FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model

Size: px
Start display at page:

Download "FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model"

Transcription

1 FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model Norio Matsui Applied Simulation Technology 2025 Gateway Place #318 San Jose, CA USA matsui@apsimtech.com Neven Orhanovic Applied Simulation Technology 2025 gateway Place #318 San Jose, CA USA neven@apsimtech.com Hiroshi Wabuka NEC Corporation 4-1-1, Miyazaki, Miyamae-ku, Kawasaki, Japan h-wabuka@bl.jp.nec.com Abstract A method of macro modeling power and ground circuits of an LSI IC taking into account internal gates has been proposed. Major contributors to Simultaneous Switching Output Noise (SSO) and Electromagnetic Interference (EMI) are the power and ground currents of clock circuits in internal gates which are modeled using simple Flip-Flop circuits by summing their gate widths and interconnection capacitances. Using such a macro model, methods for reducing SSO and EMI for such LSI chips are analyzed by FDTD_SPICE. It is shown that the major contributor to SSO and EMI is not I/O circuitry but internal gates. The most effective way to reduce such noise is to implement large decoupling capacitors into a chip. Keywords EMI, SSO, macro model, decoupling capacitors, LSI, FDTD, FDTD_SPICE, SPICE. INTRODUCTION As switching speed and integration of LSI ICs are increased, power and ground noise analysis becomes important, as well as signal integrity. Simultaneous switching output noise (SSO) and common mode Electromagnetic Interference (EMI) should be managed. Conventional signal integrity analysis widely uses I/O buffer models such as IBIS and/or SPICE. To accurately simulate SSO and EMI an I/O buffer model is not enough, because it does not describe power and ground system very well. A power and ground current model of LSI ICs is needed. Since power and ground rails and meshes in an LSI chip are connected to a large number of gates, the internal gate model becomes too large to be used for noise simulation. Therefore, SSO and EMI analysis needs a simplified macro model of LSI ICs. There are two methods to get LSI IC s macro model. The first one is obtained by direct measurement of radiation from LSI ICs [1]. Several methods have been proposed for standardization. Measurement is expensive and time consuming. It needs real ICs. The measurement is normally performed for one loading condition. It is very difficult to get a general model for power and ground currents taking into account loading effect by measurement. The other method is to use computers to automatically extract a macro model from LSI CAD database. One of the early works was proposed in [2]. This assumes triangle current waveforms. Since output impedance is not modeled, the loading effect of power and ground cannot be considered. We have developed a macro modeling system for LSI ICs that accesses the LSI CAD database and considers internal gates and I/O buffers [3]. Since the proposed model is based on SPICE transistor models, it automatically considers waveforms and power loading effect. Once an accurate LSI macro model is obtained by the computer program, we can apply it to SSO and EMI simulation considering imperfect power and ground planes which may have many via holes and slits. We apply an extracted macro model to investigate the effect of decoupling capacitors at various locations such as on board, on package, and on chip on SSO and EMI by using FDTD_SPICE. FDTD_SPICE is a powerful method for the time domain analysis of signal, power, and ground interconnections including nonlinear devices [4 7]. LSI MACRO MODELING USING CAD DATABASE As shown in Fig. 1, an LSI chip is decomposed into internal gates and I/O buffer circuits. Today s LSI ICs have millions of transistors. This number is too large to be used for system level noise simulation. We have developed an automated system to make a simplified macro model of an LSI IC. Figure 1. Typical CMOS LSI circuit /02/$ IEEE 99

2 From our analysis of several CMOS LSI ICs, it is found that the major contributors to power ground switching are clock circuits which comprise about 10% of the internal gate circuits. The rest of the internal gates behave as static filter circuits between power and ground rails. Therefore, the main job in the macro modeling is to simplify the clock circuits. CMOS LSIs mostly use Flip-Flop circuits and inverters. Figure 2 illustrates current flows for two switching stages of a Flip-Flop. Two inverters flow current from VDD to VSS in turn. Figure 3. Summation of Flip-Flop circuits. Figure 2. Current Flow in a Flip-Flop circuit. The simplification process used in the program is described below. 1. First, the clock nets must be specified in the LSI CAD data base. 2. To choose only the clock circuits from the net list of the internal gates, the searching program must be stopped when finding the terminal circuits which are usually Flip-Flops. Therefore, the primitive Flip-Flop circuit names must be prepared before running. 3. All the Flip-Flop circuits connected to the same net are combined into one Flip-Flop circuit shown in Fig. 3. During this process the widths of all the p-ch transistors and all the n-ch transistors are summed, respectively (Fig. 4). As a result, summed p-ch and n-ch transistor widths become very large. All the interconnection capacitances in the CAD data base are also summed. 4. A Flip-Flop primitive circuit may consist of 4 to 40 transistors. This must be simplified to one or two inverters as shown in Fig. 5. The large power consuming transistors must be chosen in this simplification. 5. Similarly, the remaining non-clock circuits are modeled as one Flip-Flop with huge transistor widths. Since non-clock circuits are 50% on 50% off on the average, the resulting Flip-Flop is DC biased. Figure 4. Summation of P-ch and N-ch transistor widths. Figure 5. Two stage inverters simplify complex Flip-Flop. Finally, two or three Flip-Flop circuits are obtained as clock and non-clock macro models for the internal gates. A simplified LCR model of the IC package lead frame is added, resulting in a full chip macro model. Figure 6 shows a macro model of an LSI IC. For instance, 800,000 logic circuits can be converted into a macro model with detailed model (500 transistors) or simplified model (14 transistors) in a few minutes. There are tradeoffs among accuracy, speed, and convergence depending on the number of transistors used in the final macro model. Since all the primitive circuits were written in an internal SPICE, the MOS models were converted into IMIC format Table SPICE [8]. The simulated current waveform at power ports is shown in Fig

