5 MeV Mott Polarization Measurement Procedure--DRAFT

Size: px
Start display at page:

Download "5 MeV Mott Polarization Measurement Procedure--DRAFT"

Transcription

1 5 MeV Mott Polarization Measurement Procedure--DRAFT Document Number: Revision Number: Rev. 5; November 22, 2000 Technical Custodian:? Estimated Time to Perform: 20 minutes Procedure Overview This procedure provides the steps necessary for MCC operators to configure the 5 MeV Mott polarimeter system, make a polarization measurement, and analyze the results for comparison with polarization measurements made by the halls. The automated version of this procedure can be found by opening the Mott Measurement Procedure screen (monticello.adl => P-Gun=>Mott Measurement Procedure) and following the instructions provided. 1 This procedure is divided into sections as follows: Section 1.0 Setting Up Beam to the Mott Polarimeter on page 2 Section 2.0 Performing a 5 MeV Mott Polarization Measurement on page 4 Section 3.0 Backout Procedure on page 5 Section 4.0 Troubleshooting Tips on page 5 Prerequisites 1. Open the following screens before starting this procedure: a. PGun Ops Main (monticello.adl P-Gun PGun Ops Center) b. Mott Measurement Procedure (monticello.adl P-Gun Mott Measurement Procedure) c. Mott Expert Screen (monticello.adl P-Gun Mott Measurement Procedure Expert Screens Mott Expert Screen) d. Wien Filter Controls (monticello.adl P-Gun PGun Ops Center Related Screens: Wien Filter Controlsl) e. Pol Src Universal Bus Controls (monticello.adl P-Gun PSUB - PS Universal Bus proctemplate Page 1 of 6

2 f. Injector BPM Absolutes (monticello.adl=>bpm=>bpm Overview =>Injector Absolute) g. Correctors for the 0L Region (monticello.adl=>magnets=>magnet Commander=>0L=>0L Correctors) h. AES RF Captain - Injector (monticello.adl=>rf=>rf Status Commanders=>Injector=>AES Injector Commander) i. DTLite to make a multiple entry to ELog and Plog Procedure Steps 1.0 Setting Up Beam to the Mott Polarimeter CAUTION: Beam to the 5 MeV Mott dump must not exceed 20 A (CW) Insert the 45 MeV in-line dump. 2. Determine if the present Wien Filter Angle (spin) is acceptable: Wien Filter Angle = (Wien Filter High Voltage DAC Value / ) Is the spin >= 0, AND <= +30 degrees? ( 0 <= spin <= +30) YES: Use the 100keV Steering Script to change the Wien Filter Angle (spin) to +90 degrees before continuing this procedure. Is the spin <= 0, AND >= -30 degrees? (-30 <= spin <= 0) YES: Use the 100keV Steering Script to change the Wien Filter Angle (spin) to -90 degrees before continuing this procedure. 3. Record the original values of MBH0L01H,V and MBH0L02H,V. 4. Download the BLMs for Tune Mode running. 5. Ensure that masking is set up to run in the injector. 6. Establish ~10uA of tune beam to the 45 MeV in-line dump. 7. Use MBH0L01H and MBH0L01V to flatten (0.0 +/-.25mm) IPM0L02X/Y (abs). 8. Use MBH0L02H and MBH0L02V to flatten (0.0 +/-.25mm) IPM0L03X/Y (abs). 9. Set the Master Mode to Beam Sync Only. 10. Record the original phase of 0L Change the phase setting of 0L02-8 by -30 degrees (e.g., if the present value is -99.9, then the new value would be Establish ~10uA of tune beam to the 45MeV in-line dump. Keep IPM0L02X/Y(abs) and IPM0L03X/Y(abs) flat using MBH0L01H/V and MBH0L02H/V respectively. NOTE: It may be necessary perform Step in two increments of -15 degrees in order to keep the beam from tripping off. 13. Set the Master Mode to Beam Sync Only. Page 2 of 6

3 1 14. Record the present state of the prebuncher (i.e., ON or OFF) on the PGun Ops Main screen. 15. Set the prebuncher to OFF if it is presently ON. 16. Set the Current Conversion (under Calibration/Configuration Constants on the Mott Expert Screen) to Set the Current Conversion Offset (under Calibration/Configuration Constants on the Mott Expert Screen) to Turn off RF for 0L03 and 0L Set up the 5 MeV dipole as follows (Mott Expert Screen): a. Take the magnet offloop. b. Click on configuration #2 ( to the Mott ). c. Set the BDL Mode slider to 4026 G-cm. d. Put the magnet onloop to cycle. 20. Open the Mott Valve (VBV3D00A) on the Mott Expert Screen. 21. Set MFD3D00 and MFD3D01 (the Mott dump dipole) to 5.0 amps on the Mott Expert screen. 22. Set the polarimeter beamline correctors as follows (Mott Expert Screen): MBH3D00H = G-cm MBH3D00V = 90 G-cm 23. Insert the polarimeter beamline viewer ITV3D00 (Mott Expert Screen). 24. Insert FC#1 and change the beam mode to Viewer Limited. 25. Pull FC#1. Beam should appear on viewer ITV3D Using MBH3D00H & V, steer the beam to match Figure 1-1. Large steering adjustments shoud not be necessary. The beam does not have to match this view exactly; i.e., the beam does not have to be perfectly round, but it s orientation should be slightly to the right of the crosshairs as shown in this Figure 1-1 Figure 1-1: Nominal Beam Position on Mott Viewer, ITV3D00 NOTE: If large adjustments are needed, set the correctors back to the values in Step 22 on page 3 and use MBH1L01H/V to get the spot close, and fine tune using MBH3D00H & V. 27. Insert FC#1 and pull viewer ITV3D00. Page 3 of 6

