excel spreadsheet was used to determine the formulas for each target condition: pin 1 on = 0.286v, pin 2 on = 0.357v, pin 3 on = 1.00v, and all pins off. The spreadsheet is attached, and described later in this document under the Attachments section. An assortment of metal film resistors (2% tolerance) were used to approximate the nominal values shown on the spreadsheet. Game Controller The arcade game software needed a controller to act as a user interface. Originally, a serial mouse was proposed, but this proved impossible to implement since the serial mouse uses a 7-bit serial connection, and the Z8 UART is only capable of 8-bit communications. A software RS-232 interface could have been constructed but would have had to be interrupt-based, and would have seriously disrupted the delicate video output software. The second choice was a PC gameport joystick, but this too failed to pan out. Two test joysticks were obtained, but both turned out to be USB devices in disguise, with special drivers (for Windows PCs only, of course) that allowed them to be physically connected to a PC gameport, then polled with a special serial protocol whose specification does not seem to be available, and again would have required an impractical software emulation. Since the only components of the PC joystick that would have been used were an internal potentiometer (the axis of the joystick) and a switch (the joystick button), those two components were obtained in discrete form and used instead.

6 The potentiometer chosen is a 10k ohm model with 300 rotation. Since it covers the entire 0-10k ohm range, some discrete resistors were needed to control the voltage output at the device s wiper. As described below in the Software section, the Z8 ADC input reads relative to 2.00 VDC, so resistor values were chosen such that only zero to about 1.7 volts were dropped across the potentiometer, for reasons that will be explained later. The game controller circuit appears below: After some experimental testing, two 4.7k ohm resistors were wired in series with the potentiometer. VDD in the picture (and VDD on the Z8F6403 board) is 3.3 VDC.

7 Software The project is controlled by software that is divided up, at the highest level, into video control and game control. The video control software is interrupt-driven, with one interrupt generated to start a field (half a frame), and another generated repeatedly during the data portion of each field to start a scanline. The game control software runs continuously and is executed any time the video control software is not using the CPU it is the idle task. Video Control: Interrupt Controller Hz Initialize Video

8 Game Control: There are some important points to be made about the implementation of the software. First and foremost, the video signal has some tricky timing. To best approximate the ideal signal, interrupts were use for large-scale correctness, and delaywaiting was used for finer control. Ideally, the video signal might be generated entirely from interrupts, since (for small values) the interrupt controller can be made precise to within one clock cycle 1 / = e-8 seconds, or about 54 nanoseconds. The original video output attempt used this model, but hit a roadblock. First, the C compiler does a terrible job with switch statements! There does not seem to be an efficient way to branch through multiple code paths based on an integer value and one of the goals of the project was to use assembly only when absolutely necessary. Second, the vector tables used for interrupt lookups are in code-space, which means that they cannot effectively be updated at runtime. The combined effect of these two problems is that for multiple code branches (like drawing the different parts of a video output signal), the further down the branch is, the later it will get executed. For example:

9 switch(i){ case 1: foo(); ++i; break; case 2: bar(); ++i; break; case 3: default: baz(); break; } If the function containing the above code is called three times successively, there might be X clock cycles between calling the function and the call to foo(), but X + Y between calling the function and the call to bar(). The call to baz() would come after X + 2Y, where Y is probably about 3 (depending on the type of i and several other factors). This problem is why delay-looping is used to control the precise timing of the video signal. Another important point is that there are only a few microseconds (or a few dozen clock cycles, or a handful of useful opcodes) between the end of the Back Porch and the beginning of the visible beam trace. This means that calculating what will be drawn on a line during the actual line trace will create a single-colored bar on the left side of the screen, of a length that varies depending on control flow. Needless to say, this is unacceptable. Instead, the project as implemented uses odd-numbered lines to calculate the contents of the next (even-numbered) line of the field. As a result, the output has a striped effect that can be quite pronounced on a big screen. Also of note, the implementation of the video output logic is completely different from that used for the NTSC presentation. The difference is that the program used in the presentation was memory-mapped, and the project display computes each line as it is drawn. The memory-mapped model used part of the RAM to store the value of each onscreen pixel here defined as the smallest *horizontal* line that can be drawn. The problem with this was that it does not seem to be possible to load a value from memory and change the value put out over a GPIO pin in a short enough time to make pixels reasonably small. With computed output, the pixels don t really get smaller, but since each object is drawn individually, the space between objects can be controlled with a finer pitch. It is possible that further hand optimization of the memory-mapped code could make it as efficient as computed output, but such optimization would have to take place at an assembly-code level.

