Hardware Platform Design for Real-Time Video Applications

Size: px
Start display at page:

Download "Hardware Platform Design for Real-Time Video Applications"

Transcription

1 Hardware Platform Design for Real-Time Video pplications. Ben titallah*, P. Kadionik**, F. Ghozzi*, P.uel**, N. Masmoudi*, P.Marchegay** *Laboratoire d Electronique et des Technologies de l Information (LETI) Ecole National d Ingénieurs de Sfax; B.P.W, 3038 Sfax, Tunisie Tel: (216) Fax: (216) uri.masmoudi@enis.rnu.tn **Laboratoire IXL-ENSEIRB-CNRS UMR-5818, Université Bordeaux1, 351 Cours de la Libération, Talence Cedex, France {benatita;nouel;kadionik;marchegay}@enseirb.fr bstract In this paper, we present the installation of a hardware platform for video acquisition and restitution in real-time using a mixed software/hardware environment. The hardware platform is based on the ltera STRTIX development board. Besides, it is completed with a Camera interface for acquisition and a VG interface for restitution. The core of the system incorporates an IP module (Intellectual Property) of ltera Nios processor in the Quartus II development tool of ltera. During this study, we have used video sequences, which are acquired, processed and visualized while respecting temporal constraints. Keywords: FPG, VHDL, Embedded Processor, Real- Time. 1. Introduction The technology progress of integrated circuits production allows the achievement of high density such as the whole systems that can be assembled in one chip. The applications of the mobile phone, the digital TV or the video phone are examples of such integrated systems. In parallel, the increasing needs of flexibility and products fast evolution impose the integration of reconfigurable solutions, and thus the processors embedding. In fact, the use of these processors represents the best solution when the constraints of performance, cost, area and/or consumption are important. The design of a system containing one or more processors requires the use of software/hardware codesign flow [1]. This design approach consists in choosing for each functionality either a hardware implementation (that will have a little evolution) or a software programming (that will have a lot evolution or whose complexity does not allow a hardware implementation) [2]. The software part exploits the speed performance of the processor. This design methodology can be used to make a modular system of video acquisition, processing and restitution in order to facilitate the implementation of image processing algorithms. This paper is organised as follows: Section 2 presents the real time concept for the achievement of video acquisition, processing and restitution system. Section 3 describes the Nios embedded system, the Camera and VG interfaces as well as the synchronization of these two interfaces and the temporal constraints to respect. n interpretation of the Nios system implementation results is presented in Section 4. Finally, Section 5 concludes the paper. 2. Real-time video system If some processing can be executed in differed time as in the field of the data analysis, others require data processing in real time. In this case, it is a question of respecting latency constraints (The period between the input acquisition and the production of the appropriate output). The speed of processing must be compatible with the data stream of the input and output. The numerical telecommunications advent, the digital television field and the video processing have considerably amplified the requirement in real-time processing [3]. In our application of video/image processing, the chain contains modules of acquisition, processing and restitution of a video signal coming from the video source. Therefore, for us the real time is the fact that the acquisition and the processing should not introduce delay

2 which leads to the loss of useful data for the video restitution. The synoptic diagram of the obtained system is presented in figure 1. 8 Bits 24 Bits Figure 1. Synoptic of the video system Our video system is composed of a camera allowing the images acquisition, a processing module based on FPG (Field Programmable Gate rray) technology which integrates the Nios embedded processor and a VG monitor for the images restitution which have a 640x480 resolution in greyscale. 3. The Nios embedded system Our system design is based on the ltera Excalibur development board. The core of the board is an ltera Stratix EP1S10 F780 C6 FPG which is based on 1.5V, 0.13µm technology with a density that reaches Logic Elements (LEs), 113 KB of Embedded System Blocs (ESBs) and 427 I/O pins [4,5]. This component is optimized for the implementation of systems on programmable chip «SOPC» by integrating a softcore processor [6]. For this type of FPG component, ltera proposes a development tool (Quartus) which permits to generate the Nios softcore processor with a 16/32 Bit softcore 5 stage pipelined RISC processor and a 50 MHz operation frequency [7]. It offers a high degree of hardware configurability and customization: hardware accelerates multiplication, custom instructions, easy peripheral and custom hardware integration, etc. The term «softcore processor» corresponds to a hardware description (in VHDL or Verilog) which is synthesized then implemented on FPG. The main processing core of the Nios system, illustrated in Figure 2, is the Nios CPU. It is connected to hardware peripherals via a custom ltera valon bus. The bus has a parametric master/slave type. The parameterized valon bus interfaces are automatically generated by a special ltera Nios generating tool (SOPC Builder) for every custom peripheral integrated into the design. The Nios system for our video and image applications is composed of the following components: CPU NIOS 32 Bits. ROM for the monitor boot. 1 MB SRM. 8 MB FLSH memory. 16 MB SDRM. URT communication. Timer. VG interface. Camera interface. FLSH SDRM SRM RS232 Figure 2. Nios embedded system 3.1. The Camera interface VG interface Camera interface VLON NIOS CPU Timer URT The general structure of the camera interface is presented by the following synoptic: Clk_system master_wr Clk 14MH master_add 8 Bits Camera 32 Bits FIFO 32 Bits control DM 32 Bits LDV FDV Figure 3. Synoptic of the camera interface IRQ The camera provides in output 8 Bits video data, a clock signal with MHz frequency and synchronization signals: line synchronization (LDV: Line Data Valid) and frame synchronization (FDV: Frame Data Valid). The camera interface permits us to send the acquired video data and other control signals towards the valon bus. This interface consists of three modules. The camera control module allows to send the acquired video data towards the FIFO module with 32 Bits word. Indeed, in the purpose of using the 32 Bits bus size totality, each four 8 Bit data pixels must be processed at 32 Bits word. The FIFO allows to memorize image line (640 pixels). It is like a buffer between the data writing and reading. The writing on the FIFO is synchronized with the Camera clock. On the other hand, the reading is synchronized with the system clock (50 MHz). Indeed, it is necessary that the reading of the FIFO data towards the SDRM is quite fast to follow the Camera stream. The third module is the DM that allows the data transfer from the FIFO towards the SDRM through the valon bus by sending «master_w», «master_addr» and «master_wrdata» signals. The cycle of writing operates until the valon bus sends «master_waitreq» signal. The entire interface is described in VHDL. It defines the interconnections of side camera as well as the connection signals with the valon bus. For compilation and synthesis, we have used the ltera Quartus tool. The obtained results are grouped in the table 1. V L O N master_waitreq B U S

