Research Trends in Thin-film Transistors for Flexible Displays

Size: px
Start display at page:

Download "Research Trends in Thin-film Transistors for Flexible Displays"

Transcription

1 Research Trends in Thin-film Transistors for Flexible Displays Flexible displays are thin and light and are promising for use in smartphones and large sheet-type displays. They are kinds of the active-matrix type and liquid crystal or organic light-emitting diode (OLED) materials are used as display devices. Each pixel incorporates thinfilm transistors (TFTs) whose characteristics significantly affect those of the display itself. Several types of semiconductor can be used to make TFTs, and a lot of research and development has gone into improving their characteristics. This Article provides an overview of TFTs, outlines the current trends in flexible displays using TFTs, and describes drive methods that can be used for compensating the degradation in image quality caused by variations in the TFT characteristics. 1. Introduction 8K Super Hi-Vision (8K) is a form of ultra-highdefinition television (UHDTV) that creates a strong sense of presence through images having 16 times the number of pixels of Hi-Vision (HDTV) and 22.2-channel surround sound. A variety of research and development activities are now underway at NHK Science & Technology Research Laboratories (STRL) in preparation for the launch of 8K test broadcasting in For viewers to experience the full sense of being there that 8K can offer, it is preferable that large screens on the order of 100 inches be used, and for this reason, development is proceeding on thin and light sheet type displays for home use. For mobile use, the TV screens have to be even lighter and thinner, and flexible displays are seen as a way to meet these needs as well. The flexible displays being studied at present include those made of liquid crystal, organic light-emitting diode (OLED), and electronic paper. It must be kept in mind, however, that displays targeted for receiving broadcasts must be able to display moving pictures in color, and liquid crystal and/ or OLED is therefore preferable for this purpose. OLED, in particular, negates the need for backlighting, making it ideal for very thin displays, and for this reason there has been significant growth in research and development on OLED. Liquid crystal and OLED displays currently on the market normally use silicon-based thin-film transistors (TFTs) in their pixels. Flexible displays also need TFTs, but the TFTs in this case are made from a variety of semiconductor materials whose choice depends on the substrate used. In this Article, we begin by describing the basic structure and characteristics of TFTs and the types of TFTs used in flexible displays. Next, we outline the current trends in flexible displays using TFTs. Finally, we touch upon the drive methods of OLED displays for alleviating the deterioration in image quality caused by variations in the TFT characteristics. 2. Principle of TFT operation A TFT is a very thin type of field effect transistor (FET). As shown in Figure 1, TFTs can be classified according to the way in which the semiconductor and electrodes are positioned relative to each other. A bottom gate structure is one in which the gate electrode is positioned below the semiconductor layer, and a top gate structure is one in which it is positioned above the semiconductor layer. In addition, a bottom contact structure is one in which the source and drain electrodes are positioned below the semiconductor layer, and a top contact structure is one in which they are positioned above the semiconductor layer. For example, a structure in which the gate electrode is positioned below the semiconductor layer and the source and drain electrodes are positioned above the semiconductor layer is called a bottom-gate/top-contact structure. Since the fabrication process conditions will differ depending on the type of semiconductor material used, the TFT structure will for the most part depend on the type of TFT used. For example, amorphous-silicon (a- Si) and organic TFTs have a bottom gate structure, and polycrystalline silicon TFTs have a top gate structure. In Bottom Top Contact Top Contact Channel Drain Source Substrate insulator Channel Drain Source Substrate insulator Bottom Contact Channel Drain Source Substrate insulator Channel Drain Source Substrate insulator Figure 1: Basic TFT structures 10

2 Feature such TFTs, the semiconductor exhibits a high insulation value when no voltage is applied to the gate electrode. On the other hand, on applying voltage to the gate electrode, charge begins to accumulate near the interface between the insulator and semiconductor, and the electrical conductivity begins to rise. The drain current also begins to flow because of the voltage applied between the source and drain electrodes. Note that semiconductors are classified into n-type or p-type according to whether the accumulated charge is composed of electrons or holes, respectively. Now, let us describe the principle of operation of a TFT with a bottom-gate/top-contact structure (Figure 2). When the drain voltage (V ds ) is small, the relationship between the drain voltage and drain current (I ds ) is given by Eq. (1): W μ V g V t V ds V L ds I ds C i[ ]... (1) Drain W L Charge Source insulator Here, W is the transistor channel width (width of the source/drain electrode), L is the channel length (distance between the source and drain electrodes), C i is the electrostatic capacitance per unit area of gate insulator, μ is mobility (a measure indicating how easy it is for charges to move), V t is threshold voltage (the voltage at the boundary between the current flow and no current flow states), and V g is gate voltage. According to this equation, I ds increases monotonically with respect to V ds when V ds < (V g -V t ). On the other hand, I ds saturates when V ds is large: i.e., it takes on a fixed value when V ds > (V g -V t ): W I ds μc i V g V L t... (2) An example of TFT characteristics is shown in Figure 3. The drain current I ds increases as the drain voltage V ds increases and it eventually saturates at a fixed current determined by the gate voltage V g. In short, a fixed current can be made to flow regardless of V ds, which means that this voltage region can be used to operate the transistor as a fixed current source. Figure 3 depicts the linear region to the left of the dashed-dotted line and the saturation region to the right. The mobility μ in the saturation region can be determined as follows by performing partial differentiation with respect to V g on the square root of both sides of Eq. (2). μ L WC i I ds V g... (3) Similarly, the mobility μ in the linear region can be determined by performing partial differentiation with respect to V g on both sides of Eq. (1). Drain current IdsA Vg Vds Ids Figure 2: Current generated by applying voltage to TFT VgVt=15V Linear region Saturation region Drain voltage VdsV VgVt=10V VgVt=5V Figure 3: Example of TFT characteristics (drain current vs. drain voltage) The TFT characteristics can therefore be expressed in terms of parameters like μ, the ON/OFF ratio of the drain current I ds, and the threshold voltage V t. The temporal fluctuation of each of these characteristics is also an important parameter. 3. Role of TFTs in displays Most thin displays, including flexible ones, use active-matrix drive systems *1. In cathode ray tube (CRT) μ L I ds... (4) WC i V ds V g *1 A drive method that incorporates a transistor in each pixel to separately control the light emitted by that pixel. 11

3 displays, one point within the screen emits light for only one instant within one frame and emits no light for the remainder of that frame, as shown in Figure 4 (a). This is an impulse type of display in which a very large luminance is produced at the instant light is emitted. In contrast, an active-matrix display continuously emits light for a certain amount of time within one frame, as shown in Figure 4 (b). This is a hold type of display in which the light-emitting interval is longer than that of the impulse type and a large instantaneous luminance is unnecessary. A hold-type display system can be made by placing TFTs in each pixel. The basic equivalent circuit of one pixel in an activematrix OLED (AMOLED) display is shown in Figure 5. This equivalent circuit incorporates two TFTs and one storage capacitor. One of these TFTs is used for selecting that pixel (switching TFT), the other for driving the current needed by the OLED device to emit light (driving TFT). Writing in this circuit is performed by turning on the select signal of the switching TFT, inputting the data signal to the pixel, and writing that data to the storage capacitor. Here, the voltage written to the storage capacitor can control the driving TFT even while the select signal is off, which means that a prescribed current can be made to flow in the OLED device and be held in that state until the next write operation. The driving TFT can therefore control the intensity of light emitted by the OLED device. This means, however, that any variation in the characteristics of driving TFTs can give rise to pixel variations on the display. Consequently, circuits have been developed that can compensate for such variations in the driving TFT characteristics, and these are described in a following section. 4. Semiconductor materials for TFTs The semiconductor layers can be formed from amorphous-silicon (a-si), polysilicon (poly-si) or, more recently, oxide semiconductor. The main types of TFTs used in flexible displays are listed in Table Amorphous-silicon TFT (a-si TFT) The amorphous-silicon TFT (a-si TFT) uses noncrystalline silicon. It can be fabricated using plasma enhanced chemical vapor deposition (PECVD) *2 or sputtering *3 at a temperature under 350 C. Although its mobility is not that high, it can be formed over a large area, thereby making it the TFT of choice at present for large displays. In addition, although its characteristics change over time, they exhibit good uniformity over a large area. 4.2 Low-temperature polysilicon TFT (LTPS TFT) Polysilicon TFTs (poly-si TFTs) can be broadly divided into TFTs that use crystalline silicon, high-temperature *2 A film-formation method in which a gas including the base material is excited into a plasma state and a thin film is deposited onto a substrate through chemical reactions. *3 A film-formation method in which accelerated ions collide with film-forming material and the ejected material adheres to the substrate. (instantaneous luminance large) Emission intensity Emission intensity (instantaneous luminance small) 1 frame Time 1 frame Time (a) Impulse type (b) Hold type Figure 4: Light emission formats of pixels Select Data + Power supply Switching TFT Strage capacitor OLED Data Driving TFT Select ON Figure 5: Basic equivalent circuit of one pixel in an AMOLED display 12