3 Figure 6. Final macro model described in SPICE using transistor models with huge gate widths. Figure 9. Comparison of power port currents of the LSI by magnetic probe. To confirm the accuracy of this macro model, we measured currents with a newly developed micro probe shown in Figure 8. The probe measures near magnetic fields. Figure 9 compares measured and simulated power port currents. Figure 7. Simulated current waveform of a 32-bit LSI (Current: A). Figure 8. Magnetic Probe and Test Board. ANALYSIS OF PCB SSO AND EMI WITH FULL CHIP MACRO MODEL USING FDTD_SPICE This section describes applications of the macro full chip model to Simultaneous Switching Output Noise and common mode Electromagnetic Interference using FDTD SPICE. Analysis method FDTD_SPICE is straightforward method for simulating 3D full-wave and nonlinear circuits in the time domain. The problem is partitioned into two parts. The first part is the nonlinear circuit part that is solved using SPICE and the second part is the linear distributed part that is solved using FDTD (Finite Difference Time Domain Method). Ports that connect the SPICE partition to the FDTD partition are chosen. The two methods are coupled through ports exchanging port voltage and current information at each time step. The procedure is illustrated in Fig. 10. We used this method for analyzing PCB and EMI, because FDTD_SPICE is very convenient for simulating complex imperfect power, ground, and signal traces with macro SPICE full chip models. 101

4 SSO Analysis The schematic of the simulated four layer board is illustrated in Fig. 12. We investigated the effect of decoupling capacitors on SSO (Power and Ground noise). Figure 10. FDTD_SPICE ports. Simulation model We made a simple numerical model for simulation. The board size is 210 mm 160 mm with four layers (signal power plane with a slit solid ground plane signal). The printed circuit board is modeled by FDTD and the LSI is modeled by SPICE. Two LSIs described in the former section are mounted on this board. The LSI has 40 output gates. Both output and internal gates are described in Table SPICE. The internal gates and output gates are clocked at 23MHz (44ns) and 15MHz (66ns), respectively. Figure 11 shows the no load current waveforms for these two parts. It should be noted that the currents from the internal gates are much higher than those of the I/O circuits. This is why conventional simulation using I/O buffer models has never succeeded in SSO or EMI analysis. Figure 12. Schematic of simulation model. Figures 13 and 14 show a typical simulation results for SSO and electric fields on the upper power plane. On board capacitor still has large noise which is measured by the peak to peak voltage of power bounce. On chip capacitor may drastically reduce the noise close to ideal ground. Figure 11. I/O and internal gate currents of an LSI. Figure 13. Typical SSO (Power Bounce) evaluation (Voltage: V). 102

5 Figure 14. Electric fields on a split power plane for on-board capacitor and on-chip capacitor. Figure 15 also compares the effect of a decoupling capacitor on SSO for on-board, on-package, and on-chip placements. From Fig. 16 it is found that decoupling capacitors should be located as close as possible to internal gates. In addition, even if decoupling capacitance values are increased, the SSO will not be reduced under certain values. This behavior may be caused by not removing board pattern and package inductances. Figure 16. Relationship between decoupling ca pacitor value and SSO. EMI Analysis The same model was used for common mode EMI simulation. EMI analysis using FDTD_SPICE is divided into two steps. First FDTD_SPICE extracts currents on the planes and traces. Then the extracted currents are used to calculate far fields [9]. The electric fields for the horizontal polarization are simulated for turn table height = 0.8 m, antenna height = 1 m, and the distance between turntable and antenna is 3 m with turn table rotation angles from 0 to 360 degrees. Figure 17 compares radiation patterns between the internal gate and the I/O circuits. This confirms the radiation from the internal gate currents are much higher than that of I/O circuits. Figure 15. Effect of decoupling capacitors at various locations on SSO. Figure 17. Comparison of radiation pattern from inner gates and from I/O circuits at 100MHz (5dB/µVm per ring). 103

