Recent developments in cyclotrons for proton therapy at IBA

Size: px
Start display at page:

Download "Recent developments in cyclotrons for proton therapy at IBA"

Transcription

1 Recent developments in cyclotrons for proton therapy at IBA Yves Jongen. Founder & CRO IBA sa We Protect, Enhance and Save Lives.

2 A typical PT center millions for equipment millions for the center m 35 m 2

3 The accelerator is a very small part of a PT system A Proton therapy system is much more than an accelerator It is most often a complex, multi-room system, filling a Hospital building. The treatment rooms are larger than the cyclotron vault The total investment is around 100 M, of which 45 M for the equipment The cyclotron represents only 7 M of this! The investment to develop the cyclotron was less than 4 M, out of more than 60 M spent on developing IBA PT system 3

4 Proton Therapy end of , , Patien ts treated 50,000 40,000 30,000 20,000 PT center under operation Operating facilities 10, Courtesy Janet Sisterson & PTCOG

5 13 IBA PT customers in the world ProCure 2 Chicago MGH, Boston Beijing, China Wanjie, China ProCure 1 Oklahoma City MPRI, Indiana Hampton Univ., Virginia U.Penn, Philadelphia WPE, Essen NCC, Kashiwa UFPTI, Jacksonville, FL NCC, Ilsan Orsay (France) 5

6 IBA has currently the largest installed base in PT PT Installed base shares - PROTON - ( ) in ROOM S Still River 4% MHI 13% Varian 7% SHI 3% Hitachi 13% IBA 60% 6

7 Cyclotrons for Proton therapy? In 1991, when IBA entered in PT, the consensus was that the best accelerator for PT was a synchrotron IBA introduced a very effective cyclotron design, and today the majority of PT centers use the cyclotron technology (not only IBA but Varian, Still Rivers) Over these 15 years, users came to appreciate the advantages of cyclotrons: Simplicity Reliability Lower cost and size But, most importantly, the ability to modulate rapidly and accurately the proton beam current 7

8 Proton beam current regulation signal (V) t (sec) 8

9 Change of energy? Cyclotrons are simpler at fixed energy Energy change by graphite/beryllium degrader at waist after cyclotron exit, followed by divergence slits and energy analyzer This very effectively decouples the accelerator from the patient Unlike the synchrotron, the emittance is identical in X and Y. This makes gantry optics much easier in scanning mode Yes, neutrons are produced, but ESS is well shielded and the average beam current in PT is low > limited activation How fast? 5 mm step in energy in 100 msec at PSI (vs. 2 sec for IBA or 4 sec. for a synchrotron). 9

10 The IBA ESS 10

11 More Expertise The energy selection system 11

12 More Experience UFPTI, Jacksonville, USA Construction start date: Mar 2004 PT equipment installation start: Mar st Patient : Aug 2006! today : 130 patients/day treated in 3 Gantry rooms up to 250 fields/day 12

13 The UPHS Particle Therapy Centre, Philadelphia 13 The largest Particle Therapy centre to date! 4 Gantry Rooms 1 Fixed Beam Room (2 beams) + 1 Experimental Room Beam since July 2008 First patient treatment in Autumn 2009

14 Procure center #1, Oklahoma city, USA 14 First center of the Procure network 2 Gantry Rooms 1 Fixed & Inclined Beam Room Beam since July 2008 First patient treatment in Autumn 2009

15 Hampton University Proton Therapy Institute 4 Gantry Rooms 1 Fixed Beam Room All equipment installed Beam accelerated in the cyclotron 15

16 Westdeutsche Protonentherapiezentrum, Essen First Particle Therapy centre based on a Public Private Partnership (PPP) model 3 Gantry Treatment Rooms 1 Double Fixed Beam Room with Eye Treatment line Beam since September 2008 First patient treatment in Autumn

17 New cyclotron and gantry for CPO in Orsay New equipment for an existing PT center New cyclotron, ESS and one new gantry room Transition to be made without interrupting treatments!!!!! 2 existing Fixed Beam Rooms All equipment installed, cyclotron beam extracted, optics tuning ongoing 17