4 Table 1: TFT Types a-si TFT LTPS TFT Oxide TFT Organic TFT Charge mobility (cm 2 /Vs) Large area Low-temperature formation Process temperature Features/issues > 100 (sputtering) (thermal processing by excimer laser) < 350 C around 600 C Large temporal fluctuation Large variation in in characteristics characteristics (sputtering) < 300 C Relatively stable < 5 (coating) < 100 C Unstable polysilicon TFTs fabricated in a high-temperature environment above 1000 C, and low-temperature polysilicon (LTPS) TFTs that can be formed at a lower substrate temperature (under 600 C). At present, the most common TFT for display use is the LTPS TFT in which an a-si film deposited by PECVD is crystallized using an excimer laser *4. This type of TFT has a mobility greater than 100 cm 2 /Vs, so it can also be used in peripheral circuits elsewhere on the substrate in addition to its use within pixels. This capability is conducive to making compact and low-cost displays. Using LTPS TFTs in large displays, however, faces issues, such as larger manufacturing equipment and non-uniform characteristics over a large area. 4.3 Oxide TFT A transparent oxide semiconductor (TOS) is a material with relatively high charge mobility that can be easily fabricated by sputtering. Research and development of TOS as a TFT for displays has made dramatic progress in recent years, and practical devices have been developed. Typical TOS materials include polycrystalline ZnO semiconductor and amorphous In-Ga-Zn-O (a-igzo) semiconductor; and a-igzo TFTs are now being used to make large displays. In addition, transparent amorphous oxide semiconductors (TAOS) on flexible plastic substrates have become a major topic of study 1). Being non-crystalline in nature, a-igzo TFTs show less variation than LTPS TFTs, and that makes them more promising for use in large-screen displays. Another recent development is oxide semiconductors that can be formed by a coating process; the aim here is raising production efficiency and lowering costs 2). 4.4 Organic TFT Organic semiconductors can be formed at room temperature by using a coating process. As such, they exhibit good flexibility compared with silicon and oxide semiconductor materials and can withstand the shock of being dropped. These properties make organic TFTs promising for flexible displays on plastic substrates. In particular, a solution containing the semiconductor material can be formed over a large area at low cost by screen printing *5 or ink-jet printing. Organic semiconductor materials can be broadly divided into two types according to the size of their molecules: smallmolecule organic semiconductors and polymer organic semiconductors. Pentacene is a typical small-molecule organic semiconductor. It can be formed into a thin film with relatively good characteristics by using the vacuum deposition method *6. On the other hand, polymer semiconductor materials, typified by polythiophene, can easily form a film by coating, but suffer from low mobility. For this reason, interest has arisen in developing small-molecule semiconductor materials that have a substitution group to make the material soluble 3). Organic TFT devices having a crystal particle diameter larger than ordinary organic semiconductors and featuring a mobility greater than 10 cm 2 /Vs have been reported 4), but forming such TFTs over a large enough area has been difficult. At NHK STRL, we have succeeded in developing an organic semiconductor formation method that works over a relatively large area while achieving a mobility of 1.3 cm 2 /Vs 5). The mobility and atmospheric stability of organic TFTs are issues that need to be addressed, and researchers are pursuing a variety of approaches to resolve them. 5. Substrate As described in the previous section, there is a close relationship between the semiconductor material used in the TFTs and the temperature of the fabrication process. Moreover, the heat resistance of the base substrate is also a concern. The main flexible substrates are listed in Table 2. Plastic substrates are low-cost, very flexible, and durable, but the table indicates that their heat resistance is low. Hence, although plastic substrates are seen as the most promising for use in flexible displays, what is needed is a more heat-resistant film that can be subjected to fabrication temperatures in excess of 200 C. Polyimide *7 is more heat resistant, but it is more expensive than ordinary plastic films and can t be used on the light emitting side of the device because its color is dark brown. Its suitability as a substrate has however increased with the advent of a transparent form. Thin sheet glass has high heat resistance. Furthermore, it is impermeable to oxygen and water vapor that can seriously shorten the lifetime of the OLED material, and it exhibits little elasticity during the fabrication process. These features make it conducive to forming highperformance devices. However, this sort of substrate is susceptible to fractures and requires special handling. *4 Ultraviolet pulse laser generated using rare and halogen gases. *5 A method for forming a pattern on a substrate by applying ink to a screen having a fine mesh in the shape to be formed and extruding the ink by using a squeegee type of tool. *6 A technique that evaporates material in a vacuum by applying heat or other means so that the vaporized material adheres to the surface of the substrate. *7 A polymer material with a robust molecular structure and high heat resistance. 13

5 Sheet glass with a thickness less than 100 μm is now under development, and this material is now being used as a substrate for flexible displays. Metallic foils such as stainless steel foil also have high heat resistance. Their application to flexible displays, however, faces problems such as high surface roughness and large stray capacitance. As a result, there have been few reports of displays using metal foil. Substrates composed of cellulose - a component of paper - are another possibility, and cellulose backplanes *8 combined with flexible organic TFTs are being studied with an eye to flexibility and environmental safety 6). 6. Fabrication methods for flexible TFT arrays More problems have to be dealt with when fabricating a flexible TFT array than when fabricating a TFT on a solid substrate such as glass. Special concern must be paid to handling, process temperature, and plastic substrate shrinkage. A support substrate such as glass or silicon can be used *8 A substrate on which TFTs are formed. Forming display devices such as OLED ones on this substrate completes the display. during the process of fabricating devices on a flexible substrate. Fabrication methods that use a support substrate can be broadly divided into direct formation and transfer methods, as shown in Figure 6. In the direct formation method, the target film is laminated to the support substrate via a temporary adhesive layer. Devices are then formed on the film, and the film is peeled from the support substrate. This method features a relatively easy fabrication process, but the TFT fabrication temperature is limited by the film s heat-resistance capacity, and shrinkage of the film substrate is substantial. The transfer method, in contrast, begins by forming devices on a temporary adhesive layer formed on a glass support substrate. The film substrate is then laminated to the top of this assembly, and the fabricated devices with the film are peeled from the support substrate. This method uses no film in the device formation stage, which means that the temperature at the time of fabrication does not affect the properties of the film. On the other hand, this method requires an appropriate balance between the adhesive strength of the temporary adhesive layer and that between the film and devices. Thus, to fabricate a good flexible TFT array, the chosen fabrication method must have the right combination of Table 2: Main types of flexible substrate Plastic High heat-resistant film Thin sheet glass Metallic foil Maximum process temperature 180 C > 300 C 600 C > 600 C Flatness Conductivity No No No Yes Optical transparency Gas (oxygen, water vapor) barrier property Flexibility Film Temporary adhesive layer Film lamination Device formation Support substrate Film Device formation Film lamination Peelng from support substrate Peelng from support substrate (a) Direct formation method (b) Transfer method Figure 6: Two main methods of fabricating flexible TFT array using plastic film 14