10 Results

11 The video output is fairly stable (better on some displays than others) and animation is nice and smooth. Unfortunately, the ball cannot be drawn closer than about 1 ball-width to another object, including both the paddle and the blocks. As a result, the ball actually bounces off a space about one ball-width in front of the paddle, and disappears when it comes within a ball-width of (the front of) a block. The former is mostly noticeable at the beginning before the ball is launched, and the second is most visible in the distortion the ball creates when it bounces off the backplane. This could be remedied by removing the visible backplane, which would probably look OK.

12 Retrospective There were no major hardware design decisions, except those driven by failure failure to use the serial mouse, and failure to interface with the PC gameport joystick. The impact of these failures was to fall back on the humble potentiometer as a controller. This should have been done from the first place for games that use only one analog axis, it just makes sense, and is easier to deal with than a multi-pin header on a gameport connector intended for another purpose. The serial mouse, though technically impressive, was definitely overkill. As mentioned above in the Software Design section, there were several previous incarnations of the software architecture that differed radically from the one used in the end. The design decision to use interrupts for all timing control stemmed from a desire to make timing as precise as possible some displays will show sloppy NTSC, but some will choke and only output static. Fear of this problem led to the (poor) design decision to pop in and out of interrupts over and over again, with no real visible benefit. The design decision to use memory-mapping was quite well-intentioned: a memory-mapped display lends the ultimate in versatility, and is the model used in all modern graphic controllers. An implementation in assembly might have worked reasonably well, but one done in C was simply doomed from the start. In the end, the decision to use delay looping made for a smooth animation of both ball and paddle movement, though it complicated some of the rendering code considerably, and made it impossible to effectively draw the ball when it goes behind a block. As a result, the game rules were changed such that gravity pulls blocks to the right of the screen a block taken out of the third row will make any blocks in the first or second rows fall to the right. This is not in the spirit of the original Breakout game. If I had more time, I d do the project over again with hand-assembled memory mapping and compare the results.

13 Description of Attachments Attachments include: 339Project.zuml: All UML state charts displayed above, Poseidon UML CE project.epc: schematic of the resistor network (pictured above), PCB123 Breakout (folder): The source of the project as shown in class controller.sch: schematic of potentiometer connection, ExpressSCH DrawData.png: Statechart of the data drawing software module GameControl.png: Statechart of the game control software module Project Brochure.doc: The glossy brochure circulated in class, Word 2002 Resistor calculations.xls: spreadsheet to pick DAC resistors, Microsoft Excel 2002 VideoOut (folder): original implementation of video output VideoOut.png: Video output code state chart VideoOut2 (folder): Updated video output code (used in presentation) Z8 Video Output.ppt: Presentation given in class, Microsoft PowerPoint 2002

TV Synchronism Generation with PIC Microcontroller

TV Synchronism Generation with PIC Microcontroller TV Synchronism Generation with PIC Microcontroller With the widespread conversion of the TV transmission and coding standards, from the early analog (NTSC, PAL, SECAM) systems to the modern digital formats

More information

TV Character Generator

TV Character Generator TV Character Generator TV CHARACTER GENERATOR There are many ways to show the results of a microcontroller process in a visual manner, ranging from very simple and cheap, such as lighting an LED, to much

More information

Lab # 9 VGA Controller

Lab # 9 VGA Controller Lab # 9 VGA Controller Introduction VGA Controller is used to control a monitor (PC monitor) and has a simple protocol as we will see in this lab. Kit parts for this lab 1 A closer look VGA Basics The

More information

Design and Implementation of an AHB VGA Peripheral

Design and Implementation of an AHB VGA Peripheral Design and Implementation of an AHB VGA Peripheral 1 Module Overview Learn about VGA interface; Design and implement an AHB VGA peripheral; Program the peripheral using assembly; Lab Demonstration. System

More information

Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li

Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li Dynamic Animation Cube Group 1 Joseph Clark Michael Alberts Isaiah Walker Arnold Li Sponsored by: Department of Electrical Engineering & Computer Science at UCF What is the DAC? The DAC is an array of

More information

Alice EduPad Board. User s Guide Version /11/2017

Alice EduPad Board. User s Guide Version /11/2017 Alice EduPad Board User s Guide Version 1.02 08/11/2017 1 Table OF Contents Chapter 1. Overview... 3 1.1 Welcome... 3 1.2 Launchpad features... 4 1.3 Alice EduPad hardware features... 4 Chapter 2. Software