6 Figure 18 also shows the effect of on-chip decoupling capacitors. On-chip decoupling capacitors are very effective in the elimination of common mode radiation. Although it is not shown, the inductance component of a decoupling capacitor (ESL) is also very important for the effective capacitance. As the capacitance value is increased, the ESL is also increases where the decoupling capacitors will not work as expected. Figure 18. Comparison of radiation pattern between no capacitors and on-chip capacitor. CONCLUSION Conventional signal integrity analysis has been performed using I/O buffer models such as IBIS, where perfect ground is assumed. In contrast, SSO or EMI are caused by power and ground currents of LSI ICs. Accurate analysis of SSO and EMI needs accurate LSI power and ground models. To simulate or analyze system level SSO and EMI, it is necessary to get a simple enough model with accurately represented internal gate currents along power and ground leads of the whole chip. We have developed a method to obtain a simple macro model for an LSI chip which has millions of transistors. It is found that the major contributors to power and ground currents are currents along clock gate nets, which represent 10% of all the gates, and that the rest of the gates behave as decoupling capacitors. A whole chip is modeled by a couple of Flip-Flop circuits with large gate widths and interconnection capacitances. The simulated currents of power and ground of an LSI processor show good agreement with the currents measured with a near field probe. Using an extracted macro model for the internal gate model, we investigated noise reduction techniques for LSI chips. Electric and magnetic fields, voltage and current distributions and waveforms, and far field EMI can be successfully simulated. To reduce both EMI and SSO, the most effective approach is to implement decoupling capacitors on the chip. The developed techniques can be applied to optimize the LSI performance by predicting noise for system level. REFERENCES [1] M. Coenen, On-chip Measures to Achieve EMC, 12 th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, pp.31-36, February, [2] K. Shimazaki, H. Tsujikawa, S. Kojima, and S. Hirano, LEMINGS: LSI s EMI-Noise Analysis with Gate Level Simulator, IEEE 1 st International Symposium on Quality Electronic Design, pp , March, [3] N. Matsui and H. Wabuka, LSI Power and Ground Model for EMI Simulation, IBIS Summit, January [4] W. Sui, D. A. Christensen, and C. H. Durney, Extending the Two-Dimensional FDTD Method to Hybrid Electromagnetic Systems with Active and Passive Lumped Elements, IEEE Trans. on Microwave Theory and Techniques, Vol. 40, No.4, pp , April, [5] M. Picket-May, A. Taflove, and J. Baron, FD-TD Modeling of Digital Signal Propagation in 3-D Circuits With Passive and Active Loads, IEEE Trans. on Microwave Theory and Techniques, Vol. 42, No.8, pp , August, [6] N. Orhanovic, R. Raghuram, and N. Matsui, Nonlinear Full Wave Time Domain Solutions using FDTD_SPICE for High Speed Digital and RF, DesignCon, January [7] N. Orhanovic and N. Matsui, Full Wave Signal and Power Integrity Analysis of Printed Circuit Boards Using 2D and 3D FDTD_SPICE Methods, DesignCon, January [8] R. Raghuram, Validation of EIAJ IMIC Models, IBIS Summit, December [9] N. Matsui, R. Raghuram, and D. Divekar, SPICE Based Analysis of Radiation from PCBs and Related Structures, International Symposium on Electronic Compatibility, pp , August

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043 EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP Due 16.05. İLKER KALYONCU, 10043 1. INTRODUCTION: In this project we are going to design a CMOS positive edge triggered master-slave

More information

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 J. M. Bussat 1, G. Bohner 1, O. Rossetto 2, D. Dzahini 2, J. Lecoq 1, J. Pouxe 2, J. Colas 1, (1) L. A. P. P. Annecy-le-vieux, France (2) I. S. N. Grenoble,

More information

High Speed Digital Design Seminar

High Speed Digital Design Seminar High Speed Digital Design Seminar Introduction to Black Magic, with Dr. Howard Johnson About this course Printable Index 1. Vocabulary of Signal Integrity High Speed Digital Design: Opening Lecture. HSDD

More information

Optimizing BNC PCB Footprint Designs for Digital Video Equipment

Optimizing BNC PCB Footprint Designs for Digital Video Equipment Optimizing BNC PCB Footprint Designs for Digital Video Equipment By Tsun-kit Chin Applications Engineer, Member of Technical Staff National Semiconductor Corp. Introduction An increasing number of video