6 Feature semiconductor material (as described in section 4) and substrate material (as described in section 5). 7. Application to flexible displays Many flexible displays have been developed in which organic TFTs are formed on a plastic substrate. In particular, there has been a lot of research on flexible AMOLED displays that require no backlight and are even thinner and more flexible. Prototypes include, for example, of a 5.8-inch (diagonal) display 7) and a 4.1- inch rollable display 8) with a radius of curvature of 4 mm. However, organic TFTs do not have sufficient mobility for use in high-definition, high-brightness AMOLED displays that have large screens. As a result, studies on such TFTs are currently focused on smaller displays such as those made of electronic paper 9). The use of a-si TFTs in flexible AMOLED displays with a stainless-steel foil or plastic-film substrate has also been studied 10). However, like organic TFTs, the mobility of a-si TFTs is not high, and the prototypes have so far been restricted to small displays. Oxide TFTs, though, can be fabricated in a relatively easy manner using the sputtering method, and their mobility is at least one order of magnitude higher than that of a-si TFTs and organic TFTs. They consequently have potential for larger flexible displays. Flexible AMOLED displays ranging from 8 inches to 13 inches have been prepared using IGZO TFTs. Most of these displays use plastic substrates and are still small to medium sized; however, a prototype display with 2,160 scanning lines has been reported 11). The stability of oxide TFTs can be improved by using thermal processing at 300 C and higher. For this reason, high-performance TFT arrays are often made on heatresistant film like polyimide 12) 13) or by transferring a TFT array fabricated at high temperature on a glass substrate onto plastic film 11). High-temperature fabrication processes, however, tend to raise costs, and for this reason, research has been ongoing on forming IGZO TFTs at low temperatures 14). At NHK STRL, we have been studying low-temperature formation of IGZO TFTs. We have succeeded in fabricating TFT arrays at temperatures below 200 C by using pulsed DC sputtering *9 for depositing the gate insulator and semiconductor layer 15), and we plan to test the stability of these TFT arrays. Although we have not yet reached the prototyping stage, we have developed a self-aligned *10 fabrication method for oxide TFTs that decreases parasitic capacitance and produces short channels by irradiating from the back side of the substrate with an excimer laser. Moreover, we have devised a method for decreasing the parasitic capacitance beyond that of conventional TFTs 16). *9 A sputtering method that uses a pulse power supply to accelerate ions that go on to collide with the material used to form the film. High-frequency power supplies or DC power supplies are often used for this purpose. *10 A film-formation method that uses a previously formed device pattern as a mask to form and pattern more devices. This method can simplify the pattern alignment process and reduce the number of masks. Poly-Si TFTs, meanwhile, have been fabricated on thin sheet glass or metallic foil substrates that can withstand high temperatures 17). In addition, progress has been made on increasing the heat resistance of polyimide films, and a small display with high-mobility poly-si TFTs has been reported 18). The use of poly-si TFTs will enable driver circuits to be integrated and arranged on the periphery of the display surface, and this development should lead to more compact flexible displays. On the other hand, since heat-resistant plastic film is somewhat expensive, there is a need to lower its cost. As described above, various TFTs have been studied for use in flexible displays. Among these, the focus is now on using oxide TFTs to make high-performance displays that can show high-quality images. Organic TFTs, meanwhile, are very promising for extremely flexible displays such as rollable displays, but they have issues such as low mobility and low atmospheric stability. 8. High-picture-quality drive technology for AMO- LED displays As described earlier, a pixel in an AMOLED display is equipped with a switching TFT for selecting that pixel and a driving TFT for controlling the emission of light from an OLED device. In general, TFTs show variations in their mobility and threshold voltage, and these variations fluctuate over time in operation. Since driving TFTs determine the intensity of light emitted by the OLED devices, any variation that arises in the electrical characteristics of the TFTs can lead to non-uniform screen characteristics. A common approach to solving this problem is to make a pixel circuit that can compensate for this variation in the TFT characteristics. There have been many reports on displays that incorporate five or six TFTs in one pixel. The idea here is to compensate for unevenness in brightness due to variation in the driving TFTs through a procedure consisting of initialization, threshold correction, signal writing (mobility correction), and light emission. As an example, a threshold compensation circuit using five TFTs in one pixel is shown in Figure 7 (a) 19). In this circuit, GL1, GL2, and GL3 denote control signals for threshold correction, V 0 denotes the reference voltage used in threshold correction, V anode denotes the powersupply voltage for driving light emission from the OLED device, and V cath denotes the cathode voltage. As the name implies, the initialization period involves a process by which the voltage between the source and drain is made higher than the threshold voltage by having current flow through the driving TFT. Next, in the threshold correction and signal writing period, the source potential of the driving TFT is varied by putting it in a floating state and the voltage between the gate and source of the driving TFT is set to the threshold voltage V t. In this state, writing the data voltage of the signal to be displayed by that pixel will cause the voltage of the threshold-corrected data signal to be recorded in the capacitor C. Finally, in the light emission period, current is made to flow through the driving TFT by applying the threshold-corrected voltage between the gate and source (the voltage recorded in C) and the OLED 15

7 DATA GL1 GL2 GL3 V 0 V anode Initialization Threshold correction and signal writing Light emission Driving TFT DATA GL1 C GL2 OLED GL3 V cath (a) A pixel-variation compensation circuit using five TFTs DATA WS C A V cc (pulse) OLED Driving TFT B V cath WS V cc DATA Point A potential Point B potential Light emission V ofs V ofs Threshold correction preparation (b) A pixel-variation compensation circuit using two TFTs Figure 7: Examples of pixel-variation compensation circuits V t Threshold correction V sig Light emission Signal writing and mobility correction device is made to emit light. Next, the pixel circuit shown in Figure 7 (b) has the same basic configuration as the one shown in Figure 5 consisting of two TFTs and one storage capacitor, but it also has high-mobility poly-si TFTs and a variationcompensation circuit that can perform the operations described above at high speed 20). In this figure, WS denotes the pixel-selection signal, V cc denotes the voltage for driving the OLED device to emit light (varying this voltage enables it to be used for threshold correction as well), V cath denotes the cathode voltage, V ofs denotes the reference voltage used in the threshold correction, V sig denotes the data voltage of the signal to be displayed, and V t denotes the threshold voltage. In the threshold correction preparation period, point B takes on the same potential as V cc when it is set to a low value, the potential at point A simultaneously drops, and light stops being emitted. Then, in the state in which V ofs is applied to DATA, WS is turned ON and V ofs is written to the potential at point A. At this time, the voltage V gs between the gate and source of the driving TFT can be expressed as V gs = V ofs - V cc > V t. Next, in the threshold correction period, the potential at point B rises to a voltage (V ofs - V t) at which the voltage between points A and B (V gs) becomes the threshold voltage (V t), thereby correcting the threshold value. Then, in the signal writing and mobility correction period, the potential at point A takes on the data voltage to be displayed at that pixel, and at the same time, the mobility is corrected in accordance with the performance of the driving TFT. Finally, in the light emission period, the OLED device is driven in a state in which the threshold and mobility have been corrected. 9. Conclusion Good progress is being made in the research and development of various TFTs, and practical flexible displays are nearly at hand. TFT semiconductors for use in flexible displays mainly consist of the silicon, oxide, and organic types, and flexible TFT arrays using substrates appropriate for each type of semiconductor fabrication process have been manufactured. Among these different TFTs, oxide TFTs are promising for large-screen displays, since they feature relatively high charge mobility and make it easy to fabricate large-area TFT arrays. Many institutions have researched oxide TFTs, but issues remain such as the need to improve the devices stability and electrical characteristics. Furthermore, to develop TFTs for use in the ultra-flexible sheet-type displays of the future, suitable manufacturing processes will have to be established and new semiconductor materials centered on organic semiconductors will have to be developed. 16