3 Table 1. Table of the results Family LEs ESBs Freq (MHz) Stratix 593 (5%) 4 (1%) 240 NIOS CPU Camera Interface Maître VG Interface Maître We notice that the occupied area by our interface in the FPG is weak (5% of the LEs and 1% of the ESBs). The maximum operation frequency can reach 240 MHz The VG interface Bus valon SDRM Esclave The general structure of VG interface is presented by the following figure: V L O N B U S master rd master addr 32 Bits DM 32 Bits FIFO 32 Bits master wreq Clk_system FIFO 32 Bits Figure 4. Synoptic of the VG interface The achieved interface allows to transfer the 32 Bits data from the valon bus towards the visualization VG monitor. This interface consists of three modules. The DM module allows to transfer the data from the SDRM towards the FIFO by using «master_rd» (starting the reading of the master from the slave) and «master_addr» (addresses sent towards the valon bus) signals. buffer module is composed of two FIFO which have the same depth (640 pixels for one image line). Indeed, if the DM writs in the first FIFO, the VG controller module reads the second. This last module sends «R», «G», «B» and synchronization signals towards the VG extension board (HS: Horizontal Synchronization signal and VS: Vertical Synchronization signal) [8]. The writing on the FIFO is synchronized with the system clock (50 MHz). On the other hand, the reading is synchronized with VG clock (25 MHz). The obtained results are grouped in the table 2. Table 2. Table of the results Family LEs ESBs Freq (MHz) Stratix 840 (7%) 4 (1%) 199 We notice that the occupied area by our interface in the FPG is weak (7% of the LEs and 1% of the ESBs). The maximum operation frequency can reach 199 MHz Synchronization between the Camera and VG interface Our system consists of three masters (Nios CPU, Camera interface and VG interface) which can have access to the same slave (SDRM controller) through the valon bus as shown in figure 5. MUX 32 Bits VG control 24Bits HS VS Figure 5. System architecture To permit the acquisition and the restitution of the image, the Camera and VG interfaces must share the same SDRM slave. problem may happen if the VG and Camera interfaces access SDRM at the same time (Since the valon bus sends the same «master_waitreq» signal to these two interfaces). To improve the functioning of the system, synchronization is necessary between these two interfaces which is presented by the flowchart below. Start Initialization DM-VG transfer valon bus State Free valon bus DM-VG Transfer End line transfer Figure 6. Interfaces synchronization s shown in figure 6, an interface can begin the data transfer only if the other ends. In our case, the VG interface has priority since a data transfer discontinuity between the SDRM and the FIFO-VG causes problems while displaying video. For this, the DM- Camera transfer starts only when the DM-VG transfer is finished. These two DM components are described in VHDL language. They allow to accelerate the data transfer between camera, SDRM and VG interfaces. Initialization DM-Camera transfer valon bus State Free valon bus DM-Camera Transfer End line transfer FIFO-VG State FIFO-VG full

4 3.4. Temporal constraints The temporal constraints which should be respected to realise a real-time solution differ according to the type of application to be achieved. Our purpose is to have the maximum free time to satisfy the real-time constraints in video processing. The transfer between the FIFO and the SDRM can be realised by using the CPU. C program allows to manage and to make this transfer. temporal constraint is imposed because must empty quickly the FIFO to be aligned with the Camera stream and to present the data to the VG interface without delay. The use of the CPU reduces the transfer speed because the interruption initialization and the instructions execution of the C program are slow. Indeed, the transfer of 32 Bits word through the CPU requires a ten clock cycles. For this, we must have clock cycles for one image transfer. To solve this problem, we chose a hardware solution which consists in the realization of a DM (Direct Memory ccess) component allowing the direct data transfer between Camera interface and SDRM. This DM allows the transfer of 32 Bits word in one clock cycle. For the image transfer, we need clock cycles. In this way, the DM transfer is ten times faster than that of the CPU. The stream of data coming from the camera is of 14 Mo/s. The useful video is composed by 640x480 pixels. Since the DM transfer requires one clock cycle for each 32 Bits word, the total transfer time of an image is ms. Therefore, the image transfer represents 4.7% of its duration by using the system clock (50 MHz) with 30 images/s camera rate. The transmitted data stream towards the monitor is 25 Mo/s. The total transfer time of one image by DM-VG is ms. Figure 7. Vertical Video Timing (Frame) The previous chronogram represents the needed time to display one image by VG monitor which is equal to 16.7 ms. The DM-Camera transfer of one image requires ms which represents 9.2% of the total time, in the same way for the DM-VG transfer. Thus, 18.4% of the image period would be necessary for the Camera and VG transfer and 81.6% remain free for the real time processing. 4. Implementation and results fter validation by simulation using Modelsim, compilation and synthesis by Quartus gave the following results. Table3. Table of the results Family LEs ESBs Freq (MHz) Pin E/S Stratix 5594 (52%) 31 (7%) (48%) We notice that the half area of the FPG is occupied by the Nios system (52% of the LEs) whereas the utilized memory capacity is weak (7% ESBs). The maximum frequency is 68.6 MHz. This frequency is limited by the access time to the memory and delay caused by connection with all other peripherals. The implementation of the various peripherals constituting our system leaves sufficient space on the STRTIX programmable component for the addition of other IP modules and the integration of real-time video processing. 5. Conclusions In this study, we proposed a hardware platform of video acquisition and restitution in real time by using a mixed software/hardware environment. The IP modules for video acquisition and restitution are developed and based of DM module in order to interface the two external modules with the FPG component of the development board. The system implementation on the programmable component uses 48% of the inputs/outputs, 52% of the LEs (Logic Elements) and 7% of the ESBs (Embedded System Blocks). The system frequency is 50 MHz. With this frequency, 18.4 % of the image period would be necessary for Camera and VG transfer and 81.6% for the real-time processing algorithms. Our future project will consist to the integration of video processing algorithm as well as the development of real-time video applications. 6. References [1] Y. li and l Hardware-Software Co-Design of Embedded Reconfigurable rchitectures DC 2000, Los ngeles, California [2] F. Ghozzi, P. uel, Ph. Marchegay, cquisition et mémorisation vidéo sur système Excalibur, IEEE Canada, CCGEI 03, Montréal, Mai 2003.