4 28. Change the state of Target Ladder Video (IFL3D00) to IN. The light for this viewer can be controlled via the Mott Expert Screen. 29. Reset Target Ladder by changing the Mott Psub value to (Pol Src Universal Bus Control Screen) 30. Set target viewer by changing the Mott Psub value to Setup Viewer Limited beam to this target viewer and ensure that it appears at the location indicated by Figure 1-2. If necessary, use MBH3D00H, and MBH3D00V. 1 Figure 1-2: Target Viewer 32. Insert FC#1 and insert the 1um Mott foil by changing the Mott Psub value to Turn off the Mott Viewer Light. 34. Check that the BLMs are loaded for CW running. 35. Resume 5 A polarized (CW) beam to FC# Pull FC# Go to Section 2.0, below. 2.0 Performing a 5 MeV Mott Polarization Measurement 1. Set Measurement Mode to Auto-Stop (Mott Measurement Procedure Screen) 2. Set Auto-Start Duration to 30 seconds for a test run. (Mott Measurement Procedure Screen) 3. Click on the START button to begin the test polarization measurement. A yellow Active indicator will appear. 4. The detector energy spectra will appear on the Detector Plots (Mott Measurement Procedure Screen) The spectra should be similar to the example on the Mott Measurement Procedure screen. 5. Press the Continue Button under Run Controls on the Mott Measurement Procedure Screen. 6. Analyze the data by: a. Pushing the Analyze button on the Mott GUI (found by running the script on the Mott Measurement Procedure Screen) OR Page 4 of 6

5 b. Executing /cs/op/iocs/data/mott5/operations/analyze $file Where $file is the data file name found in the File Path field on the Mott Expert screen Data from the above script is put in /cs/op/iocs/data/mott5/operations/final.dat. 7. If any of the following occur, contact Injector On Call before continuing.: Quality factor is > 50. Suggested Run Time > 600 Polarization < 60% 8..Repeat steps 3-7 for as many Mott measurements as desired Backout Procedure 1. Insert FC#1. 2. Switch to Beam Sync.. 3. Close vacuum valve VBV3D00A (Mott Expert Screen). 4. Restore the 5 MeV Dipole configuration to #1 (this is the straight-ahead mode) and turn ON the Keep Magnet On Loop option. (Mott Expert Screen) 5. Return the prebuncher to its original state as recorded in Step 14 on page Set MFD3D00 and MFD3D01 (the Mott dump dipole) to 0.0 amps.(mott Measurement Procedure Screen) 7. Reset the polarimeter beamline correctors as follows (Mott Measurement Procedure Screen): MBH3D00H = 0.0 G-cm MBH3D00V = 0.0 G-cm 8. Restore the phase setting for 0L02-8 that were recorded in Step 10 on page Restore the original values for MBH0L01H & V and MBH0L02H & V that were recorded in Step 3 on page Pull the 45 MeV in-line dump. 11. The Mott measurements and the backout are now complete. Turn the beam back over to the scheduled program. 12. Make an elog and a plog of the Mott measurement results by pushing the Submit Elog button on the Mott Gui. 13. PROCEDURE COMPLETE. 4.0 Troubleshooting Tips NOTE: For the most current troubleshooting tips, push the Help button on the Mott gui. 1. Problem: Unable to steer beam onto desired positions on the viewer without railing allowed correctors Try: Put MBH3D00H and MBH3D00V back to the values in Step 22 on page 3 Page 5 of 6

6 Steer with MBH0L01H and V (these correctors adjust the launch into the Mott dipole) until the beam spot is close to the desired position. Then use MBH3D00H and MBH3D00V if necessary. 2. Problem: Beam polarization measurement is very small or the spectra do not look like the example. Try: Look at the TIME field under "Interpreted Scalar Data" on the Mott Meaurement Procedure Screen. If this number is not 0.5 +/- 0.1, cycle the NIM crate in the injector service building. 3. Problem: After backout, beam mode will not go higher than viewer limited Try: Reset the Mott target ladder by entering into Mott Psub field (PSUB-PS Universal Bus Screen) 4. Problem: Script continues to blow orbit up when steering. Try: Reinitializing the Mott matrix by pushing the "Initialize" button on the Mott gui. 5. Problem: Received a tcl error while while running script. Try: If available, press the "stack trace" button on the error box. Take a picture of the error (either with the elog, or "quickprint").record as much information as possible about what the script was doing when the error occurred. Pass this information and the stack trace along to Michele Joyce: erb@jlab.org. 6. Problem: Script continues to crash and physics program is being held up. Try: Paging Michele Joyce: Page 6 of 6