8 Feature To build large sheet displays, we will need to develop new materials for electrodes, insulators, and substrates, as well as semiconductors materials, and study various drive methods. Going forward, NHK STRL is committed to developing key devices and to improving their characteristics, all with the aim of achieving practical large-screen sheet-type displays. (Toshihiro Yamamoto) References 1) K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono: Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors, Nature, Vol. 432, pp (2004) 2) G. H. Kim, H. S. Shin, K. H. Kim, W. J. Park, Y. J. Choi, B. D. Ahn and H. J. Kim: Fabrication of Solution Processed InGaZnO Thin Film Transistor for Active Matrix Backplane, SID Int. Symp. Digest Tech. Papers, Vol. 39, pp (2008) 3) S. K. Park, T. N. Jackson, J. E. Anthony and D. A. Mourey: High Mobility Solution Processed 6, 13- bis (Triisopropyl-Silylethynyl) Pentacene Organic Thin Film Transistors, Appl. Phys. Lett., Vol. 91, pp (2007) 4) J. Soeda, T. Uemura, T. Okamoto, C. Mitsui, M. Yamagishi and J. Takeya: Inch-Size Solution- Processed Single-Crystalline Films of High-Mobility Organic Semiconductors, Appl. Phys. Express, No. 6, pp (2013) 5) Y. Fujisaki, H. Ito, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, H. Furue, T. Kurita and N. Shimidzu: Direct Patterning of Solution-processed Organic Thin-film Transistor by Selective Control of Solution Wettability of Polymer Dielectric, Appl. Phys. Lett., Vol. 102, pp (2013) 6) Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi and N. Shimidzu: Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array, Advanced Functional Materials, 2013 DOI: /adfm adfm /abstract 7) Y. Nakajima, T. Takei, Y. Fujisaki, H. Fukagawa, M. Suzuki, G. Motomura, H. Sato, T. Yamamoto and S. Tokito: Improvement in Image Quality of a 5.8-in. OTFT-driven Flexible AMOLED Display, J. SID, Vol. 19, pp (2011) 8) M. Noda, N. Kobayashi, M. Katsuhara, A. Yumoto, S. Ushikura, R. Yasuda, N. Hirai, G. Yukawa, I. Yagi, K. Nomoto and T. Urabe: A Rollable AM-OLED Display Driven by OTFTs, SID Int. Symp. Digest Tech. Papers, Vol. 41, pp (2010) 9) N. Yoneya, H. Ono, Y. Ishii, K. Himori, N. Hirai, H. Abe, A. Yumoto, N. Kobayashi, K. Nomoto and T. Urabe: Flexible Electrophoretic Display Driven by Solution- Processed OTFTs, SID Int. Symp. Digest Tech. Papers, Vol. 42, pp (2011) 10) Y. T. Hong, G. Heiler, R. Kerr, A. Z. Kattamis, I. C. Cheng and S. Wagner: Amorphous Silicon Thin-Film Transistor Backplane on Stainless Steel Foil Substrate for AMOLEDs, SID Int. Symp. Digest Tech. Papers, Vol. 37, pp (2006) 11) S. Eguchi, H. Shinoda, T. Isa, H. Miyake, S. Kawashima and M. Takahashi: 13.5-inch Quad- FHD Top-emission OLED Display Using Crystalline- OS-FET, SID Int. Symp. Digest Tech. Papers, Vol. 43, pp (2012) 12) M. Noda, K. Teramoto, E. Fukumoto, T. Fukuda, K. Shimokawa, T. Saito, T. Tanikawa, M. Suzuki, G. Izumi, S. Kumon, T. Arai, T. Kamei, M. Kodate, S. No, T. Sasaoka and K. Nomoto: Oxide TFTs and Color Filter Array Technology for Flexible Top-emission White OLED Display, SID Int. Symp. Digest Tech. Papers, Vol. 43, pp (2012) 13) N. Saito, T. Ueda, K. Miura, S. Nakano, T. Sakano, Y. Maeda, H. Yamaguchi and I. Amemiya: inch WUXGA Flexible AMOLED Display Driven by Amorphous Oxide TFTs on Plastic Substrate, SID Int. Symp. Digest Tech. Papers, Vol. 44, pp (2013) 14) K. Miura, T. Ueda, S. Nakano, N. Saito, Y. Hara, K. Sugi, T. Sakano, H. Yamaguchi, I. Amemiya, K. Akimoto, H. Kameoka and J. Tonotani: Low-Temperature- Processed IGZO TFTs for Flexible AMOLED with Integrated Driver Circuits, SID Int. Symp. Digest Tech. Papers, Vol. 42, pp (2011) 15) T. Takei, Y. Nakajima, M. Nakata, G. Motomura, H. Tsuji, H. Fukagawa, T. Shimizu, Y. Fujisaki, T. Yamamoto and T. Kurita, Flexible Organic Light Emitting Diode Displays for Large-screen Sheettype TV Receivers, Proceedings of the ITE Annual Convention, 16-5 (2013) (in Japanese) 16) M. Nakata, H. Tsuji, Y. Fujisaki, H. Sato, Y. Nakajima, T. Takei, T. Yamamoto and T.Kurita: Fabrication Method for Self-aligned Bottom-gate Oxide Thinfilm Transistors by Utilizing Backside Excimer-laser Irradiation through Substrate, Appl. Phys. Lett., Vol. 103, pp (2013) 17) D. U. Jin, J. K. Jeong, H. S. Shin, M. K. Kim, T. K. Ahn, S. Y. Kwon, J. H. Kwack, T.W. Kim, Y. G. Mo and H. K. Chung: 5.6-inch Flexible Full Color Top Emission AMOLED Display on Stainless Steel Foil, SID Int. Symp. Digest Tech. Papers, Vol. 37, pp (2006) 18) S. An, J. Lee, Y. Kim, T. Kim, D. Jin, H. Min, H. Chung and S. S. Kim: 47.2: 2.8-inch WQVGA Flexible AMOLED Using High Performance Low Temperature Polysilicon TFT on Plastic Substrates, SID Int. Symp. Digest Tech. Papers, Vol. 41, pp (2010) 19) T. Tanabe, S. Amano, H. Miyake, A. Suzuki, R. Komatsu, J. Koyama, S. Yamazaki, K.Okazaki, M. Katayama, H. Matsukizono, Y. Kanzaki and T. Matsuo: New Threshold Voltage Compensation Pixel Circuits in 13.5-inch Quad Full High Definition OLED Display of Crystalline In-Ga-Zn-Oxide FETs, SID Int. Symp. Digest Tech. Papers Vol. 43, pp (2012) 20) T. Minami, K. Uchino, T. Sasaoka: 2Tr1C Pixel Drive Circuit, Organic EL Forum, Proceedings of the 8th Regular Meeting, S8-3, pp (2009) (in Japanese) 17

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED)

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) Chapter 2 Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) ---------------------------------------------------------------------------------------------------------------

More information

Design of Organic TFT Pixel Electrode Circuit for Active-Matrix OLED Displays

Design of Organic TFT Pixel Electrode Circuit for Active-Matrix OLED Displays JOURNAL OF COMPUTERS, VOL. 3, NO. 3, MARCH 2008 1 Design of Organic TFT Pixel Electrode Circuit for Active-Matrix Displays Aram Shin, Sang Jun Hwang, Seung Woo Yu, and Man Young Sung 1) Semiconductor and

More information

Comparative Analysis of Organic Thin Film Transistor Structures for Flexible E-Paper and AMOLED Displays

Comparative Analysis of Organic Thin Film Transistor Structures for Flexible E-Paper and AMOLED Displays Comparative Analysis of Organic Thin Film Transistor Structures for Flexible E-Paper and AMOLED Displays Linrun Feng, Xiaoli Xu and Xiaojun Guo ECS Trans. 2011, Volume 37, Issue 1, Pages 105-112. doi:

More information

New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for a Driving AMOLED

New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for a Driving AMOLED Journal of the Korean Physical Society, Vol. 56, No. 4, April 2010, pp. 1185 1189 New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for a Driving AMOLED C. L. Fan, Y. Y. Lin, B. S. Lin

More information

Chapter 1 Introduction --------------------------------------------------------------------------------------------------------------- 1.1 Overview of the Organic Light Emitting Diode (OLED) Displays Flat

More information

An a-ingazno TFT Pixel Circuit Compensating Threshold Voltage and Mobility Variations in AMOLEDs

An a-ingazno TFT Pixel Circuit Compensating Threshold Voltage and Mobility Variations in AMOLEDs 402 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 10, NO. 5, MAY 2014 An a-ingazno TFT Pixel Circuit Compensating Threshold Voltage and Mobility Variations in AMOLEDs Yongchan Kim, Jerzy Kanicki, and Hojin Lee,

More information

Liquid Crystal Display (LCD)

Liquid Crystal Display (LCD) Liquid Crystal Display (LCD) When coming into contact with grooved surface in a fixed direction, liquid crystal molecules line up parallelly along the grooves. When coming into contact with grooved surface

More information

Chapter 3 Evaluated Results of Conventional Pixel Circuit, Other Compensation Circuits and Proposed Pixel Circuits for Active Matrix Organic Light Emitting Diodes (AMOLEDs) -------------------------------------------------------------------------------------------------------

More information

Joint Development of Ultra-Bright, Inorganic EL Light-Emitting Materials. November 2, 2005 KURARAY CO., LTD.