5 [3] M. Finc,. Trost, B. Zajc,. Zemva, HW/SW Codesign of Real-time Video pplications Using a Custom Configurable Prototyping Platform, Electrotechnical Review, Ljubljana, Slovenija, May 21, 2003 [4] ltera Stratix Programmable Logic Device Family Data Sheet, version 2.1, august [5] D.Lewis and l The Stratix TM Routing and Logic rchitecture FPG 03, February 23-25, 2003, Monterey, California, US. [6] H. Kalte, D. Langen, E. Vonnahme,. Brinkmann,and U. Rucket Dynamically Reconfigurable System-on- Programmable-Chip PDP, January 2002, Gran Canaria Island, Spain. [7] NIOS Embedded Processor User s Guide, ltera Corporation, January products/devices/nios/nio-index.html [8] M. Groeneveld VG video controller for the ltera Excalibur processors Data Sheet, version 2.1, May 1st, 2003.

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise 4 Polling and Interrupts The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two methods used to indicate whether or not data can be

More information

Technical Note PowerPC Embedded Processors Video Security with PowerPC

Technical Note PowerPC Embedded Processors Video Security with PowerPC Introduction For many reasons, digital platforms are becoming increasingly popular for video security applications. In comparison to traditional analog support, a digital solution can more effectively

More information

Pivoting Object Tracking System

Pivoting Object Tracking System Pivoting Object Tracking System [CSEE 4840 Project Design - March 2009] Damian Ancukiewicz Applied Physics and Applied Mathematics Department da2260@columbia.edu Jinglin Shen Electrical Engineering Department

More information

Lancelot. VGA video controller for the Altera Nios II processor. V4.0. December 16th, 2005

Lancelot. VGA video controller for the Altera Nios II processor. V4.0. December 16th, 2005 Lancelot VGA video controller for the Altera Nios II processor. V4.0 December 16th, 2005 http://www.microtronix.com 1. Description Lancelot is a VGA video controller for the Altera Nios (II) processor.

More information

Using SignalTap II in the Quartus II Software

Using SignalTap II in the Quartus II Software White Paper Using SignalTap II in the Quartus II Software Introduction The SignalTap II embedded logic analyzer, available exclusively in the Altera Quartus II software version 2.1, helps reduce verification

More information

Design and Implementation of an AHB VGA Peripheral

Design and Implementation of an AHB VGA Peripheral Design and Implementation of an AHB VGA Peripheral 1 Module Overview Learn about VGA interface; Design and implement an AHB VGA peripheral; Program the peripheral using assembly; Lab Demonstration. System

More information

VHDL Design and Implementation of FPGA Based Logic Analyzer: Work in Progress

VHDL Design and Implementation of FPGA Based Logic Analyzer: Work in Progress VHDL Design and Implementation of FPGA Based Logic Analyzer: Work in Progress Nor Zaidi Haron Ayer Keroh +606-5552086 zaidi@utem.edu.my Masrullizam Mat Ibrahim Ayer Keroh +606-5552081 masrullizam@utem.edu.my

More information

L12: Reconfigurable Logic Architectures

L12: Reconfigurable Logic Architectures L12: Reconfigurable Logic Architectures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Frank Honore Prof. Randy Katz (Unified Microelectronics

More information

FPGA based Satellite Set Top Box prototype design

FPGA based Satellite Set Top Box prototype design 9 th International conference on Sciences and Techniques of Automatic control & computer engineering FPGA based Satellite Set Top Box prototype design Mohamed Frad 1,2, Lamjed Touil 1, Néji Gabsi 2, Abdessalem

More information

Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA

Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA Design and Implementation of SOC VGA Controller Using Spartan-3E FPGA 1 ARJUNA RAO UDATHA, 2 B.SUDHAKARA RAO, 3 SUDHAKAR.B. 1 Dept of ECE, PG Scholar, 2 Dept of ECE, Associate Professor, 3 Electronics,

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP General Description The Digital Blocks IP Core decodes an ITU-R BT.656 digital video uncompressed NTSC 720x486 (525/60 Video System) and PAL 720x576 (625/50 Video System)

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP DB3 CCIR 656 Encoder General Description The Digital Blocks DB3 CCIR 656 Encoder IP Core encodes 4:2:2 Y CbCr component digital video with synchronization signals to conform

More information

L11/12: Reconfigurable Logic Architectures

L11/12: Reconfigurable Logic Architectures L11/12: Reconfigurable Logic Architectures Acknowledgements: Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University of California, Berkeley,

More information

Design and analysis of microcontroller system using AMBA- Lite bus

Design and analysis of microcontroller system using AMBA- Lite bus Design and analysis of microcontroller system using AMBA- Lite bus Wang Hang Suan 1,*, and Asral Bahari Jambek 1 1 School of Microelectronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia Abstract.