More information

DMC550 Technical Reference

DMC550 Technical Reference DMC550 Technical Reference 2002 DSP Development Systems DMC550 Technical Reference 504815-0001 Rev. B September 2002 SPECTRUM DIGITAL, INC. 12502 Exchange Drive, Suite 440 Stafford, TX. 77477 Tel: 281.494.4505

More information

AD9884A Evaluation Kit Documentation

AD9884A Evaluation Kit Documentation a (centimeters) AD9884A Evaluation Kit Documentation Includes Documentation for: - AD9884A Evaluation Board - SXGA Panel Driver Board Rev 0 1/4/2000 Evaluation Board Documentation For the AD9884A Purpose

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

Manual Version Ver 1.0

Manual Version Ver 1.0 The BG-3 & The BG-7 Multiple Test Pattern Generator with Field Programmable ID Option Manual Version Ver 1.0 BURST ELECTRONICS INC CORRALES, NM 87048 USA (505) 898-1455 VOICE (505) 890-8926 Tech Support

More information

FPGA Laboratory Assignment 4. Due Date: 06/11/2012

FPGA Laboratory Assignment 4. Due Date: 06/11/2012 FPGA Laboratory Assignment 4 Due Date: 06/11/2012 Aim The purpose of this lab is to help you understanding the fundamentals of designing and testing memory-based processing systems. In this lab, you will

More information

SignalTap Plus System Analyzer

SignalTap Plus System Analyzer SignalTap Plus System Analyzer June 2000, ver. 1 Data Sheet Features Simultaneous internal programmable logic device (PLD) and external (board-level) logic analysis 32-channel external logic analyzer 166

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

EECS150 - Digital Design Lecture 12 - Video Interfacing. Recap and Outline

EECS150 - Digital Design Lecture 12 - Video Interfacing. Recap and Outline EECS150 - Digital Design Lecture 12 - Video Interfacing Oct. 8, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John

More information

Users Manual FWI HiDef Sync Stripper

Users Manual FWI HiDef Sync Stripper Users Manual FWI HiDef Sync Stripper Allows "legacy" motion control and film synchronizing equipment to work with modern HDTV cameras and monitors providing Tri-Level sync signals. Generates a film-camera

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory Problem Set Issued: March 2, 2007 Problem Set Due: March 14, 2007 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

More information

PhidgetTextLCD with 8/8/8

PhidgetTextLCD with 8/8/8 PhidgetTextLCD with 8/8/8 Operating Systems: Windows 2000/XP/Vista, Windows CE, Linux, and Mac OS X Application Programming Interfaces (APIs): Visual Basic, VB.NET, C, C++, C#, Flash 9, Flex, Java, LabVIEW,

More information

Lecture 14: Computer Peripherals

Lecture 14: Computer Peripherals Lecture 14: Computer Peripherals The last homework and lab for the course will involve using programmable logic to make interesting things happen on a computer monitor should be even more fun than the

More information

Pivoting Object Tracking System

Pivoting Object Tracking System Pivoting Object Tracking System [CSEE 4840 Project Design - March 2009] Damian Ancukiewicz Applied Physics and Applied Mathematics Department da2260@columbia.edu Jinglin Shen Electrical Engineering Department

More information

Design and Implementation of Timer, GPIO, and 7-segment Peripherals

Design and Implementation of Timer, GPIO, and 7-segment Peripherals Design and Implementation of Timer, GPIO, and 7-segment Peripherals 1 Module Overview Learn about timers, GPIO and 7-segment display; Design and implement an AHB timer, a GPIO peripheral, and a 7-segment

More information

DT3162. Ideal Applications Machine Vision Medical Imaging/Diagnostics Scientific Imaging

DT3162. Ideal Applications Machine Vision Medical Imaging/Diagnostics Scientific Imaging Compatible Windows Software GLOBAL LAB Image/2 DT Vision Foundry DT3162 Variable-Scan Monochrome Frame Grabber for the PCI Bus Key Features High-speed acquisition up to 40 MHz pixel acquire rate allows

More information

Tearing Effect with Solomon SSD1963 Display Controller

Tearing Effect with Solomon SSD1963 Display Controller Introduction Tearing Effect with Solomon SSD1963 Display Controller This document explains how the Tearing Effect Signal (TE) of Solomon SSD1963 Display Controller IC can be used to void display flicker

More information

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

SWITCH: Microcontroller Touch-switch Design & Test (Part 2) SWITCH: Microcontroller Touch-switch Design & Test (Part 2) 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON v2.09 Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Timetable... 2

More information

TSIU03: Lab 3 - VGA. Petter Källström, Mario Garrido. September 10, 2018

TSIU03: Lab 3 - VGA. Petter Källström, Mario Garrido. September 10, 2018 Petter Källström, Mario Garrido September 10, 2018 Abstract In the initialization of the DE2-115 (after you restart it), an image is copied into the SRAM memory. What you have to do in this lab is to read

