Avoiding False Pass or False Fail

Size: px
Start display at page:

Download "Avoiding False Pass or False Fail"

Transcription

1 Avoiding False Pass or False Fail By Michael Smith, Teradyne, October 2012 There is an expectation from consumers that today s electronic products will just work and that electronic manufacturers have continued to improve the quality of their products. In most cases, this has been achieved by employing inspection systems to monitor and identify any problems within the manufactured product. This information is used to fix the product and fine-tune the manufacturing process that may have caused the problem in the first place. Any inspection system, whether electrical- or image-based, needs to detect as many defects as possible. A major challenge in this process is determining if the inspection system has accurately detected a defect. Test procedures that run on the inspection systems need guaranteed high defect-detection capability without any increase in the number of false failures. False failures can be very expensive in labor and repair costs as well as the material replacement and the potential reduction in long-term product reliability. False failures also can lead to issues with the process control systems as they try to correct process issues, which really are inspection-system issues. Inspection systems need to be 100% reliable in real defect detection, and there are many tools that can be used to identify test program quality, provide and measure stability, and generate lists of potential defects that can and cannot be detected. There mainly are two types of electrical test systems used in PCB inspection. Final test normally is performed by a functional test system or integrated system test, which has access by edge connectors or external connectors and tests the complete board or functional blocks on the board. The second type of electrical tester breaks the board up into functional blocks and individual devices using in-circuit test techniques to isolate each device or block. Traditional in-circuit test systems or manufacturing defect analyzers use a bed-of-nails interface while flying-probes systems have four or more movable probes that perform simple electrical measurements. Defect Types Before we look at test quality, it is important to understand the types of defects we are trying to find. For diagnostic purposes, defects can be divided into two types. The first type is a defect such as a short, open, missing, or nonfunctioning device that stops the PCB from working correctly. These normally are easy to verify by a diagnostic and repair technician because they are absolute defects that affect the performance of the board. If the test system cannot detect this type of defect, then it is straightforward to understand why. The classic example of an electrical test system not finding a clear defect is a missing capacitor when it is used for decoupling power on the board. One capacitor missing from a large number of parallel devices cannot be measured because it is well within the tolerance of the total capacitance used to decouple the board. 1

2 The second type of defect is a subjective defect, which may or may not cause a PCB to work correctly or cause a failure in the future. These are defects whose measurement by the test system is close to the limits of the test of a particular device. With electrical test, these limits normally are the tolerance limits from the device manufacturer but actually should be the limits required for the PCB design to work correctly. Another example of a subjective electrical defect is the capacitance measurement from a test technique like FrameScan or TestJet/VTEP (for testing open pins on connectors or devices) that is learned using a known-good board. In electrical test, these subjective measurements can be moved to quality absolute limits using signal measurement algorithms to eliminate the effects of noise. These tools improve measurement reliability and reduce the false failure possibilities associated with subjective defects. This is in contrast to image inspection systems where the number of subjective measurements generates a high degree of false failures and false passes. Component position, solder-joint shape, and color are simple examples of defects that can be classed as subjective and generate the significant number of false failures common with imaging systems. Automatic Test Program Generation Generating test programs by hand should only be performed by experienced engineers who are trying to test critical functions of a PCB. For general electrical inspection, an automatic test generation method should be used so that the source design information generates the tests. CAD information, including parts lists with component types and tolerances, interconnection, and layout information can be critical in determining possible defects such as adjacent-pin and track shorts. With PCB information, tests can be generated to match the board s configuration. Simple tests like shorts can be automatically generated which reflect the nets used on the board and take into account any low-resistance paths. These low-resistance paths then can be measured to make sure the impedance path is correct for each board. All the nodes in the net list must be tested for shorts and opens. If for some reason they are not tested, such as lack of electrical access, that fact can be documented. Similarly, all the devices that are listed in the parts list should have tests generated for them or a reason given as to why not. The list of devices that cannot be tested can be reviewed, and other test techniques can be applied to add test coverage. If a digital device is highlighted as not tested because it has no test vector-based model, then either a test can be created or a capacitive open test technique such as FrameScan can be used to verify that each pin of the device is connected to the correct net. Other devices that cannot be tested can be passed to other inspection systems. For example, imaging techniques can be used to inspect decoupling capacitors. After the test program has been completed, there is confidence that the PCB can be tested to a certain level. However, test coverage still is theoretical and needs to be verified by using the program to test the target PCB.\ Test Program Verification and Calibration Tools Once the test program has been debugged using the target PCB and fixture, and then a complete review of the test-program quality can take place. Some of this will be a manual process, but many tools are available to help review test coverage and test quality. 2