More information

ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2

ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2 ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2 The goal of this project is to design a chip that could control a bicycle taillight to produce an apparently random flash sequence. The chip should operate

More information

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533 Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop Course project for ECE533 I. Objective: REPORT-I The objective of this project is to design a 4-bit counter and implement it into a chip

More information

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 Project Overview This project was originally titled Fast Fourier Transform Unit, but due to space and time constraints, the

More information

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME Mr.N.Vetriselvan, Assistant Professor, Dhirajlal Gandhi College of Technology Mr.P.N.Palanisamy,

More information

Troubleshooting EMI in Embedded Designs White Paper

Troubleshooting EMI in Embedded Designs White Paper Troubleshooting EMI in Embedded Designs White Paper Abstract Today, engineers need reliable information fast, and to ensure compliance with regulations for electromagnetic compatibility in the most economical

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Introductory Digital Systems Laboratory Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 - Introductory Digital Systems Laboratory How to Make Your 6.111 Project Work There are a few tricks

More information

Clocking Spring /18/05

Clocking Spring /18/05 ing L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle L06 s 2 igital Systems Timing Conventions All digital systems need a convention

More information

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications N.KIRAN 1, K.AMARNATH 2 1 P.G Student, VRS & YRN College of Engineering & Technology, Vodarevu Road, Chirala 2 HOD & Professor,

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

Power Reduction Techniques for a Spread Spectrum Based Correlator

Power Reduction Techniques for a Spread Spectrum Based Correlator Power Reduction Techniques for a Spread Spectrum Based Correlator David Garrett (garrett@virginia.edu) and Mircea Stan (mircea@virginia.edu) Center for Semicustom Integrated Systems University of Virginia

More information

DESIGN OF LOW POWER TEST PATTERN GENERATOR

DESIGN OF LOW POWER TEST PATTERN GENERATOR International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 4, Issue 1, Feb 2014, 59-66 TJPRC Pvt.

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 5 Sequential circuits design - Timing issues ELEN0040 5-228 1 Sequential circuits design 1.1 General procedure 1.2

More information

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Course Number: ECE 533 Spring 2013 University of Tennessee Knoxville Instructor: Dr. Syed Kamrul Islam Prepared by

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a highly linear passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation

More information

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS * SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEUENTIAL CIRCUITS * Wu Xunwei (Department of Electronic Engineering Hangzhou University Hangzhou 328) ing Wu Massoud Pedram (Department of Electrical

More information

Figure.1 Clock signal II. SYSTEM ANALYSIS

Figure.1 Clock signal II. SYSTEM ANALYSIS International Journal of Advances in Engineering, 2015, 1(4), 518-522 ISSN: 2394-9260 (printed version); ISSN: 2394-9279 (online version); url:http://www.ijae.in RESEARCH ARTICLE Multi bit Flip-Flop Grouping

More information

An FPGA Implementation of Shift Register Using Pulsed Latches

An FPGA Implementation of Shift Register Using Pulsed Latches An FPGA Implementation of Shift Register Using Pulsed Latches Shiny Panimalar.S, T.Nisha Priscilla, Associate Professor, Department of ECE, MAMCET, Tiruchirappalli, India PG Scholar, Department of ECE,

More information

System-Level Timing Closure Using IBIS Models

System-Level Timing Closure Using IBIS Models System-Level Timing Closure Using IBIS Models Barry Katz President/CTO, SiSoft Asian IBIS Summit Asian IBIS Summit Tokyo, Japan - October 31, 2006 Signal Integrity Software, Inc. Agenda High Speed System

More information

CCD Element Linear Image Sensor CCD Element Line Scan Image Sensor

CCD Element Linear Image Sensor CCD Element Line Scan Image Sensor 1024-Element Linear Image Sensor CCD 134 1024-Element Line Scan Image Sensor FEATURES 1024 x 1 photosite array 13µm x 13µm photosites on 13µm pitch Anti-blooming and integration control Enhanced spectral

More information

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.5, OCTOBER, 08 ISSN(Print) 598-657 https://doi.org/57/jsts.08.8.5.640 ISSN(Online) -4866 A Modified Static Contention Free Single Phase Clocked

More information

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Reduction of Area and Power of Shift Register Using Pulsed Latches

Reduction of Area and Power of Shift Register Using Pulsed Latches I J C T A, 9(13) 2016, pp. 6229-6238 International Science Press Reduction of Area and Power of Shift Register Using Pulsed Latches Md Asad Eqbal * & S. Yuvaraj ** ABSTRACT The timing element and clock

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

Performance Modeling and Noise Reduction in VLSI Packaging

Performance Modeling and Noise Reduction in VLSI Packaging Performance Modeling and Noise Reduction in VLSI Packaging Ph.D. Defense Brock J. LaMeres University of Colorado October 7, 2005 October 7, 2005 Performance Modeling and Noise Reduction in VLSI Packaging