More information

Block Diagram. dw*3 pixin (RGB) pixin_vsync pixin_hsync pixin_val pixin_rdy. clk_a. clk_b. h_s, h_bp, h_fp, h_disp, h_line

Block Diagram. dw*3 pixin (RGB) pixin_vsync pixin_hsync pixin_val pixin_rdy. clk_a. clk_b. h_s, h_bp, h_fp, h_disp, h_line Key Design Features Block Diagram Synthesizable, technology independent IP Core for FPGA, ASIC and SoC reset underflow Supplied as human readable VHDL (or Verilog) source code Simple FIFO input interface

More information

Implementing VGA Application on FPGA using an Innovative Algorithm with the help of NIOS-II

Implementing VGA Application on FPGA using an Innovative Algorithm with the help of NIOS-II Implementing VGA Application on FPGA using an Innovative Algorithm with the help of NIOS-II Ashish B. Pasaya 1 1 E & C Engg. Department, Sardar Vallabhbhai Patel institute of technology, Vasad, Gujarat,

More information

A video signal processor for motioncompensated field-rate upconversion in consumer television

A video signal processor for motioncompensated field-rate upconversion in consumer television A video signal processor for motioncompensated field-rate upconversion in consumer television B. De Loore, P. Lippens, P. Eeckhout, H. Huijgen, A. Löning, B. McSweeney, M. Verstraelen, B. Pham, G. de Haan,

More information

Block Diagram. 16/24/32 etc. pixin pixin_sof pixin_val. Supports 300 MHz+ operation on basic FPGA devices 2 Memory Read/Write Arbiter SYSTEM SIGNALS

Block Diagram. 16/24/32 etc. pixin pixin_sof pixin_val. Supports 300 MHz+ operation on basic FPGA devices 2 Memory Read/Write Arbiter SYSTEM SIGNALS Key Design Features Block Diagram Synthesizable, technology independent IP Core for FPGA, ASIC or SoC Supplied as human readable VHDL (or Verilog) source code Output supports full flow control permitting

More information

DT3162. Ideal Applications Machine Vision Medical Imaging/Diagnostics Scientific Imaging

DT3162. Ideal Applications Machine Vision Medical Imaging/Diagnostics Scientific Imaging Compatible Windows Software GLOBAL LAB Image/2 DT Vision Foundry DT3162 Variable-Scan Monochrome Frame Grabber for the PCI Bus Key Features High-speed acquisition up to 40 MHz pixel acquire rate allows

More information

FPGA Development for Radar, Radio-Astronomy and Communications

FPGA Development for Radar, Radio-Astronomy and Communications John-Philip Taylor Room 7.03, Department of Electrical Engineering, Menzies Building, University of Cape Town Cape Town, South Africa 7701 Tel: +27 82 354 6741 email: tyljoh010@myuct.ac.za Internet: http://www.uct.ac.za

More information

ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras. Final Design Report

ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras. Final Design Report ECE532 Digital System Design Title: Stereoscopic Depth Detection Using Two Cameras Group #4 Prof: Chow, Paul Student 1: Robert An Student 2: Kai Chun Chou Student 3: Mark Sikora April 10 th, 2015 Final

More information

Design and Implementation of Nios II-based LCD Touch Panel Application System

Design and Implementation of Nios II-based LCD Touch Panel Application System Design and Implementation of Nios II-based Touch Panel Application System Tong Zhang 1, Wen-Ping Ren 2, Yi-Dian Yin, and Song-Hai Zhang School of Information Science and Technology, Yunnan University No.2,

More information

Achieving Timing Closure in ALTERA FPGAs

Achieving Timing Closure in ALTERA FPGAs Achieving Timing Closure in ALTERA FPGAs Course Description This course provides all necessary theoretical and practical know-how to write system timing constraints for variety designs in ALTERA FPGAs.

More information

VID_OVERLAY. Digital Video Overlay Module Rev Key Design Features. Block Diagram. Applications. Pin-out Description

VID_OVERLAY. Digital Video Overlay Module Rev Key Design Features. Block Diagram. Applications. Pin-out Description Key Design Features Block Diagram Synthesizable, technology independent VHDL IP Core Video overlays on 24-bit RGB or YCbCr 4:4:4 video Supports all video resolutions up to 2 16 x 2 16 pixels Supports any

More information

Single Channel LVDS Tx

Single Channel LVDS Tx April 2013 Introduction Reference esign R1162 Low Voltage ifferential Signaling (LVS) is an electrical signaling system that can run at very high speeds over inexpensive twisted-pair copper cables. It

More information

Solutions to Embedded System Design Challenges Part II

Solutions to Embedded System Design Challenges Part II Solutions to Embedded System Design Challenges Part II Time-Saving Tips to Improve Productivity In Embedded System Design, Validation and Debug Hi, my name is Mike Juliana. Welcome to today s elearning.