Hall-B Beamline Commissioning Plan for CLAS12

Hall-B Beamline Commissioning Plan for CLAS12 Hall-B Beamline Commissioning Plan for CLAS12 Version 1.5 S. Stepanyan December 19, 2017 1 Introduction The beamline for CLAS12 utilizes the existing Hall-B beamline setup with a few modifications and

More information

FEL TEST PLAN WORKSHEET

FEL TEST PLAN WORKSHEET FEL TEST PLAN WORKSHEET PROGRAM DEPUTY APPROVAL FEL Exp Coordinator Signoff: Date: PI Reviewer Signoff: Date: Expiration Date (max. 90 days from approval): Presentation Required? yes no COMPLETION INFORMATION

More information

G0 Laser Status Parity Controls Injector Diagnostics

G0 Laser Status Parity Controls Injector Diagnostics G0 Laser Status Parity Controls Injector Diagnostics G0 Collaboration Mtg Jefferson Lab August 16, 2002 G0 Collaboration Mtg (August 16, 2002), 1 Installed new AOM homebuilt laser G0 Collaboration Mtg

More information

Extraction/Separator Setup. Michael Spata Operations Stay Treat July 16, 2015

Extraction/Separator Setup. Michael Spata Operations Stay Treat July 16, 2015 Extraction/Separator Setup Michael Spata Operations Stay Treat July 16, 2015 Accelerator Overview Extraction System Design settings for magnets and RF Separators come from CED All beamlines have been commissioned

More information

PQB Meeting. Caryn Palatchi 02/15/2018

PQB Meeting. Caryn Palatchi 02/15/2018 PQB Meeting Caryn Palatchi 02/15/2018 Previously Planned Improvements to RTP (1) Feedback (2) T Control (3) improved GND isolation Temperature Sensitivity correct with V Fluctuates +-30k ppm, which is

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

ISOMET. Compensation look-up-table (LUT) and How to Generate. Isomet: Contents:

ISOMET. Compensation look-up-table (LUT) and How to Generate. Isomet: Contents: Compensation look-up-table (LUT) and How to Generate Contents: Description Background theory Basic LUT pg 2 Creating a LUT pg 3 Using the LUT pg 7 Comment pg 9 The compensation look-up-table (LUT) contains

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

Status of the Jefferson Lab Polarized Beam Physics Program and Preparations for Upcoming Parity Experiments

Status of the Jefferson Lab Polarized Beam Physics Program and Preparations for Upcoming Parity Experiments Status of the Jefferson Lab Polarized Beam Physics Program and Preparations for Upcoming Parity Experiments P. Adderley, M. Baylac, J. Clark, A. Day, J. Grames, J. Hansknecht, M. Poelker, M. Stutzman PESP

More information

Parity Quality Beam (PQB) Study

Parity Quality Beam (PQB) Study Parity Quality Beam (PQB) Study Injector Group November 10, 2008 Thanks to: Roger Flood, Pete Francis, Paul King, Bob Michaels, Julie Roche Notes: 1. For each BPM, the wires are: +X+, +X-, +Y+, +Y-. 2.

More information

This guide gives a brief description of the ims4 functions, how to use this GUI and concludes with a number of examples.

This guide gives a brief description of the ims4 functions, how to use this GUI and concludes with a number of examples. Quick Start Guide: Isomet ims Studio Isomet ims Studio v1.40 is the first release of the Windows graphic user interface for the ims4- series of 4 channel synthezisers, build level rev A and rev B. This

More information

Polarized Source Development Run Results

Polarized Source Development Run Results Polarized Source Development Run Results Riad Suleiman Injector Group November 18, 2008 Outline Injector Parity DAQ and Helicity Board Pockels Cell Alignment Fast Helicity Reversal Studies: o 30 Hz, 250

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

CLEX (CLIC Experimental Area)

CLEX (CLIC Experimental Area) CLEX (CLIC Experimental Area) Status and plans G.Geschonke for Hans Braun CERN CT3 coll meetg 2005 CLEX 1 CT3 objectives R1.1 CLIC accelerating structure, R1.2 rive beam scheme with a fully loaded linac

More information

Requirements for the Beam Abort Magnet and Dump

Requirements for the Beam Abort Magnet and Dump Requirements for the Beam Abort Magnet and Dump A beam abort kicker (pulsed dipole magnet) and dump are required upbeam of the LCLS undulator in order to protect the undulator from mis-steered and poor

More information

Standard Operating Procedure of nanoir2-s

Standard Operating Procedure of nanoir2-s Standard Operating Procedure of nanoir2-s The Anasys nanoir2 system is the AFM-based nanoscale infrared (IR) spectrometer, which has a patented technique based on photothermal induced resonance (PTIR),

More information

Operation of CEBAF photoguns at average beam current > 1 ma

Operation of CEBAF photoguns at average beam current > 1 ma Operation of CEBAF photoguns at average beam current > 1 ma M. Poelker, J. Grames, P. Adderley, J. Brittian, J. Clark, J. Hansknecht, M. Stutzman Can we improve charge lifetime by merely increasing the

More information

A Cathode Development Cornell Cultera This scope includes all labor and purchases required produce photocathodes required by CBETA.