Joint Development of Ultra-Bright, Inorganic EL Light-Emitting Materials. November 2, 2005 KURARAY CO., LTD. Joint Development of Ultra-Bright, Inorganic EL Light-Emitting Materials November 2, 2005 KURARAY CO., LTD. Sales Trends of Display-related Products (Kuraray (standalone)) FY1994 FY1999 FY2004 Sales Ratio

More information

Technology White Paper Plasma Displays. NEC Technologies Visual Systems Division

Technology White Paper Plasma Displays. NEC Technologies Visual Systems Division Technology White Paper Plasma Displays NEC Technologies Visual Systems Division May 1998 1 What is a Color Plasma Display Panel? The term Plasma refers to a flat panel display technology that utilizes

More information

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits Stanislav Loboda R&D engineer The world-first small-volume contract manufacturing for plastic TFT-arrays

More information

COMPENSATION FOR THRESHOLD INSTABILITY OF THIN-FILM TRANSISTORS

COMPENSATION FOR THRESHOLD INSTABILITY OF THIN-FILM TRANSISTORS COMPENSATION FOR THRESHOLD INSTABILITY OF THIN-FILM TRANSISTORS by Roberto W. Flores A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for

More information

Sep 09, APPLICATION NOTE 1193 Electronic Displays Comparison

Sep 09, APPLICATION NOTE 1193 Electronic Displays Comparison Sep 09, 2002 APPLICATION NOTE 1193 Electronic s Comparison Abstract: This note compares advantages and disadvantages of Cathode Ray Tubes, Electro-Luminescent, Flip- Dot, Incandescent Light Bulbs, Liquid

More information

1. Publishable summary

1. Publishable summary 1. Publishable summary 1.1. Project objectives. The target of the project is to develop a highly reliable high brightness conformable low cost scalable display for demanding applications such as their

More information

Display Technologies. Corning: The Technology Behind the Glass

Display Technologies. Corning: The Technology Behind the Glass Display Technologies Corning: The Technology Behind the Glass Dr. David Chen Director, Application Engineering and Asia Commercial Technology Taiwan Corning Display Technologies Taiwan June 13, 2008 Forward

More information

Page 1 of 8 Main > Electronics > Computers How OLEDs Work by Craig Freudenrich, Ph.D. Introduction to How OLEDs Work Imagine having a high-definition TV that is 80 inches wide and less than a quarter-inch

More information

A novel TFT-OLED integration for OLED-independent pixel programming in amorphous-si AMOLED pixels

A novel TFT-OLED integration for OLED-independent pixel programming in amorphous-si AMOLED pixels A novel TFT-OLED integration for OLED-independent pixel programming in amorphous-si AMOLED pixels Bahman Hekmatshoar Alex Z. Kattamis Kunigunde Cherenack Sigurd Wagner James C. Sturm Abstract The direct

More information

The Technological Trends of Future AMOLED

The Technological Trends of Future AMOLED Invited Paper The Technological Trends of Future AMOLED Jong hyuk Lee*, Hye Dong Kim, Chang Ho Lee, Hyun-Joong Chung, Sung Chul Kim, and Sang Soo Kim Technology Center, Samsung Mobile Display Co., LTD

More information

VARIOUS DISPLAY TECHNOLOGIESS

VARIOUS DISPLAY TECHNOLOGIESS VARIOUS DISPLAY TECHNOLOGIESS Mr. Virat C. Gandhi 1 1 Computer Department, C. U. Shah Technical Institute of Diploma Studies Abstract A lot has been invented from the past till now in regards with the

More information

TipatOr. Liquid metal switch (LMS) display technology. Avi Fogel

TipatOr. Liquid metal switch (LMS) display technology. Avi Fogel TipatOr Liquid metal switch (LMS) display technology Avi Fogel 972-52-5702938 avifog@gmail.com Who is behind TipatOr TipatOr emerged from a merger of 2 expert groups in the fields of MEMS and Displays

More information

FLEX2017 June, Monterey, USA Dr Mike Cowin, CMO, SmartKem.

FLEX2017 June, Monterey, USA Dr Mike Cowin, CMO, SmartKem. FLEX2017 June, Monterey, USA Dr Mike Cowin, CMO, SmartKem. FLEX2017 June, Monterey, USA Dr Mike Cowin, CMO, SmartKem. EU H2020 FLEXTRANs Grant Objectives A 24 month project (started September 2016) (Grant

More information

Scalable self-aligned active matrix IGZO TFT backplane technology and its use in flexible semi-transparent image sensors. Albert van Breemen

Scalable self-aligned active matrix IGZO TFT backplane technology and its use in flexible semi-transparent image sensors. Albert van Breemen Scalable self-aligned active matrix IGZO TFT backplane technology and its use in flexible semi-transparent image sensors Albert van Breemen Image sensors today 1 Dominated by silicon based technology on

More information

AMOLED Manufacturing Process Report SAMPLE

AMOLED Manufacturing Process Report SAMPLE AMOLED Manufacturing Process Report SAMPLE 2018 AMOLED Manufacturing Process Report The report analyzes the structure and manufacturing process by dividing AMOLED into small & medium-sized rigid OLED,

More information

Lecture Flat Panel Display Devices

Lecture Flat Panel Display Devices Lecture 1 6.976 Flat Panel Display Devices Outline Overview of 6.976 Overview Flat Panel Display Devices Course website http://hackman.mit.edu Reading Assignment: Article by Alt and Noda, IBM Journal of

More information

The Company. A leading OLED player

The Company. A leading OLED player The Company A leading OLED player Novaled is the company to trade with, work for and invest in. Our company focuses on proprietary organic materials and complementary innovative technologies for superior

More information

IOSR Journal of Engineering (IOSRJEN) ISSN (e): , ISSN (p): Volume 2, PP Organic Led. Figure 1.

IOSR Journal of Engineering (IOSRJEN) ISSN (e): , ISSN (p): Volume 2, PP Organic Led. Figure 1. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Volume 2, PP 46-51 www.iosrjen.org Organic Led Prof.Manoj Mishra 1, Sweety Vade 2,Shrutika Sawant 3, Shriwari Shedge 4, Ketaki

More information

ORGANIC light-emitting diode (OLED) displays are

ORGANIC light-emitting diode (OLED) displays are 100 IEEE/OSA JOURNAL OF DISPLAY TECHNOLOGY, VOL. 1, NO. 1, SEPTEMBER 2005 A New Pixel Circuit for Driving Organic Light-Emitting Diode With Low Temperature Polycrystalline Silicon Thin-Film Transistors

More information

[1.9] AMOLED 공정 Introduction OLED Materials Patterning Process Process Equipments

[1.9] AMOLED 공정 Introduction OLED Materials Patterning Process Process Equipments [1.9] AMOLED 공정 1.9.1. Introduction 1.9.2. OLED Materials 1.9.3. Patterning Process 1.9.4. Process Equipments OLED : Organic Light Emitting Diode Organic EL : Organic Electroluminescent 재료및공정 재료의발광메카니즘

More information

Development of OLED Lighting Applications Using Phosphorescent Emission System

Development of OLED Lighting Applications Using Phosphorescent Emission System Development of OLED Lighting Applications Using Phosphorescent Emission System Kazuhiro Oikawa R&D Department OLED Lighting Business Center KONICA MINOLTA ADVANCED LAYERS, INC. October 10, 2012 Outline

More information

Phosphorescent OLED Technologies: The Next Wave. Plastic Electronics Conference Oct 9, 2012

Phosphorescent OLED Technologies: The Next Wave. Plastic Electronics Conference Oct 9, 2012 Phosphorescent OLED Technologies: The Next Wave Plastic Electronics Conference Oct 9, 2012 UDC Company Focus IP innovator, technology developer, patent licensor and materials supplier for the rapidly growing