More information

Design of VGA and Implementing On FPGA

Design of VGA and Implementing On FPGA Design of VGA and Implementing On FPGA Mr. Rachit Chandrakant Gujarathi Department of Electronics and Electrical Engineering California State University, Sacramento Sacramento, California, United States

More information

EECS150 - Digital Design Lecture 10 - Interfacing. Recap and Topics

EECS150 - Digital Design Lecture 10 - Interfacing. Recap and Topics EECS150 - Digital Design Lecture 10 - Interfacing Oct. 1, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

A MISSILE INSTRUMENTATION ENCODER

A MISSILE INSTRUMENTATION ENCODER A MISSILE INSTRUMENTATION ENCODER Item Type text; Proceedings Authors CONN, RAYMOND; BREEDLOVE, PHILLIP Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

Design and implementation (in VHDL) of a VGA Display and Light Sensor to run on the Nexys4DDR board Report and Signoff due Week 6 (October 4)

Design and implementation (in VHDL) of a VGA Display and Light Sensor to run on the Nexys4DDR board Report and Signoff due Week 6 (October 4) ECE 574: Modeling and synthesis of digital systems using Verilog and VHDL Fall Semester 2017 Design and implementation (in VHDL) of a VGA Display and Light Sensor to run on the Nexys4DDR board Report and

More information

BUSES IN COMPUTER ARCHITECTURE

BUSES IN COMPUTER ARCHITECTURE BUSES IN COMPUTER ARCHITECTURE The processor, main memory, and I/O devices can be interconnected by means of a common bus whose primary function is to provide a communication path for the transfer of data.

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

SignalTap Plus System Analyzer

SignalTap Plus System Analyzer SignalTap Plus System Analyzer June 2000, ver. 1 Data Sheet Features Simultaneous internal programmable logic device (PLD) and external (board-level) logic analysis 32-channel external logic analyzer 166

More information

Why FPGAs? FPGA Overview. Why FPGAs?

Why FPGAs? FPGA Overview. Why FPGAs? Transistor-level Logic Circuits Positive Level-sensitive EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 28, 2003 John Wawrzynek Transistor Level clk clk clk Positive

More information

THE USE OF forward error correction (FEC) in optical networks

THE USE OF forward error correction (FEC) in optical networks IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 8, AUGUST 2005 461 A High-Speed Low-Complexity Reed Solomon Decoder for Optical Communications Hanho Lee, Member, IEEE Abstract

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP DB1825 Color Space Converter & Chroma Resampler General Description The Digital Blocks DB1825 Color Space Converter & Chroma Resampler Verilog IP Core transforms 4:4:4 sampled

More information

SignalTap Analysis in the Quartus II Software Version 2.0

SignalTap Analysis in the Quartus II Software Version 2.0 SignalTap Analysis in the Quartus II Software Version 2.0 September 2002, ver. 2.1 Application Note 175 Introduction As design complexity for programmable logic devices (PLDs) increases, traditional methods

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-28 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Starting to make an FPGA Project Alexander Kluge PH ESE FE Division CERN 385,

More information

Design of VGA Controller using VHDL for LCD Display using FPGA

Design of VGA Controller using VHDL for LCD Display using FPGA International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design of VGA Controller using VHDL for LCD Display using FPGA Khan Huma Aftab 1, Monauwer Alam 2 1, 2 (Department of ECE, Integral

More information

This paper is a preprint of a paper accepted by Electronics Letters and is subject to Institution of Engineering and Technology Copyright.

This paper is a preprint of a paper accepted by Electronics Letters and is subject to Institution of Engineering and Technology Copyright. This paper is a preprint of a paper accepted by Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The final version is published and available at IET Digital Library

More information

Interfacing the TLC5510 Analog-to-Digital Converter to the

Interfacing the TLC5510 Analog-to-Digital Converter to the Application Brief SLAA070 - April 2000 Interfacing the TLC5510 Analog-to-Digital Converter to the TMS320C203 DSP Perry Miller Mixed Signal Products ABSTRACT This application report is a summary of the

More information

Innovative Fast Timing Design

Innovative Fast Timing Design Innovative Fast Timing Design Solution through Simultaneous Processing of Logic Synthesis and Placement A new design methodology is now available that offers the advantages of enhanced logical design efficiency

More information

VGA Controller. Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, VGA Controller Components

VGA Controller. Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, VGA Controller Components VGA Controller Leif Andersen, Daniel Blakemore, Jon Parker University of Utah December 19, 2012 Fig. 1. VGA Controller Components 1 VGA Controller Leif Andersen, Daniel Blakemore, Jon Parker University

More information

8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM

8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM Recent Development in Instrumentation System 99 8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM Siti Zarina Mohd Muji Ruzairi Abdul Rahim Chiam Kok Thiam 8.1 INTRODUCTION Optical tomography involves

More information

1ms Column Parallel Vision System and It's Application of High Speed Target Tracking

1ms Column Parallel Vision System and It's Application of High Speed Target Tracking Proceedings of the 2(X)0 IEEE International Conference on Robotics & Automation San Francisco, CA April 2000 1ms Column Parallel Vision System and It's Application of High Speed Target Tracking Y. Nakabo,

More information

An FPGA Based Solution for Testing Legacy Video Displays

An FPGA Based Solution for Testing Legacy Video Displays An FPGA Based Solution for Testing Legacy Video Displays Dale Johnson Geotest Marvin Test Systems Abstract The need to support discrete transistor-based electronics, TTL, CMOS and other technologies developed

More information

2. Logic Elements and Logic Array Blocks in the Cyclone III Device Family

2. Logic Elements and Logic Array Blocks in the Cyclone III Device Family December 2011 CIII51002-2.3 2. Logic Elements and Logic Array Blocks in the Cyclone III Device Family CIII51002-2.3 This chapter contains feature definitions for logic elements (LEs) and logic array blocks

More information

Design of Vision Embedded Platform with AVR

Design of Vision Embedded Platform with AVR Design of Vision Embedded Platform with AVR 1 In-Kyu Jang, 2 Dai-Tchul Moon, 3 Hyoung-Kie Yoon, 4 Jae-Min Jang, 5 Jeong-Seop Seo 1 Dept. of Information & Communication Engineering, Hoseo University, Republic

More information

Modeling Digital Systems with Verilog

Modeling Digital Systems with Verilog Modeling Digital Systems with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 6-1 Composition of Digital Systems Most digital systems can be partitioned into two types