18 C230 median plane view 18

19 C230 in numbers 230MeV, 500nA proton beam for therapy Resistive but high field magnet: 2.9T peak field, 1.1m extraction radius, 4 spiral poles, elliptical gap, 800A, 524 ka-turns, 9mm pole gap at outer radius Internal hot filament PIG source RF system: 106MHz 100kW, harmonic mode 4, dee voltage from 60 kv at the center to 120 kv at extraction Electrostatic deflector extraction 19

20 More Expertise The CYCLONE 230 cyclotron 20

21 The cyclotron opens at median plane for service 21

22 Inside the cyclotron 22

23 The ion source and central region 23

24 Electrostatic deflector 24

25 Recent improvements on the C C230 cyclotrons have been built, but we keep adding improvements. Recent developments include: Correction of slight tilts in the orbit plane Design improvements in the RF cavities New deflector design Improved beam current regulation 25

26 Recent improvements on the C C230 cyclotrons have been built, but we keep adding improvements. Recent developments include: Correction of slight tilts in the orbit plane Design improvements in the RF cavities New deflector design Improved beam current regulation 26

27 RF cavity redesign Problem: Due to the elliptical pole shape, the counter-dee gap decreases with radius. Consequence: Beam losses on counter-dees at large radius. Solution: Maximize the counter-dee gap. Method: Redesign the RF cavities to increase the counter-dee gap from 10mm to 12mm. 27

28 RF cavity redesign New cavity design 28

29 RF cavity redesign New cavity design Redesigned area 29

30 RF cavity redesign New cavity design 12mm 230MeV orbit 30

31 RF cavity tuning redesign Problem: The present cavity tuning by a variable capacitor in the median plane needs periodic replacement. It is difficult to share the larger RF current drawn by this capacitor equally in the upper and lower cavity. Consequence: Capacitor failures: loss of reliability Lack of up-down symmetry: leaks of RF in the cyclotron through the accelerating gaps Solution: Tune the cavities with inductive tuners in the valleys sliding on RF contacts 31

32 New cavity tuner design 32

33 Electrostatic deflector optimization Problem: The old septum intercepted a significant amount of beam. Consequence: Activation, limited extraction efficiency Solution: Reduce septum beam apparent thickness. Method: Analytical study and beam tracking. Then build it and try it! 33

34 Electrostatic deflector optimization Beam tracking simulation of new deflector. Pole edge Extracted beam Circulating beam Deflector 34

35 Electrostatic deflector optimization Beam tracking simulation at JINR Comparison between old and new septum : Old New Losses on septum entrance (0.1mm) Losses inside deflector on septum Losses inside deflector on HV plate 28%* 8% 0% 9% 1% 1% 35 * plus circulating beam

36 Electrostatic deflector optimization 36

37 Experimental results Radial track using integral radial probe Beam current on external beam stop 37 (Raw data, not corrected for RF noise and radial probe efficiency.)

38 Experimental results Radial track using integral radial probe Deflector Adj. dowel pins New RF cavity New deflector Adj. dowel pins New RF cavity Integral radial probe beam current External beam stop current 38

39 Proton beam current regulation optimization Present situation The proton beam current is slaved to an external time function by measuring the extracted beam with an ion chamber, doing a digital regulation by varying the arc current in the ion source. The current loop regulates the beam current with an accuracy better than 2%, up to a bandwidth of 2.5 KHz Problem: We have a dark current. Even when the arc is turned off, a proton beam current of 30 to 100 picoampere is extracted from the cyclotron 39

40 Proton beam current regulation optimization Consequence: The dark current results in small inaccuracies in beam delivery. In pencil beam scanning, it can result in small amounts of beam being delivered outside the treatment field Solution: Use a reduction of the dee voltage to suppress the proton beam when it is not needed. Possibly, use the dee voltage variation exclusively to regulate the beam current 40

41 3 kv dee voltage variation is enough Beam current vs Dee Voltage Beam current (na) Dee Voltage (kv) 22/11/ :30 41

42 Modulating the dee voltage by 3 kv at 62 khz! 42

43 Regulating 500 µsec pulses 43

44 Data analysis on IC cyclo, 4 na peak Regulation triangle 100 Hz 4 na Beam current on IC cyclo (na) Series1 Linear fit Time (msec) 44