More information

BASCOM-TV. TV Code Features: ICs supported: BASCOM versions:

BASCOM-TV. TV Code Features: ICs supported: BASCOM versions: BASCOM-TV With this software module you can generate output directly to a TV - via an RGB SCART connection - from BASCOM (AVR), using a just few resistors and a 20 MHz crystal. Write your program with

More information

DT9834 Series High-Performance Multifunction USB Data Acquisition Modules

DT9834 Series High-Performance Multifunction USB Data Acquisition Modules DT9834 Series High-Performance Multifunction USB Data Acquisition Modules DT9834 Series High Performance, Multifunction USB DAQ Key Features: Simultaneous subsystem operation on up to 32 analog input channels,

More information

Embedded System Training Module ABLab Solutions

Embedded System Training Module ABLab Solutions Embedded System Training Module ABLab Solutions www.ablab.in Table of Contents Course Outline... 4 1. Introduction to Embedded Systems... 4 2. Overview of Basic Electronics... 4 3. Overview of Digital

More information

User's Manual. Rev 1.0

User's Manual. Rev 1.0 User's Manual Rev 1.0 Digital TV sales have increased dramatically over the past few years while the sales of analog sets are declining precipitously. First quarter of 2005 has brought the greatest volume

More information

Build A Video Switcher

Build A Video Switcher Build A Video Switcher VIDEOSISTEMAS serviciotecnico@videosistemas.com www.videosistemas.com Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications,

More information

XC-77 (EIA), XC-77CE (CCIR)

XC-77 (EIA), XC-77CE (CCIR) XC-77 (EIA), XC-77CE (CCIR) Monochrome machine vision video camera modules. 1. Outline The XC-77/77CE is a monochrome video camera module designed for the industrial market. The camera is equipped with

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory Problem Set Issued: March 3, 2006 Problem Set Due: March 15, 2006 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

More information

ME EN 363 ELEMENTARY INSTRUMENTATION Lab: Basic Lab Instruments and Data Acquisition

ME EN 363 ELEMENTARY INSTRUMENTATION Lab: Basic Lab Instruments and Data Acquisition ME EN 363 ELEMENTARY INSTRUMENTATION Lab: Basic Lab Instruments and Data Acquisition INTRODUCTION Many sensors produce continuous voltage signals. In this lab, you will learn about some common methods

More information

Chrontel CH7015 SDTV / HDTV Encoder

Chrontel CH7015 SDTV / HDTV Encoder Chrontel Preliminary Brief Datasheet Chrontel SDTV / HDTV Encoder Features 1.0 GENERAL DESCRIPTION VGA to SDTV conversion supporting graphics resolutions up to 104x768 Analog YPrPb or YCrCb outputs for

More information

XTAL Bank DDS Version 0.02 Sept Preliminary, highly likely to contain numerous errors

XTAL Bank DDS Version 0.02 Sept Preliminary, highly likely to contain numerous errors XTAL Bank DDS Version 002 Sept 7 2012 Preliminary, highly likely to contain numerous errors The photo above shows the fully assembled Xtal Bank DDS with 2 DDS modules installed (The kit is normally only

More information

4.3inch 480x272 Touch LCD (B) User Manual

4.3inch 480x272 Touch LCD (B) User Manual 4.3inch 480x272 Touch LCD (B) User Manual Chinese website: www.waveshare.net English Website: www.wvshare.com Data download: www.waveshare.net/wiki Shenzhen Waveshare Electronics Ltd. Co. 1 目录 1. Overview...

More information

Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA

Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA 1 ARJUNA RAO UDATHA, 2 B.SUDHAKARA RAO, 3 SUDHAKAR.B. 1 Dept of ECE, PG Scholar, 2 Dept of ECE, Associate Professor, 3 Electronics,

More information

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter page 1 of 5 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter Introduction In this lab, you will learn about the behavior of the D flip-flop, by employing it in 3 classic circuits:

More information

Model 5240 Digital to Analog Key Converter Data Pack

Model 5240 Digital to Analog Key Converter Data Pack Model 5240 Digital to Analog Key Converter Data Pack E NSEMBLE D E S I G N S Revision 2.1 SW v2.0 This data pack provides detailed installation, configuration and operation information for the 5240 Digital