A Cathode Development Cornell Cultera This scope includes all labor and purchases required produce photocathodes required by CBETA. A1.01 PROJECT MANAGEMENT BNL/Cornell Michnoff A1.01.01 Milestones BNL/Cornell Michnoff This scope is a placeholder for all project high level milestones for NYSERDA. There is no cost or labor related to

More information

COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM

COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM COMMISSIONING OF THE ALBA FAST ORBIT FEEDBACK SYSTEM A. Olmos, J. Moldes, R. Petrocelli, Z. Martí, D. Yepez, S. Blanch, X. Serra, G. Cuni, S. Rubio, ALBA-CELLS, Barcelona, Spain Abstract The ALBA Fast

More information

An Operational Diagnostic Complement for Positrons at CEBAF/JLab

An Operational Diagnostic Complement for Positrons at CEBAF/JLab An Operational Diagnostic Complement for Positrons at CEBAF/JLab Michael Tiefenback JLab, CASA International Workshop on Physics with Positrons at Jefferson Lab 12-15 September 2017 Operating CEBAF with

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

The basic parameters of the pre-injector are listed in the Table below. 100 MeV

The basic parameters of the pre-injector are listed in the Table below. 100 MeV 3.3 The Pre-injector The high design brightness of the SLS requires very high phase space density of the stored electrons, leading to a comparatively short lifetime of the beam in the storage ring. This,

More information

LHC Nominal injection sequence

LHC Nominal injection sequence LHC Nominal injection sequence Mike Lamont Acknowledgements: Reyes Alemany Fernandez, Brennan Goddard Nominal injection Overall injection scheme Pilot R1, Pilot R2, Intermediate R1 Optimise Intermediate

More information

Development at Jefferson Lab

Development at Jefferson Lab JLABACC9727 5 MeV Mott Polarimeter Development at Jefferson Lab J.S. Price* B.M. Poelker* C.K. Sinclair* K.A. Assamagant L.S. Cardman* J. Gramest J. Hansknecht* D.J. Mack* and P. Piot* *Jefferson Lab 1.2000

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

JLab 10kW FEL Driver Beam Diagnostics

JLab 10kW FEL Driver Beam Diagnostics JLab 10kW Driver Beam Diagnostics Kevin Jordan, S. V. Benson, J. Coleman, D. Douglas, R. Evans, A. Grippo, D. Gruber, G. Krafft, W. Moore, N. Nishimori, P. Piot, D. Sexton, J. Song and S. Zhang Outline.

More information

Status of SOLARIS Arkadiusz Kisiel

Status of SOLARIS Arkadiusz Kisiel Status of SOLARIS Arkadiusz Kisiel Solaris National Synchrotron Light Source Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl Arkadiusz.Kisiel@uj.edu.pl On behalf of SOLARIS

More information

Synchronization Check Relay ARGUS 7

Synchronization Check Relay ARGUS 7 Synchronization Check Relay ARGUS 7 Page 1 of 8 Table of Contents Secondary injection tests:... 3 Phase Angle Test:... 3 CS PHASE ANGLE:... 3 SS PHASE ANGLE:... 3 SLIP FREQUENCY TEST:... 4 CS SLIP FREQUENCY:...

More information

Friday 05/03/ :00 13:00 : Establishing reference orbit golden Jorg Wenninger. Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB

Friday 05/03/ :00 13:00 : Establishing reference orbit golden Jorg Wenninger. Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB 07:00 13:00 : Establishing reference orbit golden Jorg Wenninger Problems Wrong polarity on MCBXH3.L8 Polarity flag changed in DB Offset in vertical plane, ~1 mm seems real. 13:00 14: 00 : Injection oscillation

More information

LCLS-II Injector Tuning Procedures. F. Zhou (SLAC) & F. Sannibale (LBNL) 2/6/2017

LCLS-II Injector Tuning Procedures. F. Zhou (SLAC) & F. Sannibale (LBNL) 2/6/2017 LCLSII-TN-17-3 LCLS-II Injector Tuning Procedures F. Zhou (SLAC) & F. Sannibale (LBNL) /6/17 1. Introduction Figure 1 shows

More information

High-Power Setup Procedure

High-Power Setup Procedure High-Power Setup Procedure Revision: 2.2, 15 January, 1999 Keeper: D. Douglas, x7512 A. Prerequisites/Philosophy 1) Select wavelength/electron beam energy for run 2) Gun at 60 pc/bunch and 350 KeV 3) CW

More information

Beamline improvement during g2p experiment. Pengjia Zhu

Beamline improvement during g2p experiment. Pengjia Zhu Beamline improvement during g2p experiment Pengjia Zhu Review for g2p Q2 0.02 0.20 GeV2 o 6 forward angle detection Review for g2p Polarized NH3 target 1K Refrigerator 2.5/5T Transverse target field Polarization

More information

1. General principles for injection of beam into the LHC

1. General principles for injection of beam into the LHC LHC Project Note 287 2002-03-01 Jorg.Wenninger@cern.ch LHC Injection Scenarios Author(s) / Div-Group: R. Schmidt / AC, J. Wenninger / SL-OP Keywords: injection, interlocks, operation, protection Summary