45 Thank you 45

NEW CYCLOTRON DEVELOPMENTS AT IBA

NEW CYCLOTRON DEVELOPMENTS AT IBA NEW CYCLOTRON DEVELOPMENTS AT Y. Jongen, W. Kleeven and S.Zaremba, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve, Belgium Abstract This paper describes some recent cyclotron developments done at - Ion

More information

III. Proton-therapytherapy. Rome SB - 3/5 1

III. Proton-therapytherapy. Rome SB - 3/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

THE IBA SUPERCONDUCTING SYNCHROCYCLOTRON PROJECT S2C2

THE IBA SUPERCONDUCTING SYNCHROCYCLOTRON PROJECT S2C2 THE IBA SUPERCONDUCTING SYNCHROCYCLOTRON PROJECT S2C2 W. Kleeven, M. Abs, E. Forton, S. Henrotin, Y. Jongen, V. Nuttens, Y. Paradis, E. Pearson, S. Quets, J. Van de Walle, P. Verbruggen, S. Zaremba, IBA,

More information

Hadron Therapy Technologies

Hadron Therapy Technologies Hadron Therapy Technologies S. Peggs, BNL & ESS-S Bevalac 1950-1993 Many figures courtesy of Jay Flanz 1 Consumer demand 1 in 3 Europeans will confront some form of cancer in their lifetime. Cancer is

More information

Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron

Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron 1st Workshop HADRON BEAM THERAPY OF CANCER ERICE SICILY, 24 APRIL - 1 MAY 2009 D. W. Krischel, A.E. Geisler, J.H. Timmer, Volker Schirrmeister

More information

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The ESS Accelerator For Norwegian Industry and Research Oslo, 24 Sept 2013 Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The Hadron Intensity Frontier Courtesy of M. Seidel (PSI)

More information

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Outline Situation/Rationale Requirements Synchrotron choice Functions

More information

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM EUCARD 2 WORKSHOP ON INNOVATIVE DELIVERY SYSTEMS IN PARTICLE THERAPY TORINO, 23 25 FEB 2017 VARIAN PARTICLE THERAPY HOLGER GÖBEL MANGER

More information

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A.Beunas and G. Faillon Thales Electron Devices, Vélizy, France S. Choroba DESY, Hamburg, Germany Abstract THALES ELECTRON DEVICES has developed

More information

Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy

Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy Jay Flanz MGH/FBTC Harvard Medical School What is a Beam Delivery? Start with an accelerator

More information

45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests*

45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests* US High Gradient Research Collaboration Workshop. SLAC, May 23-25, 2007 45 MW, 22.8 GHz Second-Harmonic Multiplier for High-Gradient Tests* V.P. Yakovlev 1, S.Yu. Kazakov 1,2, and J.L. Hirshfield 1,3 1

More information

High Power Cyclotrons

High Power Cyclotrons Accelerator Reliability Workshop ESRF, Grenoble, 04-06.02.02 High Power Cyclotrons P.A.Schmelzbach 1. The PSI Proton Accelerator Facility 2. Failure Analysis 2000/2001 3. The weak Points 4. How to improve

More information

Cyclotron Institute upgrade project. H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, B. Roeder and G. Tabacaru

Cyclotron Institute upgrade project. H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, B. Roeder and G. Tabacaru Cyclotron Institute upgrade project H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, B. Roeder and G. Tabacaru On January 3, 2005 the Cyclotron Institute Upgrade Project (CIUP) began

More information

DELIVERY RECORD. Location: Ibaraki, Japan

DELIVERY RECORD. Location: Ibaraki, Japan DELIVERY RECORD Client: Japan Atomic Energy Agency (JAEA) High Energy Accelerator Research Organization (KEK) Facility: J-PARC (Japan Proton Accelerator Research Complex) Location: Ibaraki, Japan 1 October

More information

EPJ Web of Conferences 95,

EPJ Web of Conferences 95, EPJ Web of Conferences 95, 04012 (2015) DOI: 10.1051/ epjconf/ 20159504012 C Owned by the authors, published by EDP Sciences, 2015 The ELENA (Extra Low Energy Antiproton) project is a small size (30.4

More information

Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab

Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab Richard Walker & Richard Nelson Jefferson Lab, Newport News VA Jefferson Lab is a $600M Department of Energy facility