More information

6.111 Project Proposal IMPLEMENTATION. Lyne Petse Szu-Po Wang Wenting Zheng

6.111 Project Proposal IMPLEMENTATION. Lyne Petse Szu-Po Wang Wenting Zheng 6.111 Project Proposal Lyne Petse Szu-Po Wang Wenting Zheng Overview: Technology in the biomedical field has been advancing rapidly in the recent years, giving rise to a great deal of efficient, personalized

More information

VIDEO 101 LCD MONITOR OVERVIEW

VIDEO 101 LCD MONITOR OVERVIEW VIDEO 101 LCD MONITOR OVERVIEW This provides an overview of the monitor nomenclature and specifications as they relate to TRU-Vu industrial monitors. This is an ever changing industry and as such all specifications

More information

VGA to PAL and NTSC converter

VGA to PAL and NTSC converter VGA to PAL and NTSC converter Design and copyright by Tomi Engdahl 1996,1999 NOTE: There are few mistakes on the dawings shown on this page. I have recieved lots of questions related to them and I don't

More information

NanoGiant Oscilloscope/Function-Generator Program. Getting Started

NanoGiant Oscilloscope/Function-Generator Program. Getting Started Getting Started Page 1 of 17 NanoGiant Oscilloscope/Function-Generator Program Getting Started This NanoGiant Oscilloscope program gives you a small impression of the capabilities of the NanoGiant multi-purpose

More information

V9A01 Solution Specification V0.1

V9A01 Solution Specification V0.1 V9A01 Solution Specification V0.1 CONTENTS V9A01 Solution Specification Section 1 Document Descriptions... 4 1.1 Version Descriptions... 4 1.2 Nomenclature of this Document... 4 Section 2 Solution Overview...

More information

Lab 6: Video Game PONG

Lab 6: Video Game PONG CpE 487 Digital Design Lab Lab 6: Video Game PONG 1. Introduction In this lab, we will extend the FPGA code we developed in Labs 3 and 4 (Bouncing Ball) to build a simple version of the 1970 s arcade game

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design E.g. Port A, Port B Used to interface with many devices Switches LEDs LCD Keypads Relays Stepper Motors Interface with digital IO requires us to connect the devices correctly and write code to interface

More information

4.9 BEAM BLANKING AND PULSING OPTIONS

4.9 BEAM BLANKING AND PULSING OPTIONS 4.9 BEAM BLANKING AND PULSING OPTIONS Beam Blanker BNC DESCRIPTION OF BLANKER CONTROLS Beam Blanker assembly Electron Gun Controls Blanker BNC: An input BNC on one of the 1⅓ CF flanges on the Flange Multiplexer

More information

DESIGN PHILOSOPHY We had a Dream...

DESIGN PHILOSOPHY We had a Dream... DESIGN PHILOSOPHY We had a Dream... The from-ground-up new architecture is the result of multiple prototype generations over the last two years where the experience of digital and analog algorithms and

More information

Lab 3: VGA Bouncing Ball I

Lab 3: VGA Bouncing Ball I CpE 487 Digital Design Lab Lab 3: VGA Bouncing Ball I 1. Introduction In this lab, we will program the FPGA on the Nexys2 board to display a bouncing ball on a 640 x 480 VGA monitor connected to the VGA

More information

MULTIMEDIA TECHNOLOGIES

MULTIMEDIA TECHNOLOGIES MULTIMEDIA TECHNOLOGIES LECTURE 08 VIDEO IMRAN IHSAN ASSISTANT PROFESSOR VIDEO Video streams are made up of a series of still images (frames) played one after another at high speed This fools the eye into

More information

Using Sliders with the 4201-B Lighting Controller Application Note June 26, 2008

Using Sliders with the 4201-B Lighting Controller Application Note June 26, 2008 Using Sliders with the 4201-B Lighting Controller Application Note June 26, 2008 This application note will discuss ways of using potentiometers (sliders or normal rotary volume control type) with the

More information

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is due

More information

EECS145M 2000 Midterm #1 Page 1 Derenzo

EECS145M 2000 Midterm #1 Page 1 Derenzo UNIVERSITY OF CALIFORNIA College of Engineering Electrical Engineering and Computer Sciences Department EECS 145M: Microcomputer Interfacing Laboratory Spring Midterm #1 (Closed book- calculators OK) Wednesday,

More information

7inch Resistive Touch LCD User Manual

7inch Resistive Touch LCD User Manual 7inch Resistive Touch LCD User Manual Chinese website: www.waveshare.net English website: www.wvshare.com Data download: www.waveshare.net/wiki Shenzhen Waveshare Electronics Ltd. Co. 1 Contents 1. Overview...