More information

SC24 Magnetic Field Cancelling System

SC24 Magnetic Field Cancelling System SPICER CONSULTING SYSTEM SC24 SC24 Magnetic Field Cancelling System Makes the ambient magnetic field OK for the electron microscope Adapts to field changes within 100 µs Touch screen intelligent user interface

More information

Beam Losses During LCLS Injector Phase-1 1 Operation

Beam Losses During LCLS Injector Phase-1 1 Operation Beam Losses During LCLS Injector Phase-1 1 Operation & Paul Emma September 28, 2006 Radiation Safety Committee Review Scope of Phase 1 Operation Request for Three Operating Modes Operating Plan for Phase

More information

SC24 Magnetic Field Cancelling System

SC24 Magnetic Field Cancelling System SPICER CONSULTING SYSTEM SC24 SC24 Magnetic Field Cancelling System Makes the ambient magnetic field OK for the electron microscope Adapts to field changes within 100 µs Touch screen intelligent user interface

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

ARIEL e-linac Machine Protection System Requirements

ARIEL e-linac Machine Protection System Requirements TRIUMF Document-85636 ARIEL e-linac Machine Protection System Requirements Document Type: Requirement (Specifications) Release: 02 Release Date: 2013/06/17 Author(s): Shane Koscielniak Note: Before using

More information

P. Emma, et al. LCLS Operations Lectures

P. Emma, et al. LCLS Operations Lectures P. Emma, et al. LCLS Operations Lectures LCLS 1 LCLS Accelerator Schematic 6 MeV 135 MeV 250 MeV σ z 0.83 mm σ z 0.83 mm σ z 0.19 mm σ δ 0.05 % σ δ 0.10 % σ δ 1.6 % Linac-0 L =6 m rf gun L0-a,b Linac-1

More information

Outback STX. User Guide Supplement. Parts List. STX Terminal Overview

Outback STX. User Guide Supplement. Parts List. STX Terminal Overview Outback STX User Guide Supplement This supplement details the following changes from STX v1.0 to STX v1.1: Parts List below STX Terminal Overview below Connection Diagram on page 2 AC110 Power Up and Power

More information

LLRF at SSRF. Yubin Zhao

LLRF at SSRF. Yubin Zhao LLRF at SSRF Yubin Zhao 2017.10.16 contents SSRF RF operation status Proton therapy LLRF Third harmonic cavity LLRF Three LINAC LLRF Hard X FEL LLRF (future project ) Trip statistics of RF system Trip

More information

Top-Up Experience at SPEAR3

Top-Up Experience at SPEAR3 Top-Up Experience at SPEAR3 Contents SPEAR 3 and the injector Top-up requirements Hardware systems and modifications Safety systems & injected beam tracking Interlocks & Diagnostics SPEAR3 Accelerator

More information

Display Systems. Viewing Images Rochester Institute of Technology

Display Systems. Viewing Images Rochester Institute of Technology Display Systems Viewing Images 1999 Rochester Institute of Technology In This Section... We will explore how display systems work. Cathode Ray Tube Television Computer Monitor Flat Panel Display Liquid

More information

An Overview of Beam Diagnostic and Control Systems for AREAL Linac

An Overview of Beam Diagnostic and Control Systems for AREAL Linac An Overview of Beam Diagnostic and Control Systems for AREAL Linac Presenter G. Amatuni Ultrafast Beams and Applications 04-07 July 2017, CANDLE, Armenia Contents: 1. Current status of existing diagnostic

More information

Linac 4 Instrumentation K.Hanke CERN

Linac 4 Instrumentation K.Hanke CERN Linac 4 Instrumentation K.Hanke CERN CERN Linac 4 PS2 (2016?) SPL (2015?) Linac4 (2012) Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase

More information

The FAIR plinac RF Systems

The FAIR plinac RF Systems The FAIR plinac RF Systems Libera Workshop Sep. 2011 Gerald Schreiber Gerald Schreiber, GSI RF Department 2 (1) Overview GSI / FAIR (2) FAIR Proton Linear Accelerator "plinac" (3) plinac RF Systems (4)

More information

Scavenger Extraction. Karen Goldsmith Shawn Alverson

Scavenger Extraction. Karen Goldsmith Shawn Alverson Scavenger Extraction Karen Goldsmith Shawn Alverson Topics Beam line and area maps High Power Target (HPT) How to establish first beam to HPT Setting energy (configs, multiknobs, Fast Phase Shifters, etc.)

More information

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CEBAF Accelerator Update Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CLAS12 Collaboration Meeting, June 13-16, 2017 1 Accelerator Division Leadership On April 30 Andrew

More information

Future Performance of the LCLS

Future Performance of the LCLS Future Performance of the LCLS J. Welch for many* SLAC National Accelerator Laboratory FLS 2010, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010. SLAC National Accelerator Laboratory,

More information

Advanced Photon Source - Upgrades and Improvements

Advanced Photon Source - Upgrades and Improvements Advanced Photon Source - Upgrades and Improvements Horst W. Friedsam, Jaromir M. Penicka Argonne National Laboratory, Argonne, Illinois, USA 1. INTRODUCTION The APS has been operational since 1995. Recently