More information

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala) 2 Work Package and Work Unit descriptions 2.8 WP8: RF Systems (R. Ruber, Uppsala) The RF systems work package (WP) addresses the design and development of the RF power generation, control and distribution

More information

A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE

A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE E. Pedroni, T. Böhringer, A. Coray, G. Goitein, M. Grossmann, A. Lomax, S. Lin, M. Jermann Paul Scherrer Institute, CH-5232 Villigen PSI,

More information

Design, Fabrication and Testing of Gun-Collector Test Module for 6 MW Peak, 24 kw Average Power, S-Band Klystron

Design, Fabrication and Testing of Gun-Collector Test Module for 6 MW Peak, 24 kw Average Power, S-Band Klystron Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 11-15 Research Article ISSN: 2394-658X Design, Fabrication and Testing of Gun-Collector Test Module

More information

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC*

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* D. Sprehn, E. Jongewaard, A. Haase, A. Jensen, D. Martin, SLAC National Accelerator Laboratory, Menlo Park, CA 94020, U.S.A. A. Burke, SAIC, San

More information

Cyclotron Institute upgrade project. H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, and G. Tabacaru

Cyclotron Institute upgrade project. H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, and G. Tabacaru Cyclotron Institute upgrade project H. L. Clark, F. Abegglen, G. Chubarian, G. Derrig, G. Kim, D. May, and G. Tabacaru On January 3, 2005 the Cyclotron Institute Upgrade Project (CIUP) began with the approval

More information

RF Power Generation II

RF Power Generation II RF Power Generation II Klystrons, Magnetrons and Gyrotrons Professor R.G. Carter Engineering Department, Lancaster University, U.K. and The Cockcroft Institute of Accelerator Science and Technology Scope

More information

The Construction Status of CSNS Linac

The Construction Status of CSNS Linac The Construction Status of CSNS Linac Sheng Wang Dongguan branch, Institute of High Energy Physics, CAS Sep.2, 2014, Geneva Outline The introduction to CSNS accelerators The commissoning of ion source

More information

PRESENT STATUS OF J-PARC

PRESENT STATUS OF J-PARC PRESENT STATUS OF J-PARC # F. Naito, KEK, Tsukuba, Japan Abstract Japan Proton Accelerator Research Complex (J-PARC) is the scientific facility with the high-intensity proton accelerator aiming to realize

More information

Implementing a Proton Beam Scanning System within an Operating Clinical Facility

Implementing a Proton Beam Scanning System within an Operating Clinical Facility Implementing a Proton Beam Scanning System within an Operating Clinical Facility Ben Clasie Many thanks to Hassan Bentefour, Hanne Kooy, and Jay Flanz for their help preparing this presentation 1 Francis

More information

RF Solutions for Science.

RF Solutions for Science. RF Solutions for Science www.thalesgroup.com State-of-the-art RF sources for your scientific needs High-power klystrons HIGH KLYSTRONS WITH RF LONG PULSE above 50 μs Thales has been one of the leading

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

Proton Engineering Frontier Project

Proton Engineering Frontier Project Proton Engineering Frontier Project OECD Nuclear Energy Agency Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators (HPPA5) (6-9 May 2007, Mol, Belgium) Yong-Sub

More information

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Abstract The U.S. Department of Energy (DOE) Office of Science has funded the construction of a new accelerator-based

More information

100 MeV H - CYCLOTRON DEVELOPMENT AND 800 MeV PROTON CYCLOTRON PROPOSAL*

100 MeV H - CYCLOTRON DEVELOPMENT AND 800 MeV PROTON CYCLOTRON PROPOSAL* Proceedings of Cyclotrons2016, Zurich, Switzerland TUC01 100 MeV H - CYCLOTRON DEVELOPMENT AND 800 MeV PROTON CYCLOTRON PROPOSAL* Tianjue Zhang and Jianjun Yang, China Institute of Atomic Energy, Beijing,

More information

SPEAR 3: Operations Update and Impact of Top-Off Injection

SPEAR 3: Operations Update and Impact of Top-Off Injection SPEAR 3: Operations Update and Impact of Top-Off Injection R. Hettel for the SSRL ASD 2005 SSRL Users Meeting October 18, 2005 SPEAR 3 Operations Update and Development Plans Highlights of 2005 SPEAR 3