More information

The Infinity Portal Craig A. Lindley 03/16/2011

The Infinity Portal Craig A. Lindley 03/16/2011 OK, I'll admit it. I'm a sucker for colored flashing lights especially if controlled by a micro processor (up). So recently when I came upon a really good deal on RGB LEDs on ebay and another really good

More information

Comp 410/510. Computer Graphics Spring Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2018 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of 'creating images with a computer - Hardware (PC with graphics card)

More information

DT3130 Series for Machine Vision

DT3130 Series for Machine Vision Compatible Windows Software DT Vision Foundry GLOBAL LAB /2 DT3130 Series for Machine Vision Simultaneous Frame Grabber Boards for the Key Features Contains the functionality of up to three frame grabbers

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

EDA385 Bomberman. Fredrik Ahlberg Adam Johansson Magnus Hultin

EDA385 Bomberman. Fredrik Ahlberg Adam Johansson Magnus Hultin EDA385 Bomberman Fredrik Ahlberg ael09fah@student.lu.se Adam Johansson rys08ajo@student.lu.se Magnus Hultin ael08mhu@student.lu.se 2013-09-23 Abstract This report describes how a Super Nintendo Entertainment

More information

Senior Design Project: Blind Transmitter

Senior Design Project: Blind Transmitter Senior Design Project: Blind Transmitter Marvin Lam Mamadou Sall Ramtin Malool March 19, 2007 As the technology industry progresses we cannot help but to note that products are becoming both smaller and

More information

Design of VGA Controller using VHDL for LCD Display using FPGA

Design of VGA Controller using VHDL for LCD Display using FPGA International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design of VGA Controller using VHDL for LCD Display using FPGA Khan Huma Aftab 1, Monauwer Alam 2 1, 2 (Department of ECE, Integral

More information

AC334A. VGA-Video Ultimate BLACK BOX Remote Control. Back Panel View. Side View MOUSE DC IN BLACK BOX ZOOM/FREEZE POWER

AC334A. VGA-Video Ultimate BLACK BOX Remote Control. Back Panel View. Side View MOUSE DC IN BLACK BOX ZOOM/FREEZE POWER AC334A BLACK BOX 724-746-5500 VGA-Video Ultimate BLACK BOX 724-746-5500 Zoom Position PAL ZOOM/FREEZE POWER FREEZE ZOOM NTSC/PAL SIZE RESET POWER Size Power Remote Control DC IN MOUSE MIC IN AUDIO OUT

More information

2.13inch e-paper HAT (D) User Manual

2.13inch e-paper HAT (D) User Manual 2.13inch e-paper HAT (D) User Manual OVERVIRE This is a flexible E-Ink display HAT for Raspberry Pi, 2.13inch, 212x104 resolution, with embedded controller, communicating via SPI interface, supports partial

More information

STB Front Panel User s Guide

STB Front Panel User s Guide S ET-TOP BOX FRONT PANEL USER S GUIDE 1. Introduction The Set-Top Box (STB) Front Panel has the following demonstration capabilities: Pressing 1 of the 8 capacitive sensing pads lights up that pad s corresponding

More information

Camera Interface Guide

Camera Interface Guide Camera Interface Guide Table of Contents Video Basics... 5-12 Introduction...3 Video formats...3 Standard analog format...3 Blanking intervals...4 Vertical blanking...4 Horizontal blanking...4 Sync Pulses...4

More information

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise 4 Polling and Interrupts The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two methods used to indicate whether or not data can be

More information

What is sync? Why is sync important? How can sync signals be compromised within an A/V system?... 3

What is sync? Why is sync important? How can sync signals be compromised within an A/V system?... 3 Table of Contents What is sync?... 2 Why is sync important?... 2 How can sync signals be compromised within an A/V system?... 3 What is ADSP?... 3 What does ADSP technology do for sync signals?... 4 Which

More information

Types of CRT Display Devices. DVST-Direct View Storage Tube

Types of CRT Display Devices. DVST-Direct View Storage Tube Examples of Computer Graphics Devices: CRT, EGA(Enhanced Graphic Adapter)/CGA/VGA/SVGA monitors, plotters, data matrix, laser printers, Films, flat panel devices, Video Digitizers, scanners, LCD Panels,

More information

MBI5050 Application Note

MBI5050 Application Note MBI5050 Application Note Foreword In contrast to the conventional LED driver which uses an external PWM signal, MBI5050 uses the embedded PWM signal to control grayscale output and LED current, which makes

More information

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF IN-STOCK ITEMS EQUIPMENT DEMOS HUNDREDS OF MANUFACTURERS SUPPORTED

More information

Installation and users Manual

Installation and users Manual Installation and users Manual DVI-D (HDCP) Interface board (IFB) for SONY Video Projectors This Interface board will add a DVI-D (HDCP) input to any Sony CRT projectors including : VPH-1251, VPH-1252,

More information

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0.