More information

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 29 Minimizing Switched Capacitance-III. (Refer

More information

Reconfigurable Architectures. Greg Stitt ECE Department University of Florida

Reconfigurable Architectures. Greg Stitt ECE Department University of Florida Reconfigurable Architectures Greg Stitt ECE Department University of Florida How can hardware be reconfigurable? Problem: Can t change fabricated chip ASICs are fixed Solution: Create components that can

More information

Digilent Nexys-3 Cellular RAM Controller Reference Design Overview

Digilent Nexys-3 Cellular RAM Controller Reference Design Overview Digilent Nexys-3 Cellular RAM Controller Reference Design Overview General Overview This document describes a reference design of the Cellular RAM (or PSRAM Pseudo Static RAM) controller for the Digilent

More information

Week 5 Dr. David Ward Hybrid Embedded Systems

Week 5 Dr. David Ward Hybrid Embedded Systems Week 5 Dr. David Ward Hybrid Embedded Systems Today s Agenda Discuss Homework and Labs HW #2 due September 24 (this Friday by midnight) Don t start Lab # 5 until next week Work on HW #2 in today s lab

More information

A Symmetric Differential Clock Generator for Bit-Serial Hardware

A Symmetric Differential Clock Generator for Bit-Serial Hardware A Symmetric Differential Clock Generator for Bit-Serial Hardware Mitchell J. Myjak and José G. Delgado-Frias School of Electrical Engineering and Computer Science Washington State University Pullman, WA,

More information

OL_H264e HDTV H.264/AVC Baseline Video Encoder Rev 1.0. General Description. Applications. Features

OL_H264e HDTV H.264/AVC Baseline Video Encoder Rev 1.0. General Description. Applications. Features OL_H264e HDTV H.264/AVC Baseline Video Encoder Rev 1.0 General Description Applications Features The OL_H264e core is a hardware implementation of the H.264 baseline video compression algorithm. The core

More information

EEM Digital Systems II

EEM Digital Systems II ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 334 - Digital Systems II LAB 3 FPGA HARDWARE IMPLEMENTATION Purpose In the first experiment, four bit adder design was prepared

More information

OL_H264MCLD Multi-Channel HDTV H.264/AVC Limited Baseline Video Decoder V1.0. General Description. Applications. Features

OL_H264MCLD Multi-Channel HDTV H.264/AVC Limited Baseline Video Decoder V1.0. General Description. Applications. Features OL_H264MCLD Multi-Channel HDTV H.264/AVC Limited Baseline Video Decoder V1.0 General Description Applications Features The OL_H264MCLD core is a hardware implementation of the H.264 baseline video compression

More information

T1 Deframer. LogiCORE Facts. Features. Applications. General Description. Core Specifics

T1 Deframer. LogiCORE Facts. Features. Applications. General Description. Core Specifics November 10, 2000 Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 E-mail: support@xilinx.com URL: www.xilinx.com/ipcenter Features Supports T1-D4 and T1-ESF

More information

PROCESSOR BASED TIMING SIGNAL GENERATOR FOR RADAR AND SENSOR APPLICATIONS

PROCESSOR BASED TIMING SIGNAL GENERATOR FOR RADAR AND SENSOR APPLICATIONS PROCESSOR BASED TIMING SIGNAL GENERATOR FOR RADAR AND SENSOR APPLICATIONS Application Note ABSTRACT... 3 KEYWORDS... 3 I. INTRODUCTION... 4 II. TIMING SIGNALS USAGE AND APPLICATION... 5 III. FEATURES AND

More information

Design and Implementation of Timer, GPIO, and 7-segment Peripherals

Design and Implementation of Timer, GPIO, and 7-segment Peripherals Design and Implementation of Timer, GPIO, and 7-segment Peripherals 1 Module Overview Learn about timers, GPIO and 7-segment display; Design and implement an AHB timer, a GPIO peripheral, and a 7-segment

More information

PROF. TAJANA SIMUNIC ROSING. Midterm. Problem Max. Points Points Total 150 INSTRUCTIONS:

PROF. TAJANA SIMUNIC ROSING. Midterm. Problem Max. Points Points Total 150 INSTRUCTIONS: CSE 237A FALL 2006 PROF. TAJANA SIMUNIC ROSING Midterm NAME: ID: Solutions Problem Max. Points Points 1 20 2 20 3 30 4 25 5 25 6 30 Total 150 INSTRUCTIONS: 1. There are 6 problems on 11 pages worth a total

More information

RESEARCH AND DEVELOPMENT LOW-COST BOARD FOR EXPERIMENTAL VERIFICATION OF VIDEO PROCESSING ALGORITHMS USING FPGA IMPLEMENTATION

RESEARCH AND DEVELOPMENT LOW-COST BOARD FOR EXPERIMENTAL VERIFICATION OF VIDEO PROCESSING ALGORITHMS USING FPGA IMPLEMENTATION RESEARCH AND DEVELOPMENT LOW-COST BOARD FOR EXPERIMENTAL VERIFICATION OF VIDEO PROCESSING ALGORITHMS USING FPGA IMPLEMENTATION Filipe DIAS, Igor OLIVEIRA, Flávia FREITAS, Francisco GARCIA and Paulo CUNHA

More information

MPEG decoder Case. K.A. Vissers UC Berkeley Chamleon Systems Inc. and Pieter van der Wolf. Philips Research Eindhoven, The Netherlands

MPEG decoder Case. K.A. Vissers UC Berkeley Chamleon Systems Inc. and Pieter van der Wolf. Philips Research Eindhoven, The Netherlands MPEG decoder Case K.A. Vissers UC Berkeley Chamleon Systems Inc. and Pieter van der Wolf Philips Research Eindhoven, The Netherlands 1 Outline Introduction Consumer Electronics Kahn Process Networks Revisited