More information

Design Project: Designing a Viterbi Decoder (PART I)

Design Project: Designing a Viterbi Decoder (PART I) Digital Integrated Circuits A Design Perspective 2/e Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolić Chapters 6 and 11 Design Project: Designing a Viterbi Decoder (PART I) 1. Designing a Viterbi

More information

DESIGN AND SIMULATION OF A CIRCUIT TO PREDICT AND COMPENSATE PERFORMANCE VARIABILITY IN SUBMICRON CIRCUIT

DESIGN AND SIMULATION OF A CIRCUIT TO PREDICT AND COMPENSATE PERFORMANCE VARIABILITY IN SUBMICRON CIRCUIT DESIGN AND SIMULATION OF A CIRCUIT TO PREDICT AND COMPENSATE PERFORMANCE VARIABILITY IN SUBMICRON CIRCUIT Sripriya. B.R, Student of M.tech, Dept of ECE, SJB Institute of Technology, Bangalore Dr. Nataraj.

More information

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18532-18540 Pulsed Latches Methodology to Attain Reduced Power and Area Based

More information

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop 1 S.Mounika & 2 P.Dhaneef Kumar 1 M.Tech, VLSIES, GVIC college, Madanapalli, mounikarani3333@gmail.com

More information

Microwave Laboratory

Microwave Laboratory TENDER FOR Item No. 2 Microwave Laboratory (UGC) FOR Department of Electronics and Telecommunication Engineering Dr. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - 402 03 TAL. MANGAON, DIST. RAIGAD

More information

A low-power portable H.264/AVC decoder using elastic pipeline

A low-power portable H.264/AVC decoder using elastic pipeline Chapter 3 A low-power portable H.64/AVC decoder using elastic pipeline Yoshinori Sakata, Kentaro Kawakami, Hiroshi Kawaguchi, Masahiko Graduate School, Kobe University, Kobe, Hyogo, 657-8507 Japan Email:

More information

Retiming Sequential Circuits for Low Power

Retiming Sequential Circuits for Low Power Retiming Sequential Circuits for Low Power José Monteiro, Srinivas Devadas Department of EECS MIT, Cambridge, MA Abhijit Ghosh Mitsubishi Electric Research Laboratories Sunnyvale, CA Abstract Switching

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY epartment of Electrical Engineering and Computer Science 6.374: Analysis and esign of igital Integrated Circuits Problem Set # 5 Fall 2003 Issued: 10/28/03 ue: 11/12/03

More information

LFSR Counter Implementation in CMOS VLSI

LFSR Counter Implementation in CMOS VLSI LFSR Counter Implementation in CMOS VLSI Doshi N. A., Dhobale S. B., and Kakade S. R. Abstract As chip manufacturing technology is suddenly on the threshold of major evaluation, which shrinks chip in size

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation and spurious

More information

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register International Journal for Modern Trends in Science and Technology Volume: 02, Issue No: 10, October 2016 http://www.ijmtst.com ISSN: 2455-3778 Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift

More information

Digital Circuits I and II Nov. 17, 1999

Digital Circuits I and II Nov. 17, 1999 Physics 623 Digital Circuits I and II Nov. 17, 1999 Digital Circuits I 1 Purpose To introduce the basic principles of digital circuitry. To understand the small signal response of various gates and circuits

More information

Static Timing Analysis for Nanometer Designs

Static Timing Analysis for Nanometer Designs J. Bhasker Rakesh Chadha Static Timing Analysis for Nanometer Designs A Practical Approach 4y Spri ringer Contents Preface xv CHAPTER 1: Introduction / 1.1 Nanometer Designs 1 1.2 What is Static Timing

More information

Innovative Fast Timing Design

Innovative Fast Timing Design Innovative Fast Timing Design Solution through Simultaneous Processing of Logic Synthesis and Placement A new design methodology is now available that offers the advantages of enhanced logical design efficiency

More information

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking.