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0. SM06 Advanced Composite Video Interface: HD-SDI to acvi converter module User Manual Revision 0.4 1 st May 2017 Page 1 of 26 Revision History Date Revisions Version 17-07-2016 First Draft. 0.1 28-08-2016

More information

Working with CSWin32 Software

Working with CSWin32 Software Working with CSWin32 Software CSWin32 provides a PC interface for Coiltek s ultrasonic control products. The software expands the palette of control features of the CS-5000 and CS-6100 series controls;

More information

L14 - Video. L14: Spring 2005 Introductory Digital Systems Laboratory

L14 - Video. L14: Spring 2005 Introductory Digital Systems Laboratory L14 - Video Slides 2-10 courtesy of Tayo Akinwande Take the graduate course, 6.973 consult Prof. Akinwande Some modifications of these slides by D. E. Troxel 1 How Do Displays Work? Electronic display

More information

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER ECB2212 - DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER SUBMITTED BY ASHRAF HUSSAIN (160051601105) S SAMIULLAH (160051601059) CONTENTS >AIM >INTRODUCTION

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

Module 7. Video and Purchasing Components

Module 7. Video and Purchasing Components Module 7 Video and Purchasing Components Objectives 1. PC Hardware A.1.11 Evaluate video components and standards B.1.10 Evaluate monitors C.1.9 Evaluate and select appropriate components for a custom

More information

User Manual for ASSIST Evaluation & Programming Tool EPT002

User Manual for ASSIST Evaluation & Programming Tool EPT002 Page 1 of 60 User Manual for ASSIST Evaluation & Programming Tool EPT002 Page 2 of 60 CONTENTS 1. Hardware... 3 1.1 Contents... 3 1.2 Interface Board... 4 1.3 Target-Holder... 5 1.4 Targets: codewheels

More information

By Tom Kopin CTS, ISF-C KRAMER WHITE PAPER

By Tom Kopin CTS, ISF-C KRAMER WHITE PAPER Troubleshooting HDMI with 840Hxl By Tom Kopin CTS, ISF-C AUGUST 2012 KRAMER WHITE PAPER WWW.KRAMERELECTRONICS.COM TABLE OF CONTENTS overview...1 resolutions...1 HDCP...2 Color depth...2 color space...3

More information

ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras. Final Design Report

ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras. Final Design Report ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras Group #4 Prof: Chow, Paul Student 1: Robert An Student 2: Kai Chun Chou Student 3: Mark Sikora April 10 th, 2015 Final

More information

Logic Analysis Basics

Logic Analysis Basics Logic Analysis Basics September 27, 2006 presented by: Alex Dickson Copyright 2003 Agilent Technologies, Inc. Introduction If you have ever asked yourself these questions: What is a logic analyzer? What

More information

VGA Controller. Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, VGA Controller Components

VGA Controller. Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, VGA Controller Components VGA Controller Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, 2012 Fig. 1. VGA Controller Components 1 VGA Controller Leif Andersen, Daniel Blakemore, Jon Parker University

More information

SAL Series Wireless Clock (V1)

SAL Series Wireless Clock (V1) SAL Series Wireless Clock (V1) HIGHLIGHTS Microprocessor based movement Each clock acts as a repeater and transmitter 915 928MHz frequency hopping technology Receiving and transmission rate every four

More information

Digital (5hz to 500 Khz) Frequency-Meter

Digital (5hz to 500 Khz) Frequency-Meter Digital (5hz to 500 Khz) Frequency-Meter Posted on April 4, 2008, by Ibrahim KAMAL, in Sensor & Measurement, tagged Based on the famous AT89C52 microcontroller, this 500 Khz frequency-meter will be enough

More information

COHU, INC. Electronics Division Installation and Operation Instructions

COHU, INC. Electronics Division Installation and Operation Instructions COHU, INC. Electronics Division Installation and Operation Instructions 1100 SERIES RS-170 AND CCIR MONOCHROME CAMERAS 12367 CROSTHWAITE CIRCLE POWAY, CA 92064 PHONE (619) 277-6700 FAX (619) 277-0221 INFO@

More information

Logic Analysis Basics

Logic Analysis Basics Logic Analysis Basics September 27, 2006 presented by: Alex Dickson Copyright 2003 Agilent Technologies, Inc. Introduction If you have ever asked yourself these questions: What is a logic analyzer? What