More information

Dynamic Cable Rating Model Guidelines

Dynamic Cable Rating Model Guidelines lines Introduction This document describes how to set up, configure and run the Dynamic Cable Rating model in Ipsa. The Dynamic Cable Rating model (DCR) has been developed for the WPD FALCON project by

More information

DAQ Systems in Hall A

DAQ Systems in Hall A CODA Users Workshop Data Acquisition at Jefferson Lab Newport News June 7, 2004 DAQ Systems in Hall A Overview of Hall A Standard Equipment: HRS, Beamline,... Parity Experiments Third Arms: BigBite, RCS

More information

Tech Note: How to measure additive phase noise of amplifiers using the 7000 Series

Tech Note: How to measure additive phase noise of amplifiers using the 7000 Series Berkeley Nucleonics Corporation Tech Note: How to measure additive phase noise of amplifiers using the 7000 Series Additive phase noise, also known as residual phase noise, is the self phase noise of a

More information

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

Jefferson Lab Experience with Beam Halo, Beam Loss, etc.

Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Pavel Evtushenko with a lot of input from many experienced colleagues Steve Benson, Dave Douglas, Kevin Jordan, Carlos Hernandez-Garcia, Dan Sexton,

More information

C8188 C8000 1/10. digital audio modular processing system. 4 Channel AES/EBU I/O. features. block diagram. 4 balanced AES inputs

C8188 C8000 1/10. digital audio modular processing system. 4 Channel AES/EBU I/O. features. block diagram. 4 balanced AES inputs features 4 balanced AES inputs Input Sample Rate Converters (SRC) 4 balanced AES outputs Relay bypass for pairs of I/Os Relay wait time after power up Master mode (clock master for the frame) 25pin Sub-D,

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

Topic: Instructional David G. Thomas December 23, 2015

Topic: Instructional David G. Thomas December 23, 2015 Procedure to Setup a 3ɸ Linear Motor This is a guide to configure a 3ɸ linear motor using either analog or digital encoder feedback with an Elmo Gold Line drive. Topic: Instructional David G. Thomas December

More information

AN-822 APPLICATION NOTE

AN-822 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Synchronization of Multiple AD9779 Txs by Steve Reine and Gina Colangelo

More information

beam dump from P2 losses this morning

beam dump from P2 losses this morning beam dump from P2 losses this morning Some observations on the beam dump from P2 losses this morning 29.10.10 at 01:26:39: - single bunch intensity (average) was ~1.3e11 - significantly higher than previous

More information

EPJ Web of Conferences 95,

EPJ Web of Conferences 95, EPJ Web of Conferences 95, 04012 (2015) DOI: 10.1051/ epjconf/ 20159504012 C Owned by the authors, published by EDP Sciences, 2015 The ELENA (Extra Low Energy Antiproton) project is a small size (30.4

More information

SAT IF distribution system

SAT IF distribution system 7. Technical specifications Type cs43 RF input frequency range pr. 50-350 MHz inputs number 4 level pr. 55...88 dbµv 60...93 dbµv symbol rate 3 45 Ms/s return loss/impedance > 0 db/75 Ω LNB powering/control

More information

12GeV CEBAF Commissioning

12GeV CEBAF Commissioning 12GeV CEBAF Commissioning Operations Dept. Accelerator Division JLAB Outline 1 Process Integrated Process Overview Accelerator Readiness Review Process Internal Reviews/Process Process Recap 2 Beam Commissioning

More information

SC26 Magnetic Field Cancelling System

SC26 Magnetic Field Cancelling System SPICER CONSULTING SYSTEM SC26 SC26 Magnetic Field Cancelling System Makes the ambient magnetic field OK for electron beam tools in 300 mm wafer fabs Real time, wideband cancelling from DC to > 9 khz fields

More information

2008 JINST 3 S LHC Machine THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS. Lyndon Evans 1 and Philip Bryant (editors) 2

2008 JINST 3 S LHC Machine THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND EXPERIMENTS. Lyndon Evans 1 and Philip Bryant (editors) 2 PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA RECEIVED: January 14, 2007 REVISED: June 3, 2008 ACCEPTED: June 23, 2008 PUBLISHED: August 14, 2008 THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

Revision Protocol Date Author Company Description January Paul DOS REMEDIO S. Imagine Communications

Revision Protocol Date Author Company Description January Paul DOS REMEDIO S. Imagine Communications PRODUCT ADC TOPIC ODETICS TCS-90 CART MACHINE DATE: January 25, 2001 REVISION HISTORY Revision Protocol Date Author Company Description 1.1 25 January 2001 Paul DOS REMEDIO S Imagine Communications New

More information

ISOMET. Compensation look-up-table (LUT) and Scan Uniformity

ISOMET. Compensation look-up-table (LUT) and Scan Uniformity Compensation look-up-table (LUT) and Scan Uniformity The compensation look-up-table (LUT) contains both phase and amplitude data. This is automatically applied to the Image data to maximize diffraction

More information

Approved by: / / R. Battaglia 12/16/2016

Approved by: / / R. Battaglia 12/16/2016 Fabrication Laboratory Revision: H Rev Date: 12/16/16 Approved by: Process Engineer / / R. Battaglia 12/16/2016 Equipment Engineer 1 SCOPE The purpose of this document is to detail the use of the Varian