3 The stability of any test can be verified by running the test multiple times and making sure the test always passes. If the test can be run at least 100 times without failing, it still may have problems, and statistical analysis then can be applied to analyze the accuracy and stability of the test. Figure 1 presents the results from a simple test of a resistor that has been run 100 times. The analysis shows that the average measurement is 2.48k with a mean of 2.49k, demonstrating that the measurements are not central. The standard deviation (sigma) shows how much variation exists from the mean. A small standard deviation indicates that the measurement results tend to be very close to the mean whereas high standard deviation indicates that the results are spread out over a large range of values. The Process Capability (Cp) number is a simple and straightforward indicator of process capability based on the calculated sigma number; the Process Capability Index (Cpk) is an adjustment of Cp for the effect of noncentered distribution. In this example, the six-sigma measurement limits for this test would be 2.345k and 2.655k. This is around 6% tolerance rather than the current 5% tolerance that has been calculated by the automatic test generator based on the component tolerance and the effects of the surrounding circuits and fixture. Therefore, this test statistically may fail about one to two times in every 100 tests. A Cpk above 2 would be optimal for this type of measurement because this would indicate just one failure in 50 million but any Cpk number above 1 probably is acceptable. As Cpk deals with asymmetric issues where the average measurement is closer to one of the two limits, it is the preferred indictor of a stable measurement. All analog tests need to be reviewed Figure 1. Statistical Report From a Resistor Measurement to get the highest Cpk possible with either the tests being adjusted to tighten the measurement value or the limits adjusted to match the board design limits. If it is impossible to improve the Cpk number for a particular test, then it needs to be highlighted as a possible source of false failures and reviewed if it fails during the production test. 3

4 Due to the number of tests for analog devices on a board, a test system should be able to take inputs from the programmer, automatically make changes to the test to help stabilize it, and give confidence that tests will find defects and not produce false failures. Figure 2 shows the results before and after adjustments with only 33 tests out of 2,164 considered marginal and in need of additional manual debug to avoid possible future false failures. Figure 2. Results From an Automatic Analog Adjust Process The automatic test generator deals with shorts test generation, and the statistical analysis provides stable analog measurements. However, the problem is more complex because a major source of defects on a board is digital device pins. Typical defect opportunities for an analog device with two pins would be three while digital devices have multiple pins. As defect opportunities are a function of pin-count, then a 16-pin device has 17 opportunities while a processor can have 1,500+ opportunities. Failure rates measured as defects-per-million opportunities (DPMO) for devices are around 250 while the equivalent pin faults are around 400. This means that a board with 300 analog components and 10 digital devices, with an average of 64 pins per device, would have similar DPMO rates between the analog and digital. The digital-pin DPMO for this example would be around 0.25 defects per board, making it important to verify that all defects on pins of a digital device can be detected. To detect defects on digital inputs and outputs with test vectors, all outputs need to go high and low during a test, and the test system needs to simulate that each input stuck low and then stuck high will cause the digital test to fail. If the test system drives the input low for the entire test and the test passes, then it indicates that an input stuck low defect or an open pin that floats low cannot be detected. The same is true for a simulated high and the open pin floating high case. In some cases, it may be difficult to generate vectors that can test all inputs. When that occurs, additional test techniques can be used, such as analog open techniques to give incremental coverage on input or output pins. 4

5 If tests cannot be added at this stage, then other test stages can be informed of the deficiency and tests can be developed if required. The escaped defects, identified this way, can be used as a relevant starting point for any diagnostic when tests fail at later stages. Once the analog and digital quality tools have been run on the debugged PCB, then a report can be generated that summarizes the results as in Figure 3 with detailed information about each defect available. This can be used to verify the defect coverage for production or as part of an acceptance document for test procedures provided by third parties, such as a test programming house. Figure 3. Overall Summary of Defect Detection Electrical Inspection in Production Once volume production is available, then additional quality tools can be used to gather more information about the quality of the test procedures. For the first few boards produced on the manufacturing line, all analog values can be collected for every test, and the same statistical analysis can be performed to make sure that the Cpk values are still within requirements (Figure 4). Figure 4. Sample of R49 From 22 Different Boards 5