More information

PBS Products from Pyramid

PBS Products from Pyramid PBS Products from Pyramid Pyramid was founded in 1986 and is an established supplier of instrument control systems for the medical, semiconductor, physics and biological research markets. The systems typically

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

RF Upgrades & Experience At JLab. Rick Nelson

RF Upgrades & Experience At JLab. Rick Nelson RF Upgrades & Experience At JLab Rick Nelson Outline Background: CEBAF / Jefferson Lab History, upgrade requirements & decisions Progress & problems along the way Present status Future directions & concerns

More information

Linac 4 Instrumentation K.Hanke CERN

Linac 4 Instrumentation K.Hanke CERN Linac 4 Instrumentation K.Hanke CERN CERN Linac 4 PS2 (2016?) SPL (2015?) Linac4 (2012) Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase

More information

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi)

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) Commissioning of Accelerators Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) www.europeanspallationsource.se 6 July, 2017 Contents General points Definition of Commissioning

More information

Studies on an S-band bunching system with hybrid buncher

Studies on an S-band bunching system with hybrid buncher Submitted to Chinese Physics C Studies on an S-band bunching system with hybrid buncher PEI Shi-Lun( 裴士伦 ) 1) XIAO Ou-Zheng( 肖欧正 ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

ESS: The Machine. Bucharest, 24 April Håkan Danared Deputy Head Accelerator Division. H. Danared Industry & Partner Days Bucharest Page 1

ESS: The Machine. Bucharest, 24 April Håkan Danared Deputy Head Accelerator Division. H. Danared Industry & Partner Days Bucharest Page 1 ESS: The Machine Bucharest, 24 April 2014 Håkan Danared Deputy Head Accelerator Division H. Danared Industry & Partner Days Bucharest Page 1 2025 ESS construction complete 2009 Decision: ESS will be built

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

Activities on FEL Development and Application at Kyoto University

Activities on FEL Development and Application at Kyoto University Activities on FEL Development and Application at Kyoto University China-Korea-Japan Joint Workshop on Electron / Photon Sources and Applications Dec. 2-3, 2010 @ SINAP, Shanghai Kai Masuda Inst. Advanced

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin RF plans for ESS Morten Jensen ESLS-RF 2013 Berlin Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average beam power will be 5 MW which is five

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

XFEL High Power RF System Recent Developments

XFEL High Power RF System Recent Developments XFEL High Power RF System Recent Developments for the XFEL RF Group Outline XFEL RF System Requirements Overview Basic Layout RF System Main Components Multibeam Klystrons Modulator RF Waveguide Distribution

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

Teltron Delection Tube D

Teltron Delection Tube D Teltron Delection Tube D 1011119 Overview The electron-beam deflection tube is intended for investigating the deflection of electron beams in electrical and magnetic fields. It can be used to estimate

More information

Pseudospark-sourced Micro-sized Electron Beams for High Frequency klystron Applications

Pseudospark-sourced Micro-sized Electron Beams for High Frequency klystron Applications Pseudospark-sourced Micro-sized Electron Beams for High Frequency klystron Applications H. Yin 1*, D. Bowes 1, A.W. Cross 1, W. He 1, K. Ronald 1, A. D. R. Phelps 1, D. Li 2 and X. Chen 2 1 SUPA, Department

More information

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Workshop on the future and next generation capabilities of accelerator driven neutron and muon sources

More information

Performance of a DC GaAs photocathode gun for the Jefferson lab FEL

Performance of a DC GaAs photocathode gun for the Jefferson lab FEL Nuclear Instruments and Methods in Physics Research A 475 (2001) 549 553 Performance of a DC GaAs photocathode gun for the Jefferson lab FEL T. Siggins a, *, C. Sinclair a, C. Bohn b, D. Bullard a, D.