More information

Organic light emitting diode (OLED) displays

Organic light emitting diode (OLED) displays Ultra-Short Pulse Lasers Enable Precision Flexible OLED Cutting FLORENT THIBAULT, PRODUCT LINE MANAGER, HATIM HALOUI, APPLICATION MANAGER, JORIS VAN NUNEN, PRODUCT MARKETING MANAGER, INDUSTRIAL PICOSECOND

More information

FASwitch - A MEMS Display Backplane Manufactured by Flex Circuit Methods

FASwitch - A MEMS Display Backplane Manufactured by Flex Circuit Methods FASwitch - A MEMS Display Backplane Manufactured by Flex Circuit Methods Presenter: Dr. Nicholas F. Pasch Rolltronics Corporation 750 Menlo Ave. Menlo Park, CA 94025 npasch@rolltronics.com Introduction

More information

:: Reduce needs for heat dissipation components. :: Extend battery life in mobile products. :: Save power and reduce heat generation in TVs

:: Reduce needs for heat dissipation components. :: Extend battery life in mobile products. :: Save power and reduce heat generation in TVs UniversalPHOLED Technology and Materials UniversalPHOLED Phosphorescent OLED technology and materials offer record-breaking performance to bring competitive advantages to your OLED display and lighting

More information

Development of OLED Lighting Panel with World-class Practical Performance

Development of OLED Lighting Panel with World-class Practical Performance 72 Development of OLED Lighting Panel with World-class Practical Performance TAKAMURA MAKOTO *1 TANAKA JUNICHI *2 MORIMOTO MITSURU *2 MORI KOICHI *3 HORI KEIICHI *4 MUSHA MASANORI *5 Using its proprietary

More information

12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors

12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors 12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors Jae Kyeong Jeong (SID Member) Jong Han Jeong Hui Won Yang Tae Kyung Ahn Minkyu Kim Kwang Suk Kim Bon Seog Gu Hyun-Joong Chung Jin Seong

More information

FIRST CALL FOR PAPERS SID Society for Information Display INTERNATIONAL SYMPOSIUM, SEMINAR & EXHIBITION. May 19 24, 2013

FIRST CALL FOR PAPERS SID Society for Information Display INTERNATIONAL SYMPOSIUM, SEMINAR & EXHIBITION. May 19 24, 2013 FIRST CALL FOR PAPERS SID 2013 Society for Information Display INTERNATIONAL SYMPOSIUM, SEMINAR & EXHIBITION May 19 24, 2013 VANCOUVER CONVENTION CENTER VANCOUVER, BRITISH COLUMBIA, CANADA SID SOCIETY

More information

(12) United States Patent (10) Patent No.: US 6,885,157 B1

(12) United States Patent (10) Patent No.: US 6,885,157 B1 USOO688.5157B1 (12) United States Patent (10) Patent No.: Cok et al. (45) Date of Patent: Apr. 26, 2005 (54) INTEGRATED TOUCH SCREEN AND OLED 6,504,530 B1 1/2003 Wilson et al.... 345/173 FLAT-PANEL DISPLAY

More information

Flexible Flat Panel Display Technology

Flexible Flat Panel Display Technology 1 Flexible Flat Panel Display Technology Gregory P. Crawford Division of Engineering, Brown University, Providence RI 1.1 Introduction The manufacturing of flat panel displays is a dynamic and continuously

More information

projectors, head mounted displays in virtual or augmented reality use, electronic viewfinders

projectors, head mounted displays in virtual or augmented reality use, electronic viewfinders Beatrice Beyer Figure 1. (OLED) microdisplay with a screen diagonal of 16 mm. Figure 2. CMOS cross section with OLED on top. Usually as small as fingernails, but of very high resolution Optical system

More information

P_02_1011:A Novel Pixel Circuit to Compensate for the Degradation of OLED Luminance in High-Resolution AMOLED Displays

P_02_1011:A Novel Pixel Circuit to Compensate for the Degradation of OLED Luminance in High-Resolution AMOLED Displays P_0_1011:A Novel Pixel Circuit to Compensate for the Degradation of OLED Luminance in High-Resolution AMOLED Displays National Cheng Kung University Department of Electrical Engineering IDBA Lab. Advisor..

More information

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays Data Supply Voltage Reduction Sche for Low-Power AMOLED Displays Hyoungsik Nam and Hoon Jeong This paper donstrates a new driving sche that allows reducing the supply voltage of data drivers for lowpower

More information

Organic light emitting diodes for display technology

Organic light emitting diodes for display technology Organic light emitting diodes for display technology Shamna Shamsudeen MScTI - ZITI-Heidelberg University OLED ZITI, Uni Heidelberg Page1 What s Light Light: Visible part of EM spectra. Ref:[1] Thermoluminescence:

More information

8.1: Advancements and Outlook of High Performance Active-Matrix OLED Displays

8.1: Advancements and Outlook of High Performance Active-Matrix OLED Displays 8.1: Advancements and Outlook of High Performance Active-Matrix OLED Displays Takatoshi Tsujimura *, Wei Zhu, Seiichi Mizukoshi, Nobuyuki Mori, Koichi Miwa, Shinya Ono, Yuichi Maekawa, Kazuyoshi Kawabe,

More information

Organic Light Emitting Diodes

Organic Light Emitting Diodes ISSN: 2278 0211 (Online) Organic Light Emitting Diodes Badisa Sai Ram Krsihna Final Year B.Tech, Dept. of ECE, KL University, Vaddeswaram, AP, India Angadi Suresh Associate Professor B.Tech, Dept. of ECE,

More information

Display Technologies CMSC 435. Slides based on Dr. Luebke s slides

Display Technologies CMSC 435. Slides based on Dr. Luebke s slides Display Technologies CMSC 435 Slides based on Dr. Luebke s slides Recap: Transforms Basic 2D Transforms: Scaling, Shearing, Rotation, Reflection, Composition of 2D Transforms Basic 3D Transforms: Rotation,

More information

AM-OLED pixel circuits suitable for TFT array testing. Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

AM-OLED pixel circuits suitable for TFT array testing. Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich RT0565 Engineering Technology 4 pages Research Report February 3, 2004 AM-OLED pixel circuits suitable for TFT array testing Y. Sakaguchi, D. Nakano IBM Research, Tokyo Research Laboratory IBM Japan, Ltd.

More information

In-Cell Projected Capacitive Touch Panel Technology

In-Cell Projected Capacitive Touch Panel Technology 1384 INVITED PAPER Special Section on Electronic Displays In-Cell Projected Capacitive Touch Panel Technology Yasuhiro SUGITA a), Member, Kazutoshi KIDA, and Shinji YAMAGISHI, Nonmembers SUMMARY We describe

More information

The Flat Panel Display Paradigm: Successful Implementation of Microelectronic Processes on Gigantic Wafers

The Flat Panel Display Paradigm: Successful Implementation of Microelectronic Processes on Gigantic Wafers The Flat Panel Display Paradigm: Successful Implementation of Microelectronic Processes on Gigantic Wafers Dr. Zvi Yaniv Applied Nanotech, Inc. 3006 Longhorn Blvd., Suite 107 Austin, TX 78758 Phone 512-339-5020

More information

Development and Mass-Production of an OLED Lighting Panel - Most-Promising Next-Generation Lighting -

Development and Mass-Production of an OLED Lighting Panel - Most-Promising Next-Generation Lighting - Development and Mass-Production of an OLED Lighting Panel - Most-Promising Next-Generation Lighting - 47 KEIICHI HORI *1 JOJI SUZUKI *2 MAKOTO TAKAMURA *3 JUNICHI TANAKA *4 TSUTOMU YOSHIDA *5 YOSHITAKA

More information

An Overview of OLED Display Technology

An Overview of OLED Display Technology page:1 An Overview of OLED Display Technology Homer Antoniadis OSRAM Opto Semiconductors Inc. San Jose, CA page:2 Outline! OLED device structure and operation! OLED materials (polymers and small molecules)!