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking. EE141-Fall 2011 Digital Integrated Circuits Lecture 2 Clock, I/O Timing 1 4 Administrative Stuff Pipelining Project Phase 4 due on Monday, Nov. 21, 10am Homework 9 Due Thursday, December 1 Visit to Intel

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop Sumant Kumar et al. 2016, Volume 4 Issue 1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Improve Performance of Low-Power

More information

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate

Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Parametric Optimization of Clocked Redundant Flip-Flop Using Transmission Gate Sapna Sadhwani Student, Department of ECE Lakshmi Narain College of Technology Bhopal, India srsadhwani@gmail.comm Abstract

More information

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE

LOW POWER AND HIGH PERFORMANCE SHIFT REGISTERS USING PULSED LATCH TECHNIQUE OI: 10.21917/ijme.2018.0088 LOW POWER AN HIGH PERFORMANCE SHIFT REGISTERS USING PULSE LATCH TECHNIUE Vandana Niranjan epartment of Electronics and Communication Engineering, Indira Gandhi elhi Technical

More information

VLSI Design Digital Systems and VLSI

VLSI Design Digital Systems and VLSI VLSI Design Digital Systems and VLSI Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author 1 Overview Why VLSI? IC Manufacturing CMOS Technology

More information

Reconfigurable Neural Net Chip with 32K Connections

Reconfigurable Neural Net Chip with 32K Connections Reconfigurable Neural Net Chip with 32K Connections H.P. Graf, R. Janow, D. Henderson, and R. Lee AT&T Bell Laboratories, Room 4G320, Holmdel, NJ 07733 Abstract We describe a CMOS neural net chip with

More information

PICOSECOND TIMING USING FAST ANALOG SAMPLING

PICOSECOND TIMING USING FAST ANALOG SAMPLING PICOSECOND TIMING USING FAST ANALOG SAMPLING H. Frisch, J-F Genat, F. Tang, EFI Chicago, Tuesday 6 th Nov 2007 INTRODUCTION In the context of picosecond timing, analog detector pulse sampling in the 10

More information

Powering Collaboration and Innovation in the Simulation Design Flow Agilent EEsof Design Forum 2010

Powering Collaboration and Innovation in the Simulation Design Flow Agilent EEsof Design Forum 2010 Powering Collaboration and Innovation in the Simulation Design Flow Agilent EEsof Design Forum 2010 Channel Simulator and AMI model support within ADS Page 1 Contributors to this Paper José Luis Pino,

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009.

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009. 55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009 Introduction In this project we will create a transistor-level model of

More information

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP 1 R.Ramya, 2 C.Hamsaveni 1,2 PG Scholar, Department of ECE, Hindusthan Institute Of Technology,

More information

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED)

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) Chapter 2 Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) ---------------------------------------------------------------------------------------------------------------

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn: IC Layout Design of Decoder Using Electrical VLSI System Design 1.UPENDRA CHARY CHOKKELLA Assistant Professor Electronics & Communication Department, Guru Nanak Institute Of Technology-Ibrahimpatnam (TS)-India

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

3-Channel 8-Bit D/A Converter

3-Channel 8-Bit D/A Converter FUJITSU SEMICONDUCTOR DATA SHEET DS04-2316-2E ASSP 3-Channel -Bit D/A Converter MB409 DESCRIPTION The MB409 is an -bit resolution ultra high-speed digital-to-analog converter, designed for video processing

More information

Facedown Terminations Improve Ripple Current Capability

Facedown Terminations Improve Ripple Current Capability Facedown Terminations Improve Ripple Current Capability John Prymak 1,Peter Blais 2, Bill Long 3 KEMET Electronics Corp. PO Box 5928, Greenville, SC 29606 1 66 Concord St., Suite Z, Wilmington, MA 01887

More information

CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm

CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm Overview: In this assignment you will design a register cell. This cell should be a single-bit edge-triggered D-type

More information

A Low Power Delay Buffer Using Gated Driver Tree

A Low Power Delay Buffer Using Gated Driver Tree IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 26-30 A Low Power Delay Buffer Using Gated Driver Tree Kokkilagadda

More information

Efficient 500 MHz Digital Phase Locked Loop Implementation sin 180nm CMOS Technology

Efficient 500 MHz Digital Phase Locked Loop Implementation sin 180nm CMOS Technology Efficient 500 MHz Digital Phase Locked Loop Implementation sin 180nm CMOS Technology Akash Singh Rawat 1, Kirti Gupta 2 Electronics and Communication Department, Bharati Vidyapeeth s College of Engineering,

More information

Behavioral Modeling of a Charge Pump Voltage Converter for SoC Functional Verification Purposes

Behavioral Modeling of a Charge Pump Voltage Converter for SoC Functional Verification Purposes Behavioral Modeling of a Charge Pump Voltage Converter for SoC Functional Verification Purposes Dalia H. El-Ebiary Mohamed A. Dessouky Hassan El-Ghitani Mentor Graphics Mentor Graphics Misr International

More information

2 The Essentials of Binary Arithmetic

2 The Essentials of Binary Arithmetic ENGG1000: Engineering esign and Innovation Stream: School of EE&T Lecture Notes Chapter 5: igital Circuits A/Prof avid Taubman April5,2007 1 Introduction This chapter can be read at any time after Chapter