More information

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thcreof nor any of their employees,

More information

Design of the linear accelerator for the MYRRHA project

Design of the linear accelerator for the MYRRHA project MYRRHA Multipurpose hybrid Research Reactor for High-tech Applications Design of the linear accelerator for the MYRRHA project Roberto Salemme ADT - Outline What is MYRRHA? MYRRHA accelerator: requirements

More information

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics High Brightness Injector Development and ERL Planning at Cornell Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics June 22, 2006 JLab CASA Seminar 2 Background During 2000-2001,

More information

Activities from Cyclotron facility at German Cancer Research Center (DKFZ), Heidelberg

Activities from Cyclotron facility at German Cancer Research Center (DKFZ), Heidelberg 7/12/2016 Page 1 Activities from Cyclotron facility at German Cancer Research Center (DKFZ), Heidelberg 7/12/2016 Page 2 Biggest Transition in the last two years 7/12/2016 Page 3 A Brief Historical Overview

More information

K800 RF AMPLIFIER TUBE UPGRADE

K800 RF AMPLIFIER TUBE UPGRADE R. F. Note 107 John Vincent August 5, 1988 K800 RF AMPLIFIER TUBE UPGRADE Contents: 1. Introduction 2. RCA 4648 Operating Experience and Evaluation. 3. Tube Selection Criteria 4. Cost and Availability

More information

Development of high power gyrotron and EC technologies for ITER

Development of high power gyrotron and EC technologies for ITER 1 Development of high power gyrotron and EC technologies for ITER K. Sakamoto 1), K.Kajiwara 1), K. Takahashi 1), Y.Oda 1), A. Kasugai 1), N. Kobayashi 1), M.Henderson 2), C.Darbos 2) 1) Japan Atomic Energy

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

Development of High Power Vacuum Tubes for Accelerators and Plasma Heating Development of High Power Vacuum Tubes for Accelerators and Plasma Heating Vishnu Srivastava Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan,

More information

INFN School on Electron Accelerators. RF Power Sources and Distribution

INFN School on Electron Accelerators. RF Power Sources and Distribution INFN School on Electron Accelerators 12-14 September 2007, INFN Sezione di Pisa Lecture 7b RF Power Sources and Distribution Carlo Pagani University of Milano INFN Milano-LASA & GDE The ILC Double Tunnel

More information

Towards an X-Band Power Source at CERN and a European Structure Test Facility

Towards an X-Band Power Source at CERN and a European Structure Test Facility Towards an X-Band Power Source at CERN and a European Structure Test Facility Erk Jensen and Gerry McMomagle CERN The X-Band Accelerating Structure Design and Test-Program Workshop Day 2: Structure Testing

More information

Pulses inside the pulse mode of operation at RF Gun

Pulses inside the pulse mode of operation at RF Gun Pulses inside the pulse mode of operation at RF Gun V. Vogel, V. Ayvazyan, K. Floettmann, D. Lipka, P. Morozov, H. Schlarb, S. Schreiber FLASH Seminar, DESY March 29, 2011 Contents Why we need a PiPmode

More information

Review of Diamond SR RF Operation and Upgrades

Review of Diamond SR RF Operation and Upgrades Review of Diamond SR RF Operation and Upgrades Morten Jensen on behalf of Diamond Storage Ring RF Group Agenda Stats X-ray and LN2 pressure results Cavity Failure Conditioning in the RFTF Cavity Simulations

More information

National Institute of Radiological Sciences. Naoya Saotome

National Institute of Radiological Sciences. Naoya Saotome National Institute of Radiological Sciences Naoya Saotome 1 Contents Introduction History and collaboration KCC i-rock Commissioning of commercial scanning system NIRS Gantry Commissioning of NIRS s Gantry

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

New Filling Pattern for SLS-FEMTO

New Filling Pattern for SLS-FEMTO SLS-TME-TA-2009-0317 July 14, 2009 New Filling Pattern for SLS-FEMTO Natalia Prado de Abreu, Paul Beaud, Gerhard Ingold and Andreas Streun Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland A new

More information

LIGHT PROTON THERAPY PROJECT

LIGHT PROTON THERAPY PROJECT 17 th of MAY 2018 LIGHT PROTON THERAPY PROJECT Yevgeniy Ivanisenko on behalf of ADAM team FORM-01040-A AVO-ADAM Advanced Oncotherapy (AVO) is a public company ADAM is R&D center of AVO ~ 100 employees

More information

CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS. Jason Matney, MS, PhD

CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS. Jason Matney, MS, PhD CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS Jason Matney, MS, PhD Objectives Medical electron linear accelerators (often shortened to LINAC) The Basics Power Supply Magnetron/Klystron