More information

A low-power portable H.264/AVC decoder using elastic pipeline

A low-power portable H.264/AVC decoder using elastic pipeline Chapter 3 A low-power portable H.64/AVC decoder using elastic pipeline Yoshinori Sakata, Kentaro Kawakami, Hiroshi Kawaguchi, Masahiko Graduate School, Kobe University, Kobe, Hyogo, 657-8507 Japan Email:

More information

Development of an SSTV camera (Use of a commercial product)

Development of an SSTV camera (Use of a commercial product) 10th Annual CubeSat Developers Workshop 2013 Cal Poly, San Luis Obispo California USA Development of an SSTV camera (Use of a commercial product) DROMAS C.*, SWINGEDOUW F., DELAPORTE J., CAPITAINE T. *:

More information

C6845 CRT Controller Megafunction

C6845 CRT Controller Megafunction 查询 C6845 供应商 捷多邦, 专业 PCB 打样工厂,24 小时加急出货 C6845 CRT ler Megafunction General Description The C6845 Cathode Ray Tube ler (CRTC) interfaces a microprocessor to a raster-scan CRT display. The C6845 is a synchronous,

More information

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler Efficient Architecture for Flexible Using Multimodulo G SWETHA, S YUVARAJ Abstract This paper, An Efficient Architecture for Flexible Using Multimodulo is an architecture which is designed from the proposed

More information

FPGA Laboratory Assignment 4. Due Date: 06/11/2012

FPGA Laboratory Assignment 4. Due Date: 06/11/2012 FPGA Laboratory Assignment 4 Due Date: 06/11/2012 Aim The purpose of this lab is to help you understanding the fundamentals of designing and testing memory-based processing systems. In this lab, you will

More information

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits Nov 26, 2002 John Wawrzynek Outline SR Latches and other storage elements Synchronizers Figures from Digital Design, John F. Wakerly

More information

Optimizing area of local routing network by reconfiguring look up tables (LUTs)

Optimizing area of local routing network by reconfiguring look up tables (LUTs) Vol.2, Issue.3, May-June 2012 pp-816-823 ISSN: 2249-6645 Optimizing area of local routing network by reconfiguring look up tables (LUTs) Sathyabhama.B 1 and S.Sudha 2 1 M.E-VLSI Design 2 Dept of ECE Easwari

More information

EECS150 - Digital Design Lecture 12 - Video Interfacing. Recap and Outline

EECS150 - Digital Design Lecture 12 - Video Interfacing. Recap and Outline EECS150 - Digital Design Lecture 12 - Video Interfacing Oct. 8, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John

More information

3. Configuration and Testing

3. Configuration and Testing 3. Configuration and Testing C51003-1.4 IEEE Std. 1149.1 (JTAG) Boundary Scan Support All Cyclone devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan

More information

Enhancing Performance in Multiple Execution Unit Architecture using Tomasulo Algorithm

Enhancing Performance in Multiple Execution Unit Architecture using Tomasulo Algorithm Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

Asynchronous IC Interconnect Network Design and Implementation Using a Standard ASIC Flow

Asynchronous IC Interconnect Network Design and Implementation Using a Standard ASIC Flow Asynchronous IC Interconnect Network Design and Implementation Using a Standard ASIC Flow Bradley R. Quinton*, Mark R. Greenstreet, Steven J.E. Wilton*, *Dept. of Electrical and Computer Engineering, Dept.

More information

A Terabyte Linear Tape Recorder

A Terabyte Linear Tape Recorder A Terabyte Linear Tape Recorder John C. Webber Interferometrics Inc. 8150 Leesburg Pike Vienna, VA 22182 +1-703-790-8500 webber@interf.com A plan has been formulated and selected for a NASA Phase II SBIR

More information

EN2911X: Reconfigurable Computing Topic 01: Programmable Logic. Prof. Sherief Reda School of Engineering, Brown University Fall 2014

EN2911X: Reconfigurable Computing Topic 01: Programmable Logic. Prof. Sherief Reda School of Engineering, Brown University Fall 2014 EN2911X: Reconfigurable Computing Topic 01: Programmable Logic Prof. Sherief Reda School of Engineering, Brown University Fall 2014 1 Contents 1. Architecture of modern FPGAs Programmable interconnect

More information

CHAPTER 6 DESIGN OF HIGH SPEED COUNTER USING PIPELINING

CHAPTER 6 DESIGN OF HIGH SPEED COUNTER USING PIPELINING 149 CHAPTER 6 DESIGN OF HIGH SPEED COUNTER USING PIPELINING 6.1 INTRODUCTION Counters act as important building blocks of fast arithmetic circuits used for frequency division, shifting operation, digital

More information

Viterbi Decoder User Guide

Viterbi Decoder User Guide V 1.0.0, Jan. 16, 2012 Convolutional codes are widely adopted in wireless communication systems for forward error correction. Creonic offers you an open source Viterbi decoder with AXI4-Stream interface,

More information

FPGA Design with VHDL

FPGA Design with VHDL FPGA Design with VHDL Justus-Liebig-Universität Gießen, II. Physikalisches Institut Ming Liu Dr. Sören Lange Prof. Dr. Wolfgang Kühn ming.liu@physik.uni-giessen.de Lecture Digital design basics Basic logic

More information

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Madhavi Anupoju 1, M. Sunil Prakash 2 1 M.Tech (VLSI) Student, Department of Electronics & Communication Engineering, MVGR

More information

PMC-704 Dual Independent Graphics Input/Output PMC

PMC-704 Dual Independent Graphics Input/Output PMC P R O D U C T D ATA S H E E T PMC-704 Dual Independent Graphics Input/Output PMC Features ATI Technologies RADEON Mobility 9000 Visual Processor Unit with - 64 Mbytes integrated high-speed DDR SDRAM -

More information

Frame Processing Time Deviations in Video Processors

Frame Processing Time Deviations in Video Processors Tensilica White Paper Frame Processing Time Deviations in Video Processors May, 2008 1 Executive Summary Chips are increasingly made with processor designs licensed as semiconductor IP (intellectual property).