More information

CMOS DESIGN OF FLIP-FLOP ON 120nm

CMOS DESIGN OF FLIP-FLOP ON 120nm CMOS DESIGN OF FLIP-FLOP ON 120nm *Neelam Kumar, **Anjali Sharma *4 th Year Student, Department of EEE, AP Goyal Shimla University Shimla, India. neelamkumar991@gmail.com ** Assistant Professor, Department

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

EEC 116 Fall 2011 Lab #5: Pipelined 32b Adder

EEC 116 Fall 2011 Lab #5: Pipelined 32b Adder EEC 116 Fall 2011 Lab #5: Pipelined 32b Adder Dept. of Electrical and Computer Engineering University of California, Davis Issued: November 2, 2011 Due: November 16, 2011, 4PM Reading: Rabaey Sections

More information

Cascadable 4-Bit Comparator

Cascadable 4-Bit Comparator EE 415 Project Report for Cascadable 4-Bit Comparator By William Dixon Mailbox 509 June 1, 2010 INTRODUCTION... 3 THE CASCADABLE 4-BIT COMPARATOR... 4 CONCEPT OF OPERATION... 4 LIMITATIONS... 5 POSSIBILITIES

More information

ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE

ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE *Pranshu Sharma, **Anjali Sharma * Assistant Professor, Department of ECE AP Goyal Shimla University, Shimla,

More information

Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications

Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications Matthew Cooke, Hamid Mahmoodi-Meimand, Kaushik Roy School of Electrical and Computer Engineering, Purdue University, West

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興國立高雄大學資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error

More information

HIGH SPEED CLOCK DISTRIBUTION NETWORK USING CURRENT MODE DOUBLE EDGE TRIGGERED FLIP FLOP WITH ENABLE

HIGH SPEED CLOCK DISTRIBUTION NETWORK USING CURRENT MODE DOUBLE EDGE TRIGGERED FLIP FLOP WITH ENABLE HIGH SPEED CLOCK DISTRIBUTION NETWORK USING CURRENT MODE DOUBLE EDGE TRIGGERED FLIP FLOP WITH ENABLE 1 Remil Anita.D, and 2 Jayasanthi.M, Karpagam College of Engineering, Coimbatore,India. Email: 1 :remiljobin92@gmail.com;

More information

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology.

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. T.Vijay Kumar, M.Tech Associate Professor, Dr.K.V.Subba Reddy Institute of Technology.

More information

A Power Efficient Flip Flop by using 90nm Technology

A Power Efficient Flip Flop by using 90nm Technology A Power Efficient Flip Flop by using 90nm Technology Mrs. Y. Lavanya Associate Professor, ECE Department, Ramachandra College of Engineering, Eluru, W.G (Dt.), A.P, India. Email: lavanya.rcee@gmail.com

More information

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

Low-Power and Area-Efficient Shift Register Using Pulsed Latches Low-Power and Area-Efficient Shift Register Using Pulsed Latches G.Sunitha M.Tech, TKR CET. P.Venkatlavanya, M.Tech Associate Professor, TKR CET. Abstract: This paper proposes a low-power and area-efficient

More information

Analog, Mixed-Signal, and Radio-Frequency (RF) Electronic Design Laboratory. Electrical and Computer Engineering Department UNC Charlotte

Analog, Mixed-Signal, and Radio-Frequency (RF) Electronic Design Laboratory. Electrical and Computer Engineering Department UNC Charlotte Analog, Mixed-Signal, and Radio-Frequency (RF) Electronic Design Laboratory Electrical and Computer Engineering Department UNC Charlotte Teaching and Research Faculty (Please see faculty web pages for

More information

Low Power D Flip Flop Using Static Pass Transistor Logic

Low Power D Flip Flop Using Static Pass Transistor Logic Low Power D Flip Flop Using Static Pass Transistor Logic 1 T.SURIYA PRABA, 2 R.MURUGASAMI PG SCHOLAR, NANDHA ENGINEERING COLLEGE, ERODE, INDIA Abstract: Minimizing power consumption is vitally important

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC

DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC DESIGN AND ANALYSIS OF COMBINATIONAL CODING CIRCUITS USING ADIABATIC LOGIC ARCHITA SRIVASTAVA Integrated B.tech(ECE) M.tech(VLSI) Scholar, Jayoti Vidyapeeth Women s University, Rajasthan, India, Email:

More information

Low-Noise Downconverters through Mixer-LNA Integration

Low-Noise Downconverters through Mixer-LNA Integration Low-Noise Downconverters through Mixer-LNA Integration Carlos E. Saavedra Associate Professor Dept. of Electrical & Comp. Engineering Queen s University, Kingston, Ontario CANADA IEEE International Microwave

More information

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology Divya shree.m 1, H. Venkatesh kumar 2 PG Student, Dept. of ECE, Nagarjuna College of Engineering