More information

Investigation of Radio Frequency Breakdown in Fusion Experiments

Investigation of Radio Frequency Breakdown in Fusion Experiments Investigation of Radio Frequency Breakdown in Fusion Experiments T.P. Graves, S.J. Wukitch, I.H. Hutchinson MIT Plasma Science and Fusion Center APS-DPP October 2003 Albuquerque, NM Outline Multipactor

More information

Synergies: Therapy & Thorium, FFAG & RCS

Synergies: Therapy & Thorium, FFAG & RCS Synergies: Therapy & Thorium, FFAG & RCS Steve Peggs, BNL & ESS-Scandinavia With special thanks (and no further attribution) to: R. Barlow, M. Blaskiewicz, J. Escalier, J. Flanz, Y. Kadi, E. Keil, T. Linnecar,

More information

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh Design and Simulation of High Power RF Modulated Triode Electron Gun A. Poursaleh National Academy of Sciences of Armenia, Institute of Radio Physics & Electronics, Yerevan, Armenia poursaleh83@yahoo.com

More information

Phase (deg) Phase (deg) Positive feedback, 317 ma. Negative feedback, 330 ma. jan2898/1638: beam pseudospectrum around 770*frev.

Phase (deg) Phase (deg) Positive feedback, 317 ma. Negative feedback, 330 ma. jan2898/1638: beam pseudospectrum around 770*frev. Commissioning Experience from PEP-II HER Longitudinal Feedback 1 S. Prabhakar, D. Teytelman, J. Fox, A. Young, P. Corredoura, and R. Tighe Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, for the CLIC/CTF3 Collaboration http://cern.ch/clic-study LINAC 10 MO303 13 Sep 2010 The Key to CLIC Efficiency NC Linac for

More information

Commissioning the TAMUTRAP RFQ cooler/buncher. E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling

Commissioning the TAMUTRAP RFQ cooler/buncher. E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling Commissioning the TAMUTRAP RFQ cooler/buncher E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling In order to efficiently load ions into a Penning trap, the ion beam should be

More information

Klystron Tubes. Two forms of such a device, also called linear beam klystron, are given in the following figure.

Klystron Tubes. Two forms of such a device, also called linear beam klystron, are given in the following figure. Klystron Tubes Go to the klystron index The principle of velocity-variation, first used in Heil oscillators, was also used in other microwave amplifying and oscillating tubes. The application for klystron

More information

High-power klystrons. The benchmark in scientific research. State-of-the-art RF sources for your accelerator

High-power klystrons.  The benchmark in scientific research. State-of-the-art RF sources for your accelerator > High- klystrons The benchmark in scientific research State-of-the-art RF sources for your accelerator Thales has been one of the leading manufacturers of RF and microwave sources for decades, and is

More information

ANKA RF System - Upgrade Strategies

ANKA RF System - Upgrade Strategies ANKA RF System - Upgrade Strategies Vitali Judin ANKA Synchrotron Radiation Facility 2014-09 - 17 KIT University of the State Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V 18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V With its characteristics of power stability whatever the load, very fast response time when pulsed (via external modulated signal), low ripple,

More information

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement. Spear3 RF System RF Requirement Overall System High Power Components Operation and Control SPEAR 3 History 1996 Low emittance lattices explored 1996 SPEAR 3 proposed 11/97 SPEAR 3 design study team formed

More information

IOT RF Power Sources for Pulsed and CW Linacs

IOT RF Power Sources for Pulsed and CW Linacs LINAC 2004 Lübeck, August 16 20, 2004 IOT RF Power Sources H. Bohlen, Y. Li, Bob Tornoe Communications & Power Industries Eimac Division, San Carlos, CA, USA Linac RF source property requirements (not

More information

UNIT-3 Part A. 2. What is radio sonde? [ N/D-16]

UNIT-3 Part A. 2. What is radio sonde? [ N/D-16] UNIT-3 Part A 1. What is CFAR loss? [ N/D-16] Constant false alarm rate (CFAR) is a property of threshold or gain control devices that maintain an approximately constant rate of false target detections

More information

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V 14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V With its characteristics of power stability independent of the load, very fast response time when pulsed (via external modulated signal), low