More information

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR Rong Xiang On behalf of the BESSY-DESY-FZD-MBI collaboration and the ELBE team FEL 2009, Liverpool, United Kingdom, August 23 ~ 28, 2009 Outline Introduction

More information

GS Bloch Equations Simulator 1. GS Introduction to Medical Physics IV Exercise 1: Discrete Subjects

GS Bloch Equations Simulator 1. GS Introduction to Medical Physics IV Exercise 1: Discrete Subjects GS02-1193 Bloch Equations Simulator 1 GS02-1193 Introduction to Medical Physics IV Exercise 1: Discrete Subjects Once SpinWright is running, select the Subject tab. The GUI display toward the top of the

More information

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL*

STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* STATUS AND COMMISSIONING RESULTS OF THE R&D ERL AT BNL* D. Kayran #,1,2, Z. Altinbas 1, D. Beavis 1, S. Belomestnykh 1,2, I. Ben-Zvi 1,2, S. Deonarine 1, D.M. Gassner 1, R. C. Gupta 1, H. Hahn 1,L.R. Hammons

More information

Photo cathode RF gun -

Photo cathode RF gun - Photo cathode RF gun - *),,, ( 05 Nov. 2004 Spring8 UTNL Linac & Mg Photocathode RF Gun Mg photocathode NERL, 18 MeV Linac and the RF gun Electron Beam Mg photocathode Mg photocathode RF gun of SPring8

More information

Stark Spectroscopy Deanna s Experimental Procedure NWU Hupp Lab Fall 2003

Stark Spectroscopy Deanna s Experimental Procedure NWU Hupp Lab Fall 2003 Stark Spectroscopy Deanna s Experimental Procedure NWU Hupp Lab Fall 2003 1. Generate mixed-valent state of compound check in 1mm cell. Ideally want Abs 1. 2. Setting up the instrument New Dewar i) Approx.

More information

Radiation Safety System for Stanford Synchrotron Radiation Laboratory*

Radiation Safety System for Stanford Synchrotron Radiation Laboratory* SLAC PUB-8817 April 16, 2001 Radiation Safety System for Stanford Synchrotron Radiation Laboratory* James C. Liu, N. E. Ipe and R. Yotam Stanford Linear Accelerator Center, P. O. Box 4349, Stanford, CA

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

SPG700 Multiformat Reference Sync Generator Release Notes

SPG700 Multiformat Reference Sync Generator Release Notes xx ZZZ SPG700 Multiformat Reference Sync Generator Release Notes This document supports firmware version 3.0. www.tek.com *P077123104* 077-1231-04 Copyright Tektronix. All rights reserved. Licensed software

More information

Operating Instructions

Operating Instructions CNTX Contrast sensor Operating Instructions CAUTIONS AND WARNINGS SET-UP DISTANCE ADJUSTMENT: As a general rule, the sensor should be fixed at a 15 to 20 angle from directly perpendicular to the target

More information

2GS100/110-2HS100/110 / Dual channel 3Gb/s, HD down-converter with color corrector and optional cross input audio shuffler

2GS100/110-2HS100/110 / Dual channel 3Gb/s, HD down-converter with color corrector and optional cross input audio shuffler 2GS100/110-2HS100/110 / Dual channel 3Gb/s, HD down-converter with color corrector and optional cross input audio shuffler A Synapse product COPYRIGHT 2018 AXON DIGITAL DESIGN BV ALL RIGHTS RESERVED NO

More information

USER GUIDE. Get the most out of your DTC TV service!

USER GUIDE. Get the most out of your DTC TV service! TV USER GUIDE Get the most out of your DTC TV service! 1 800-367-4274 www.dtccom.net TV Customer Care Technical Support 615-529-2955 615-273-8288 Carthage Area Carthage Area 615-588-1277 615-588-1282 www.dtccom.net

More information

SPEAR 3: Operations Update and Impact of Top-Off Injection

SPEAR 3: Operations Update and Impact of Top-Off Injection SPEAR 3: Operations Update and Impact of Top-Off Injection R. Hettel for the SSRL ASD 2005 SSRL Users Meeting October 18, 2005 SPEAR 3 Operations Update and Development Plans Highlights of 2005 SPEAR 3

More information

AUTOPILOT DLM Satellite Downlink Manager USER GUIDE

AUTOPILOT DLM Satellite Downlink Manager USER GUIDE AUTOPILOT DLM Satellite Downlink Manager USER GUIDE AUTOPILOT User Guide Rev 3.70 Nov. 2004. Broadcast Automation Systems, Inc. 35 Sunnypoint Crescent, Scarborough, ON, Canada M1M 1B8 tel: 416-264-8415

More information

Quick Start Bruker Dimension Icon AFM

Quick Start Bruker Dimension Icon AFM Do not remove Quick Start Bruker Dimension Icon AFM March 3, 2015 GLA Contacts Harold Fu (hfu@caltech.edu) Weilai Yu (wyyu@caltech.edu) Bruker Tech Support (AFMSupport@bruker-nano.com 800-873-9750) Watch

More information

Linatron - M9 & M9A. Modular high-energy X-ray source. 2.0 Performance

Linatron - M9 & M9A. Modular high-energy X-ray source. 2.0 Performance The Linatron -M is a modular system. The control console, modulator, and RF unit are common to all model configurations. Only the X-ray head changes to match the application. The Linatron - M is designed