More information

Solution-based transistor matrix

Solution-based transistor matrix 18 PRINTED ELECTRONICS Solution-based transistor matrix A groundbreaking new technology is making it far more cost-effective to produce the electronic control unit of liquid crystal displays. At the same

More information

Performance Comparison of Bilayer and Multilayer OLED

Performance Comparison of Bilayer and Multilayer OLED Performance Comparison of Bilayer and Multilayer OLED Akanksha Uniyal, Poornima Mittal * Department of Electronics and Communication School of Engineering and Technology Graphic Era University, Dehradun-248002,

More information

Research & Development of Surface-Discharge Color Plasma Display Technologies. Tsutae Shinoda

Research & Development of Surface-Discharge Color Plasma Display Technologies. Tsutae Shinoda esearch & Development of Surface-Discharge Color Plasma Display Technologies Tsutae Shinoda Peripheral System Laboratories,Fujitsu Laboratories Ltd. 64, Nishiwaki, Ohkubo-cho, Akashi 674-8555 Japan Abstract

More information

OLED Status quo and our position

OLED Status quo and our position OLED Status quo and our position Information Day 2013 A Deep Dive into the LC&OLED Business Dr. Udo Heider Vice President OLED Darmstadt, Germany June 26, 2013 Disclaimer Remarks All comparative figures

More information

ADVANCEMENTS IN GRAVURE TECHNOLOGY: FOR SUSTAINABILITY AND GROWTH PRINTED LIGHTING TECHNOLOGY

ADVANCEMENTS IN GRAVURE TECHNOLOGY: FOR SUSTAINABILITY AND GROWTH PRINTED LIGHTING TECHNOLOGY ADVANCEMENTS IN GRAVURE TECHNOLOGY: FOR SUSTAINABILITY AND GROWTH PRINTED LIGHTING TECHNOLOGY Marc Chason Marc Chason and Associates, Inc. marcchason@sbcglobal.net January 17, 2012 Logic Driven Value Chain

More information

High-resolution screens have become a mainstay on modern smartphones. Initial. Displays 3.1 LCD

High-resolution screens have become a mainstay on modern smartphones. Initial. Displays 3.1 LCD 3 Displays Figure 3.1. The University of Texas at Austin s Stallion Tiled Display, made up of 75 Dell 3007WPF LCDs with a total resolution of 307 megapixels (38400 8000 pixels) High-resolution screens

More information

Lecture Flat Panel Display Devices

Lecture Flat Panel Display Devices Lecture 13 6.111 Flat Panel Display Devices Outline Overview Flat Panel Display Devices How do Displays Work? Emissive Displays Light Valve Displays Display Drivers Addressing Schemes Display Timing Generator

More information

Digital time-modulation pixel memory circuit in LTPS technology

Digital time-modulation pixel memory circuit in LTPS technology Digital time-modulation pixel memory circuit in LTPS technology Szu-Han Chen Ming-Dou Ker Tzu-Ming Wang Abstract A digital time-modulation pixel memory circuit on glass substrate has been designed and

More information

An Introduction to OLED/TFT Device Model and FPD Design Flow

An Introduction to OLED/TFT Device Model and FPD Design Flow An Introduction to OLED/TFT Device Model and FPD Design Flow Lifeng Wu, Huada Empyrean Software MOS-AK Beijing Compact Modeling Workshop,June 15-16, 2018 1 Outline LCD and OLED Flat Panel Display (FPD)

More information

P I SCALE Creating an Open Access Flexible O L E D P ilo t L in e S e r vic e

P I SCALE Creating an Open Access Flexible O L E D P ilo t L in e S e r vic e P I SCALE Creating an Open Access Flexible O L E D P ilo t L in e S e r vic e Pavel Kudlacek pavel.kudlacek@tno.nl P I - SCALE for 2017Flex 1 Lighting c h a lle n g e L ig h t in g c h a lle n g e At least

More information

SINCE more than two decades, Organic Light Emitting

SINCE more than two decades, Organic Light Emitting 1672 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 12, NO. 12, DECEMBER 2016 Impact of Long-Term Stress on the Light Output of a WRGB AMOLED Display Frédérique Chesterman, Bastian Piepers, Tom Kimpe, Patrick De

More information

Basically we are fooling our brains into seeing still images at a fast enough rate so that we think its a moving image.

Basically we are fooling our brains into seeing still images at a fast enough rate so that we think its a moving image. Basically we are fooling our brains into seeing still images at a fast enough rate so that we think its a moving image. The formal definition of a Moving Picture... A sequence of consecutive photographic

More information

THE DEMAND for display technologies that are ultrathin

THE DEMAND for display technologies that are ultrathin IEEE TRANSACTIONS ON ELECTRON DEVICES 1 A Highly Sensitive Capacitive Touch Sensor Integrated on a Thin-Film-Encapsulated Active-Matrix OLED for Ultrathin Displays Sunkook Kim, Woong Choi, Woojin Rim,

More information

(12) United States Patent

(12) United States Patent USOO7023408B2 (12) United States Patent Chen et al. (10) Patent No.: (45) Date of Patent: US 7,023.408 B2 Apr. 4, 2006 (54) (75) (73) (*) (21) (22) (65) (30) Foreign Application Priority Data Mar. 21,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION User-interactive electronic-skin for instantaneous pressure visualization Chuan Wang 1,2,3, David Hwang 1,2,3, Zhibin Yu 1,2,3, Kuniharu Takei 1,2,3, Junwoo Park 4, Teresa Chen 4, Biwu Ma 3,4, and Ali

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O285825A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0285825A1 E0m et al. (43) Pub. Date: Dec. 29, 2005 (54) LIGHT EMITTING DISPLAY AND DRIVING (52) U.S. Cl....

More information

These are used for producing a narrow and sharply focus beam of electrons.

These are used for producing a narrow and sharply focus beam of electrons. CATHOD RAY TUBE (CRT) A CRT is an electronic tube designed to display electrical data. The basic CRT consists of four major components. 1. Electron Gun 2. Focussing & Accelerating Anodes 3. Horizontal

More information

Advances in Roll-to-Roll Imprint Lithography for Display Applications Using Self Aligned Imprint Lithography. John G Maltabes HP Labs

Advances in Roll-to-Roll Imprint Lithography for Display Applications Using Self Aligned Imprint Lithography. John G Maltabes HP Labs Advances in Roll-to-Roll Imprint Lithography for Display Applications Using Self Aligned Imprint Lithography John G Maltabes HP Labs Outline Introduction Roll to Roll Challenges and Benefits HP Labs Roll

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [2007-2008-2009 Yonsei University Central Library] On: 25 September 2009 Access details: Access Details: [subscription number 907680128] Publisher Taylor & Francis Informa

More information

III... III: III. III.

III... III: III. III. (19) United States US 2015 0084.912A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0084912 A1 SEO et al. (43) Pub. Date: Mar. 26, 2015 9 (54) DISPLAY DEVICE WITH INTEGRATED (52) U.S. Cl.

More information

Silole Derivative Properties in Organic Light Emitting Diodes

Silole Derivative Properties in Organic Light Emitting Diodes Silole Derivative Properties in Organic Light Emitting Diodes E. Duncan MLK HS Physics Teacher Mentors: Prof. Bernard Kippelen & Dr. Benoit Domercq Introduction Theory Methodology Results Conclusion Acknowledgements

More information

A Luminance Adjusting Algorithm for High Resolution and High Image Quality AMOLED Displays of Mobile Phone Applications

A Luminance Adjusting Algorithm for High Resolution and High Image Quality AMOLED Displays of Mobile Phone Applications H.-J. In et al.: A uminance Adjusting Algorithm for High Resolution and High Image Quality AMOED Displays of Mobile Phone Applications A uminance Adjusting Algorithm for High Resolution and High Image

More information

3012 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 11, NOVEMBER 2010

3012 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 11, NOVEMBER 2010 3012 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 11, NOVEMBER 2010 An Advanced External Compensation System for Active Matrix Organic Light-Emitting Diode Displays With Poly-Si Thin-Film Transistor

More information

ID C10C: Flat Panel Display Basics

ID C10C: Flat Panel Display Basics ID C10C: Flat Panel Display Basics Renesas Electronics America Inc. Robert Dunhouse, Display BU Engineering Manager 12 October 2010 Revision 1.1 Robert F. Dunhouse, Jr. Displays Applications Engineering

More information

AMOLED compensation circuit patent analysis

AMOLED compensation circuit patent analysis IHS Electronics & Media Key Patent Report AMOLED compensation circuit patent analysis AMOLED pixel driving circuit with threshold voltage and IR-drop compensation July 2013 ihs.com Ian Lim, Senior Analyst,