More information

Combining Dual-Supply, Dual-Threshold and Transistor Sizing for Power Reduction

Combining Dual-Supply, Dual-Threshold and Transistor Sizing for Power Reduction Combining Dual-Supply, Dual-Threshold and Transistor Sizing for Reduction Stephanie Augsburger 1, Borivoje Nikolić 2 1 Intel Corporation, Enterprise Processors Division, Santa Clara, CA, USA. 2 Department

More information

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011 Practical De-embedding for Gigabit fixture Ben Chia Senior Signal Integrity Consultant 5/17/2011 Topics Why De-Embedding/Embedding? De-embedding in Time Domain De-embedding in Frequency Domain De-embedding

More information

IC Mask Design. Christopher Saint Judy Saint

IC Mask Design. Christopher Saint Judy Saint IC Mask Design Essential Layout Techniques Christopher Saint Judy Saint McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

More information

Performance Driven Reliable Link Design for Network on Chips

Performance Driven Reliable Link Design for Network on Chips Performance Driven Reliable Link Design for Network on Chips Rutuparna Tamhankar Srinivasan Murali Prof. Giovanni De Micheli Stanford University Outline Introduction Objective Logic design and implementation

More information

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance Novel Low Power and Low Transistor Count Flip-Flop Design with High Performance Imran Ahmed Khan*, Dr. Mirza Tariq Beg Department of Electronics and Communication, Jamia Millia Islamia, New Delhi, India

More information

Dac3 White Paper. These Dac3 goals where to be achieved through the application and use of optimum solutions for:

Dac3 White Paper. These Dac3 goals where to be achieved through the application and use of optimum solutions for: Dac3 White Paper Design Goal The design goal for the Dac3 was to set a new standard for digital audio playback components through the application of technical advances in Digital to Analog Conversion devices

More information

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing Universal Journal of Electrical and Electronic Engineering 4(2): 67-72, 2016 DOI: 10.13189/ujeee.2016.040204 http://www.hrpub.org Investigation of Digital Signal Processing of High-speed DACs Signals for

More information

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC02 March 1986 GENERAL DESCRIPTION The is a colour decoder for the PAL standard, which is pin sequent compatible with multistandard decoder

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) OCTAL BUS TRANSCEIVER/REGISTER WITH 3 STATE OUTPUTS HIGH SPEED: f MAX = 60 MHz (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.)

More information

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver EM MICROELECTRONIC - MARIN SA 2, 4 and 8 Mutiplex LCD Driver Description The is a universal low multiplex LCD driver. The version 2 drives two ways multiplex (two blackplanes) LCD, the version 4, four

More information

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY

DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY DESIGN AND IMPLEMENTATION OF SYNCHRONOUS 4-BIT UP COUNTER USING 180NM CMOS PROCESS TECHNOLOGY Yogita Hiremath 1, Akalpita L. Kulkarni 2, J. S. Baligar 3 1 PG Student, Dept. of ECE, Dr.AIT, Bangalore, Karnataka,

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 25: Sequential Logic: Flip-flop Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems

Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power Systems IJECT Vo l. 7, Is s u e 2, Ap r i l - Ju n e 2016 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Comparative Analysis of Pulsed Latch and Flip-Flop based Shift Registers for High-Performance and Low-Power

More information

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response nmos transistor asics of VLSI Design and Test If the gate is high, the switch is on If the gate is low, the switch is off Mohammad Tehranipoor Drain ECE495/695: Introduction to Hardware Security & Trust

More information

GS1881, GS4881, GS4981 Monolithic Video Sync Separators

GS1881, GS4881, GS4981 Monolithic Video Sync Separators GS11, GS1, GS91 Monolithic Video Sync Separators DATA SHEET FEATURES noise tolerant odd/even flag, back porch and horizontal sync pulse fast recovery from impulse noise excellent temperature stability.5

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 65 MSPS DUAL ADC

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 65 MSPS DUAL ADC LTC2286, LTC2287, LTC2288, LTC2290, LTC2291, LTC2292, LTC2293, LTC2294, LTC2295, LTC2296, LTC2297, LTC2298 or LTC2299 DESCRIPTION Demonstration circuit 816 supports a family of s. Each assembly features

More information

Avoiding False Pass or False Fail

Avoiding False Pass or False Fail Avoiding False Pass or False Fail By Michael Smith, Teradyne, October 2012 There is an expectation from consumers that today s electronic products will just work and that electronic manufacturers have

More information

25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC

25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC 25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC Lane Brooks and Hae-Seung Lee Massachusetts Institute of Technology 1 Outline Motivation Review of Op-amp & Comparator-Based Circuits Introduction of

More information