More information

IMS B007 A transputer based graphics board

IMS B007 A transputer based graphics board IMS B007 A transputer based graphics board INMOS Technical Note 12 Ray McConnell April 1987 72-TCH-012-01 You may not: 1. Modify the Materials or use them for any commercial purpose, or any public display,

More information

Transmitter Interface Program

Transmitter Interface Program Transmitter Interface Program Operational Manual Version 3.0.4 1 Overview The transmitter interface software allows you to adjust configuration settings of your Max solid state transmitters. The following

More information

Log-detector. Sweeper setup using oscilloscope as XY display

Log-detector. Sweeper setup using oscilloscope as XY display 2002/9/4 Version 1.2 XYdisp user manual. 1. Introduction. The XYdisp program is a tool for using an old DOS PC or laptop as XY display to show response curves measured by a sweeper log-detector combination.

More information

Testing Results for a Video Poker System on a Chip

Testing Results for a Video Poker System on a Chip Testing Results for a Video Poker System on a Chip Preston Thomson and Travis Johnson Introduction- This report examines the results of a system on a chip SoC video poker system. The report will begin

More information

SXGA096 DESIGN REFERENCE BOARD

SXGA096 DESIGN REFERENCE BOARD SXGA096 DESIGN REFERENCE BOARD For Use with all emagin SXGA096 OLED Microdisplays USER S MANUAL VERSION 1.0 TABLE OF CONTENTS D01-501152-01 SXGA096 Design Reference Board User s Manual i 1. INTRODUCTION...

More information

A 400MHz Direct Digital Synthesizer with the AD9912

A 400MHz Direct Digital Synthesizer with the AD9912 A MHz Direct Digital Synthesizer with the AD991 Daniel Da Costa danieljdacosta@gmail.com Brendan Mulholland firemulholland@gmail.com Project Sponser: Dr. Kirk W. Madison Project 11 Engineering Physics

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

C8000. sync interface. External sync auto format sensing : AES, Word Clock, Video Reference

C8000. sync interface. External sync auto format sensing : AES, Word Clock, Video Reference features Standard sync module for a frame Internal sync @ 44.1 / 48 / 88.2 / 96kHz External sync auto format sensing : AES, Word Clock, Video Reference Video Reference : Black Burst (NTSC or PAL) Composite

More information

Integration of Computer Generated Images with NTSC Video

Integration of Computer Generated Images with NTSC Video University of Central Florida Retrospective Theses and Dissertations Masters Thesis (Open Access) Integration of Computer Generated Images with NTSC Video 1987 Keith E. Lorenz University of Central Florida

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP General Description The Digital Blocks core is a full function equivalent to the Motorola MC6845 device. The interfaces a microprocessor to a raster-scan CRT display. The

More information

Introduction To LabVIEW and the DSP Board

Introduction To LabVIEW and the DSP Board EE-289, DIGITAL SIGNAL PROCESSING LAB November 2005 Introduction To LabVIEW and the DSP Board 1 Overview The purpose of this lab is to familiarize you with the DSP development system by looking at sampling,

More information

Zeroplus Logic Analyzer Multi-LA Stack and LA-Oscilloscope Stack

Zeroplus Logic Analyzer Multi-LA Stack and LA-Oscilloscope Stack Zeroplus Logic Analyzer Multi-LA Stack and LA-Oscilloscope Stack Preface As digital technology develops, new 3C products continuously come into the market. To help engineers to release their products earlier,

More information

Interfacing the TLC5510 Analog-to-Digital Converter to the

Interfacing the TLC5510 Analog-to-Digital Converter to the Application Brief SLAA070 - April 2000 Interfacing the TLC5510 Analog-to-Digital Converter to the TMS320C203 DSP Perry Miller Mixed Signal Products ABSTRACT This application report is a summary of the

More information

PROTOTYPING AN AMBIENT LIGHT SYSTEM - A CASE STUDY

PROTOTYPING AN AMBIENT LIGHT SYSTEM - A CASE STUDY PROTOTYPING AN AMBIENT LIGHT SYSTEM - A CASE STUDY Henning Zabel and Achim Rettberg University of Paderborn/C-LAB, Germany {henning.zabel, achim.rettberg}@c-lab.de Abstract: This paper describes an indirect

More information

Super-Doubler Device for Improved Classic Videogame Console Output

Super-Doubler Device for Improved Classic Videogame Console Output Super-Doubler Device for Improved Classic Videogame Console Output Initial Project Documentation EEL4914 Dr. Samuel Richie and Dr. Lei Wei September 15, 2015 Group 31 Stephen Williams BSEE Kenneth Richardson

More information