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS Marc Delrieux, CERN, BE/OP/PS CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS CERN s Proton Synchrotron (PS) complex How are we involved? Review of some diagnostics applications

More information

OPERATIONAL EXPERIENCE AT J-PARC

OPERATIONAL EXPERIENCE AT J-PARC OPERATIONAL EXPERIENCE AT J-PARC Hideaki Hotchi, ) for J-PARC commissioning team ), 2), ) Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 39-95 Japan, 2) High Energy Accelerator Research Organization

More information

Beam instrumentation at the 1-MW proton J-PARC RCS

Beam instrumentation at the 1-MW proton J-PARC RCS Beam instrumentation at the 1-MW proton J-PARC RCS HB2014 54th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness and High Power Hadron Beams East Lansing, MI Nov.12, 2014 Kazami Yamamoto

More information

G. Pittá(*), S. Braccini TERA Foundation, Novara, Italy (*) Corresponding author.

G. Pittá(*), S. Braccini TERA Foundation, Novara, Italy (*) Corresponding author. Frascati Physics Series Vol. VVVVVV (xxxx), pp. 000-000 XX Conference Location, Date-start - Date-end, Year MATRIX: AN INNOVATIVE PIXEL IONIZATION CHAMBER FOR ON-LINE BEAM MONITORING IN HADRONTHERAPY G.

More information

Recent ITER-Relevant Gyrotron Tests

Recent ITER-Relevant Gyrotron Tests Journal of Physics: Conference Series Recent ITER-Relevant Gyrotron Tests To cite this article: K Felch et al 2005 J. Phys.: Conf. Ser. 25 13 View the article online for updates and enhancements. Related

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

TRIUMF CYCLOTRON MAIN MAGNET POWER SUPPLY REPLACEMENT

TRIUMF CYCLOTRON MAIN MAGNET POWER SUPPLY REPLACEMENT Discovery, accelerated 1 TRIUMF CYCLOTRON MAIN MAGNET POWER SUPPLY REPLACEMENT Arthur Leung High Power DC Systems 2018-10-05 TRIUMF stands for TRI University Meson Facility Founded by University of British

More information

The FAIR plinac RF Systems

The FAIR plinac RF Systems The FAIR plinac RF Systems Libera Workshop Sep. 2011 Gerald Schreiber Gerald Schreiber, GSI RF Department 2 (1) Overview GSI / FAIR (2) FAIR Proton Linear Accelerator "plinac" (3) plinac RF Systems (4)

More information

ESS Linac WP8 Radio Frequency Systems and Test Facilities

ESS Linac WP8 Radio Frequency Systems and Test Facilities ESS Linac WP8 Radio Frequency Systems and Test Facilities ESS TAC Lund, 8 July 2010 Roger Ruber (Uppsala University) for the ESS Linac RF Team Outline Work Package description Objectives Organization Technical

More information

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX T. Koseki, M. Ikegami, M. Tomizawa, Accelerator Laboratory, KEK, Tsukuba, Japan F. Noda, JAEA, Tokai, Japan Abstract The J-PARC (Japan Proton

More information

Empirical Model For ESS Klystron Cathode Voltage

Empirical Model For ESS Klystron Cathode Voltage Empirical Model For ESS Klystron Cathode Voltage Dave McGinnis 2 March 2012 Introduction There are 176 klystrons in the superconducting portion of ESS linac. The power range required spans a factor of

More information

RADIATION SAFETY SYSTEM OF THE B-FACTORY AT THE STANFORD LINEAR ACCELERATOR CENTER

RADIATION SAFETY SYSTEM OF THE B-FACTORY AT THE STANFORD LINEAR ACCELERATOR CENTER SLAC-PUB-7786 (August 1998) RADIATION SAFETY SYSTEM OF THE B-FACTORY AT THE STANFORD LINEAR ACCELERATOR CENTER J. C. Liu, X. S. Mao, W. R. Nelson, J. Seeman, D. Schultz, G. Nelson, P. Bong, B. Gray Stanford

More information

BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING

BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING A. Parravicini, G. Balbinot, J. Bosser, E. Bressi, M. Caldara, L. Lanzavecchia, M. Pullia, M. Spairani, CNAO Foundation, Pavia, Italy C. Biscari,

More information