More information

Advanced System LSIs for Home 3D Systems

Advanced System LSIs for Home 3D Systems ASP-DAC2011 Session 8D-1 Advanced System LSIs for Home 3D Systems January 28, 2011 Takao Suzuki Panasonic Corporation Strategic Semiconductor Development Center Agenda 1. Overview of 3D Systems - Principles

More information

Major Differences Between the DT9847 Series Modules

Major Differences Between the DT9847 Series Modules DT9847 Series Dynamic Signal Analyzer for USB With Low THD and Wide Dynamic Range The DT9847 Series are high-accuracy, dynamic signal acquisition modules designed for sound and vibration applications.

More information

Dual Link DVI Receiver Implementation

Dual Link DVI Receiver Implementation Dual Link DVI Receiver Implementation This application note describes some features of single link receivers that must be considered when using 2 devices for a dual link application. Specific characteristics

More information

Verification Methodology for a Complex System-on-a-Chip

Verification Methodology for a Complex System-on-a-Chip UDC 621.3.049.771.14.001.63 Verification Methodology for a Complex System-on-a-Chip VAkihiro Higashi VKazuhide Tamaki VTakayuki Sasaki (Manuscript received December 1, 1999) Semiconductor technology has

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP General Description The Digital Blocks core is a full function equivalent to the Motorola MC6845 device. The interfaces a microprocessor to a raster-scan CRT display. The

More information

Embedded System Design

Embedded System Design Embedded System Design p. 1/2 Embedded System Design Prof. Stephen A. Edwards sedwards@cs.columbia.edu Spring 2007 Spot the Computer Embedded System Design p. 2/2 Embedded System Design p. 3/2 Hidden Computers

More information

DC Ultra. Concurrent Timing, Area, Power and Test Optimization. Overview

DC Ultra. Concurrent Timing, Area, Power and Test Optimization. Overview DATASHEET DC Ultra Concurrent Timing, Area, Power and Test Optimization DC Ultra RTL synthesis solution enables users to meet today s design challenges with concurrent optimization of timing, area, power

More information

DEDICATED TO EMBEDDED SOLUTIONS

DEDICATED TO EMBEDDED SOLUTIONS DEDICATED TO EMBEDDED SOLUTIONS DESIGN SAFE FPGA INTERNAL CLOCK DOMAIN CROSSINGS ESPEN TALLAKSEN DATA RESPONS SCOPE Clock domain crossings (CDC) is probably the worst source for serious FPGA-bugs that

More information

VHDL test bench for digital image processing systems using a new image format

VHDL test bench for digital image processing systems using a new image format VHDL test bench for digital image processing systems using a new image format A. Zuloaga, J. L. Martín, U. Bidarte, J. A. Ezquerra Department of Electronics and Telecommunications, University of the Basque

More information

Video Painting Group Report

Video Painting Group Report Video Painting Group Report Opal Densmore Kei-Ming Kwong Wahid Rahman Digital System Design (ECE532H1S) Prof. Paul Chow TA: Jasmina Vasiljevic April 10, 2014 Contents List of Figures... ii List of Tables...

More information

ISSCC 2006 / SESSION 18 / CLOCK AND DATA RECOVERY / 18.6

ISSCC 2006 / SESSION 18 / CLOCK AND DATA RECOVERY / 18.6 18.6 Data Recovery and Retiming for the Fully Buffered DIMM 4.8Gb/s Serial Links Hamid Partovi 1, Wolfgang Walthes 2, Luca Ravezzi 1, Paul Lindt 2, Sivaraman Chokkalingam 1, Karthik Gopalakrishnan 1, Andreas

More information

LUT Optimization for Memory Based Computation using Modified OMS Technique

LUT Optimization for Memory Based Computation using Modified OMS Technique LUT Optimization for Memory Based Computation using Modified OMS Technique Indrajit Shankar Acharya & Ruhan Bevi Dept. of ECE, SRM University, Chennai, India E-mail : indrajitac123@gmail.com, ruhanmady@yahoo.co.in

More information

Logic Analyzer Triggering Techniques to Capture Elusive Problems

Logic Analyzer Triggering Techniques to Capture Elusive Problems Logic Analyzer Triggering Techniques to Capture Elusive Problems Efficient Solutions to Elusive Problems For digital designers who need to verify and debug their product designs, logic analyzers provide

More information

Experiment: FPGA Design with Verilog (Part 4)

Experiment: FPGA Design with Verilog (Part 4) Department of Electrical & Electronic Engineering 2 nd Year Laboratory Experiment: FPGA Design with Verilog (Part 4) 1.0 Putting everything together PART 4 Real-time Audio Signal Processing In this part

More information

DNA-STP-SYNC Synchronization and Screw Terminal Panel. User Manual

DNA-STP-SYNC Synchronization and Screw Terminal Panel. User Manual DNA-STP-SYNC Synchronization and Screw Terminal Panel User Manual Accessory Panel for PowerDNA Cube (DNA) Systems February 2009 Edition PN Man-DNA-STP-SYNC-0209 Version 1.2 Copyright 1998-2009 All rights

More information

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher.

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher. National Park Service Photo Utah 400 Series 1 Digital Routing Switcher Utah Scientific has been involved in the design and manufacture of routing switchers for audio and video signals for over thirty years.

More information

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School Course Name : : ELECTRICAL ENGINEERING 2 ND YEAR ELECTRONIC DESIGN LAB Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School of

More information