More information

P-224: Damage-Free Cathode Coating Process for OLEDs

P-224: Damage-Free Cathode Coating Process for OLEDs P-224: Damage-Free Cathode Coating Process for OLEDs Shiva Prakash DuPont Displays, 6 Ward Drive, Santa Barbara, CA 937, USA Abstract OLED displays require the growth of inorganic films over organic films.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Sung USOO668058OB1 (10) Patent No.: US 6,680,580 B1 (45) Date of Patent: Jan. 20, 2004 (54) DRIVING CIRCUIT AND METHOD FOR LIGHT EMITTING DEVICE (75) Inventor: Chih-Feng Sung,

More information

High Power Efficiencies at Record Lifetimes: NOVALED s PIN-OLEDs

High Power Efficiencies at Record Lifetimes: NOVALED s PIN-OLEDs High Power Efficiencies at Record Lifetimes: NOVALED s PIN-OLEDs Harald Gross, Jan Blochwitz-Nimoth, Jan Birnstock, Ansgar Werner, Michael Hofmann, Philipp Wellmann, Tilmann Romainczyk, Sven Murano, Andrea

More information

Chapter 2 Circuits and Drives for Liquid Crystal Devices

Chapter 2 Circuits and Drives for Liquid Crystal Devices Chapter 2 Circuits and Drives for Liquid Crystal Devices Hideaki Kawakami 2.1 Circuits and Drive Methods: Multiplexing and Matrix Addressing Technologies Hideaki Kawakami 2.1.1 Introduction The liquid

More information

Characterization and minimization of flicker in silicon light valves

Characterization and minimization of flicker in silicon light valves JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 2 15 JANUARY 2001 Characterization and minimization of flicker in silicon light valves H. C. Huang, a) P. W. Cheng, and H. S. Kwok Department of Electrical

More information

CNT FIELD EMISSION CATHODE CATALOG. XinRay Systems Inc. April 2014

CNT FIELD EMISSION CATHODE CATALOG. XinRay Systems Inc. April 2014 CNT FIELD EMISSION CATHODE CATALOG April 2014 Version 1 1 TABLE OF CONTENTS: 1. ABBREVIATIONS... 2 2. INTRODUCTION... 3 3. PRODUCT AT A GLANCE... 6 4. CARBON NANOTUBE (CNT) CATHODE INFORMATION CHART*...

More information

the Most Popular Display Technology?

the Most Popular Display Technology? Why is LCD the Most Popular Display Technology? History of Liquid Crystal Display (LCD) As early as 1889, scientists discovered that chemicals such as cholesteryl benzoate, when melted into liquid form,

More information

Flat Panel Displays: LCD Technologies and Trends

Flat Panel Displays: LCD Technologies and Trends Flat Panel Displays: LCD Technologies and Trends Robert Dunhouse, Sr. Engineering Manager, Display BU Class ID: 4C01B Renesas Electronics America Inc. Robert F. Dunhouse, Jr. Sr. Engineering Manager, Display

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Sanford et al. USOO6734636B2 (10) Patent No.: (45) Date of Patent: May 11, 2004 (54) OLED CURRENT DRIVE PIXEL CIRCUIT (75) Inventors: James Lawrence Sanford, Hopewell Junction,

More information

Types of CRT Display Devices. DVST-Direct View Storage Tube

Types of CRT Display Devices. DVST-Direct View Storage Tube Examples of Computer Graphics Devices: CRT, EGA(Enhanced Graphic Adapter)/CGA/VGA/SVGA monitors, plotters, data matrix, laser printers, Films, flat panel devices, Video Digitizers, scanners, LCD Panels,

More information

Advanced Display Manufacturing Technology

Advanced Display Manufacturing Technology Advanced Display Manufacturing Technology John Busch Vice President, New Business Development Display and Flexible Technology Group September 28, 2017 Safe Harbor This presentation contains forward-looking

More information

Technology Overview LTCC

Technology Overview LTCC Sheet Code RFi0604 Technology Overview LTCC Low Temperature Co-fired Ceramic (LTCC) is a multilayer ceramic substrate technology that allows the realisation of multiple embedded passive components (Rs,

More information

Alien Technology Corporation White Paper. Fluidic Self Assembly. October 1999

Alien Technology Corporation White Paper. Fluidic Self Assembly. October 1999 Alien Technology Corporation White Paper Fluidic Self Assembly October 1999 Alien Technology Corp Page 1 Why FSA? Alien Technology Corp. was formed to commercialize a proprietary technology process, protected

More information

ORGANIC LIGHT EMITTING DIODES (OLEDS): TECHNOLOGIES AND GLOBAL MARKETS

ORGANIC LIGHT EMITTING DIODES (OLEDS): TECHNOLOGIES AND GLOBAL MARKETS ORGANIC LIGHT EMITTING DIODES (OLEDS): TECHNOLOGIES AND GLOBAL MARKETS SMC069D September 2015 Gupta A. S. Project Analyst ISBN: 1-62296-133-1 BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481

More information

Research Trends of Flexible Liquid Crystal Displays

Research Trends of Flexible Liquid Crystal Displays Research Trends of Flexible Liquid Crystal Displays Min Young Jin Research Institute of Information Displays Hanyang university Seoul 133-791 Korea minyjin@paran.com Jae-Hoon Kim Department of Electrical

More information

Design of Active Matrix Micro-LED Display with CCCS Pixel Circuits

Design of Active Matrix Micro-LED Display with CCCS Pixel Circuits Design of Active Matrix Micro-LED Display with CCCS Pixel Circuits Ke ZHANG 1, 2, Zhaojun LIU* 1, 2 and Hoi-Sing KWOK* 1 1 State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The

More information

A Review- on Different Types of Displays

A Review- on Different Types of Displays , pp.327-332 http://dx.doi.org/10.14257/ijmue.2016.11.8.33 A Review- on Different Types of Displays Shubham Shama 1, Udita Jindal 2, Mehul Goyal 3, Sahil Sharma 4 and Vivek Goyal 5 1-4Department of ECE,

More information

Monolithic CMOS Power Supply for OLED Display Driver / Controller IC

Monolithic CMOS Power Supply for OLED Display Driver / Controller IC Monolithic CMOS Power Supply for OLED Display Driver / Controller IC Cheung Fai Lee SOLOMON Systech Limited Abstract This paper presents design considerations of a power supply IC to meet requirements

More information

Uniformity Improvement of the Ion Implantation System for Low Temperature Poly-Silicon TFTs

Uniformity Improvement of the Ion Implantation System for Low Temperature Poly-Silicon TFTs Journal of the Korean Physical Society, Vol. 48, January 2006, pp. S27 S31 Uniformity Improvement of the Ion Implantation System for Low Temperature Poly-Silicon TFTs Hirohiko Murata, Masateru Sato, Eiji

More information

Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments

Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments Electronics 110-nm CMOS ASIC HDL4P Series with High-speed I/O Interfaces Hitachi has released the high-performance

More information

Monitor QA Management i model

Monitor QA Management i model Monitor QA Management i model 1/10 Monitor QA Management i model Table of Contents 1. Preface ------------------------------------------------------------------------------------------------------- 3 2.

More information

Reducing image sticking in AMOLED displays with time-ratio gray scale by analog calibration

Reducing image sticking in AMOLED displays with time-ratio gray scale by analog calibration Reducing image sticking in AMOLED displays with time-ratio gray scale by analog calibration Dong-Yong Shin (SID Student Member) Jong-Kwan Woo Yongtaek Hong (SID Member) Keum-Nam Kim Do-Ik Kim Myoung-Hwan

More information

2.2. VIDEO DISPLAY DEVICES

2.2. VIDEO DISPLAY DEVICES Introduction to Computer Graphics (CS602) Lecture 02 Graphics Systems 2.1. Introduction of Graphics Systems With the massive development in the field of computer graphics a broad range of graphics hardware

More information

Solid State Devices 4B6

Solid State Devices 4B6 Solid State Devices 4B6 Lecture 13 Projection and 3D displays: LCD, DLP and LCOS Daping Chu Lent 2016 Development of flat panel displays (FPDs) (LCD) in early days 1 A 105 inch TFT-LCD 4k2k curved panel

More information