6 Any intermittent digital tests also can be addressed at that time, but typically digital tests will be stable if normal in-circuit programming procedures are used such as applying inhibits and disables to all surrounding devices. Digital test quality tends not to change over time unlike analog tests where device tolerances do vary from batch to batch and supplier to supplier. During production, only failure information normally would be recorded but, due to the potential drift in values, occasionally full value logging should be turned on to check that the test program still is stable and that device tolerances have not changed. Fixture interfaces also may deteriorate with additional contact resistance on certain nodes that can affect guarded analog tests, and changes in the Cpk number will help identify problems. A third reason for turning on full datalogging and comparing against previous versions is to make sure the test program has not been changed without it being documented. Documented changes will occur with ECOs to the product and changes to the manufacturing process. However, by comparing results, undocumented changes can be found and corrected, giving the manufacturer confidence that the test program, fixture, and test system are performing as they did when the test procedure was introduced. Conclusion Using source information taken from the CAD system to generate tests automatically will provide a one-to-one relation between the PCB and the test program that has been generated by the test system. Using statistical tools on the analog measurement with Cpk values greater than one (six sigma) provides confidence in the accuracy and stability of the test procedure and minimizes and identifies potential false failures. Automated digital hardware fault-insertion techniques support accurate defect detection and escape information, which also can be used at functional and system test to aid with diagnostics. Production audits of the test procedure will keep the program stable and identify any changes that have been made, resulting in test procedures with the highest defect-detection capability and the lowest false failure rate. About the Author Michael J. Smith has more than 30 years experience in the automatic test and inspection equipment industry with Marconi, GenRad, and Teradyne. He has authored numerous papers and articles and chaired inemi s Test and Inspection Roadmaping Group for a number years. Smith received a BSc(Hons) in control engineering from Leicester University and is a Member of the Institution of Engineering and Technology. smithmj@btinternet.com Published in October 2012 issue of Evaluation Engineering 6

A Briefing on IEEE Standard Test Access Port And Boundary-Scan Architecture ( AKA JTAG )

A Briefing on IEEE Standard Test Access Port And Boundary-Scan Architecture ( AKA JTAG ) A Briefing on IEEE 1149.1 1990 Standard Test Access Port And Boundary-Scan Architecture ( AKA JTAG ) Summary With the advent of large Ball Grid Array (BGA) and fine pitch SMD semiconductor devices the

More information

MULTIPLE TPS REHOST FROM GENRAD 2235 TO S9100

MULTIPLE TPS REHOST FROM GENRAD 2235 TO S9100 MULTIPLE TPS REHOST FROM GENRAD 2235 TO S9100 AL L I A N C E S U P P O R T PAR T N E R S, I N C. D AV I D G U I N N ( D AV I D. G U I N N @ A S P - S U P P O R T. C O M ) L I N YAN G ( L I N. YAN G @ A

More information

Figure 2: components reduce board area by 57% over 0201 components, which themselves reduced board area by 66% over 0402 types (source Murata).

Figure 2: components reduce board area by 57% over 0201 components, which themselves reduced board area by 66% over 0402 types (source Murata). 01005 production goes industry wide Satoshi Kataoka, Production Manager, Assembléon Asia Pacific Region and Eric Klaver, Commercial Product Manager, Assembléon, The Netherlands The introduction of the

More information

Saving time & money with JTAG

Saving time & money with JTAG Saving time & money with JTAG AltiumLive 2017: ANNUAL PCB DESIGN SUMMIT Simon Payne CEO, XJTAG Ltd. Saving time and money with JTAG JTAG / IEEE 1149.X Take-away points Get JTAG right from the start Use

More information

Scan. This is a sample of the first 15 pages of the Scan chapter.

Scan. This is a sample of the first 15 pages of the Scan chapter. Scan This is a sample of the first 15 pages of the Scan chapter. Note: The book is NOT Pinted in color. Objectives: This section provides: An overview of Scan An introduction to Test Sequences and Test

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

18 Nov 2015 Testing and Programming PCBA s. 1 JTAG Technologies

18 Nov 2015 Testing and Programming PCBA s. 1 JTAG Technologies 8 Nov 25 Testing and Programming PCBA s JTAG Technologies The importance of Testing Don t ship bad products to your customers, find problems before they do. DOA s (Death On Arrival) lead to huge costs

More information

16 Dec Testing and Programming PCBA s. 1 JTAG Technologies

16 Dec Testing and Programming PCBA s. 1 JTAG Technologies 6 Dec 24 Testing and Programming PCBA s JTAG Technologies The importance of Testing Don t ship bad products to your customers, find problems before they do. DOA s (Death On Arrival) lead to huge costs

More information

Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test

Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Agenda Introduction to testing Logical

More information

UNIT IV CMOS TESTING. EC2354_Unit IV 1

UNIT IV CMOS TESTING. EC2354_Unit IV 1 UNIT IV CMOS TESTING EC2354_Unit IV 1 Outline Testing Logic Verification Silicon Debug Manufacturing Test Fault Models Observability and Controllability Design for Test Scan BIST Boundary Scan EC2354_Unit