More information

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University Development of beam-collision feedback systems for future lepton colliders P.N. Burrows 1 John Adams Institute for Accelerator Science, Oxford University Denys Wilkinson Building, Keble Rd, Oxford, OX1

More information

Noise Detector ND-1 Operating Manual

Noise Detector ND-1 Operating Manual Noise Detector ND-1 Operating Manual SPECTRADYNAMICS, INC 1849 Cherry St. Unit 2 Louisville, CO 80027 Phone: (303) 665-1852 Fax: (303) 604-6088 Table of Contents ND-1 Description...... 3 Safety and Preparation

More information

PHI 5000 VersaProbe TM Operator s Guide

PHI 5000 VersaProbe TM Operator s Guide PHI 5000 VersaProbe TM Operator s Guide Part No. 705921 Rev. A Copyright 2006 ULVAC-PHI, INC. 370 Enzo, Chigasaki, JAPAN The PHI logo ( ) is a registered trademark of ULVAC-PHI, INC. Physical Electronics,

More information

OPERATIONAL EXPERIENCE WITH CIRCULATING BEAM

OPERATIONAL EXPERIENCE WITH CIRCULATING BEAM OPERATIONAL EXPERIENCE WITH CIRCULATING BEAM S. Redaelli on behalf of the LHC beam commissioning team CERN, Geneva, Switzerland Abstract Following various injection tests, the full LHC beam commissioning

More information

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM EUCARD 2 WORKSHOP ON INNOVATIVE DELIVERY SYSTEMS IN PARTICLE THERAPY TORINO, 23 25 FEB 2017 VARIAN PARTICLE THERAPY HOLGER GÖBEL MANGER

More information

CytoFLEX Flow Cytometer Quick Start Guide

CytoFLEX Flow Cytometer Quick Start Guide Sheath Waste CLASS 1 LASER PRODUCT COMPLIES WITH 21 CFR 1040.10 AND 1040.11 EXCEPT FOR DEVIATIONS PURSUANT TO LASER NOTICE NO. 50 DATED JUNE 24, 2007 MANUFACTURED Sheath B49008AC February 2015 CytoFLEX

More information

DSIM-GI Installation Guide Revision P

DSIM-GI Installation Guide Revision P Installation Guide Revision P 1. Quick Start Instructions for Single Pilot AGC Operatation 1. With the ADU jumper in Auto position, turn ADU pot to MIN amplifier output level. Then place the ADU jumper

More information

LHC Machine check out

LHC Machine check out LHC Machine check out R.Giachino / M.Albert 1v1 Be/op 12th March 2012 Hardware Commissioning: M. Pojer, R. Schmidt and M. Solfaroli Summary of week 10 Machine checkout: R. Giachino, M.Albert and J. Wenninger

More information

Availability and Reliability Issues for the ILC

Availability and Reliability Issues for the ILC Availability and Reliability Issues for the ILC SLAC Presented at PAC07 26 June 07 Contents Introduction and purpose of studies The availability simulation What was modeled (important assumptions) Some

More information

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team Status of SOLARIS Paweł Borowiec On behalf of Solaris Team e-mail: pawel.borowiec@uj.edu.pl XX ESLS-RF Meeting, Villingen 16-17.11.2016 Outline 1. Timeline 2. Injector 3. Storage ring 16-17.11.2016 XX

More information

New Filling Pattern for SLS-FEMTO

New Filling Pattern for SLS-FEMTO SLS-TME-TA-2009-0317 July 14, 2009 New Filling Pattern for SLS-FEMTO Natalia Prado de Abreu, Paul Beaud, Gerhard Ingold and Andreas Streun Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland A new

More information

Variwrap Controller Manual

Variwrap Controller Manual Variwrap Controller Manual Operation The controller has two operating modes Manual and Auto. The mode is changes by pressing the (F1) Auto/Manual button. The mode setting is displayed in the top right

More information

Ku-Band Redundant LNB Systems. 1:1 System RF IN (WR75) TEST IN -40 db OFFLINE IN CONTROLLER. 1:2 System POL 1 IN (WR75) TEST IN -40 db POL 2 IN

Ku-Band Redundant LNB Systems. 1:1 System RF IN (WR75) TEST IN -40 db OFFLINE IN CONTROLLER. 1:2 System POL 1 IN (WR75) TEST IN -40 db POL 2 IN BRK-1000 Series Ku-Band Redundant LNB Systems Introduction Redundant LNB systems minimize system downtime due to LNB failure by providing a spare LNB and an automatic means of switching to the spare upon

More information

Wilkes Repair: wilkes.net River Street, Wilkesboro, NC COMMUNICATIONS

Wilkes Repair: wilkes.net River Street, Wilkesboro, NC COMMUNICATIONS 1 Wilkes COMMUNICATIONS 336.973.3103 877.973.3104 Repair: 336.973.4000 Email: wilkesinfo@wilkes.net wilkes.net 1400 River Street, Wilkesboro, NC 28697 2 Table of Contents REMOTE CONTROL DIAGRAM 4 PLAYBACK

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information