More information

Based on slides/material by. Topic 14. Testing. Testing. Logic Verification. Recommended Reading:

Based on slides/material by. Topic 14. Testing. Testing. Logic Verification. Recommended Reading: Based on slides/material by Topic 4 Testing Peter Y. K. Cheung Department of Electrical & Electronic Engineering Imperial College London!! K. Masselos http://cas.ee.ic.ac.uk/~kostas!! J. Rabaey http://bwrc.eecs.berkeley.edu/classes/icbook/instructors.html

More information

At-speed Testing of SOC ICs

At-speed Testing of SOC ICs At-speed Testing of SOC ICs Vlado Vorisek, Thomas Koch, Hermann Fischer Multimedia Design Center, Semiconductor Products Sector Motorola Munich, Germany Abstract This paper discusses the aspects and associated

More information

Tools to Debug Dead Boards

Tools to Debug Dead Boards Tools to Debug Dead Boards Hardware Prototype Bring-up Ryan Jones Senior Application Engineer Corelis 1 Boundary-Scan Without Boundaries click to start the show Webinar Outline What is a Dead Board? Prototype

More information

How to overcome/avoid High Frequency Effects on Debug Interfaces Trace Port Design Guidelines

How to overcome/avoid High Frequency Effects on Debug Interfaces Trace Port Design Guidelines How to overcome/avoid High Frequency Effects on Debug Interfaces Trace Port Design Guidelines An On-Chip Debugger/Analyzer (OCD) like isystem s ic5000 (Figure 1) acts as a link to the target hardware by

More information

Design for Testability

Design for Testability TDTS 01 Lecture 9 Design for Testability Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 9 The test problems Fault modeling Design for testability techniques Zebo Peng, IDA, LiTH

More information

Unit V Design for Testability

Unit V Design for Testability Unit V Design for Testability Outline Testing Logic Verification Silicon Debug Manufacturing Test Fault Models Observability and Controllability Design for Test Scan BIST Boundary Scan Slide 2 Testing

More information

7 Nov 2017 Testing and programming PCBA s

7 Nov 2017 Testing and programming PCBA s 7 Nov 207 Testing and programming PCBA s Rob Staals JTAG Technologies Email: robstaals@jtag.com JTAG Technologies The importance of Testing Don t ship bad products to your customers, find problems before

More information

Ilmenau, 9 Dec 2016 Testing and programming PCBA s. 1 JTAG Technologies

Ilmenau, 9 Dec 2016 Testing and programming PCBA s. 1 JTAG Technologies Ilmenau, 9 Dec 206 Testing and programming PCBA s JTAG Technologies The importance of Testing Don t ship bad products to your customers, find problems before they do. DOA s (Death On Arrival) lead to huge

More information

Digital Integrated Circuits Lecture 19: Design for Testability

Digital Integrated Circuits Lecture 19: Design for Testability Digital Integrated Circuits Lecture 19: Design for Testability Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University cwliu@twins.ee.nctu.edu.tw DIC-Lec19 cwliu@twins.ee.nctu.edu.tw 1 Outline

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Switch less Bidirectional RF Amplifier for 2.4 GHz Wireless Sensor Networks Hilmi Kayhan Yılmaz and Korkut Yeğin Department of Electrical and Electronics Eng. Yeditepe University, Istanbul, 34755 Turkey

More information

Fieldbus Testing with Online Physical Layer Diagnostics

Fieldbus Testing with Online Physical Layer Diagnostics Technical White Paper Fieldbus Testing with Online Physical Layer Diagnostics The significant benefits realized by the latest fully automated fieldbus construction & pre-commissioning hardware, software

More information

Using on-chip Test Pattern Compression for Full Scan SoC Designs

Using on-chip Test Pattern Compression for Full Scan SoC Designs Using on-chip Test Pattern Compression for Full Scan SoC Designs Helmut Lang Senior Staff Engineer Jens Pfeiffer CAD Engineer Jeff Maguire Principal Staff Engineer Motorola SPS, System-on-a-Chip Design

More information

the Boundary Scan perspective

the Boundary Scan perspective the Boundary Scan perspective Rik Doorneweert, JTAG Technologies rik@jtag.com www.jtag.com Subjects Economics of testing Test methods and strategy Boundary scan at: Component level Board level System level

More information

ScanExpress JET. Combining JTAG Test with JTAG Emulation to Reduce Prototype Development Time. Ryan Jones Corelis, Inc. An EWA Technologies Company

ScanExpress JET. Combining JTAG Test with JTAG Emulation to Reduce Prototype Development Time. Ryan Jones Corelis, Inc. An EWA Technologies Company ScanExpress JET Combining JTAG Test with JTAG Emulation to Reduce Prototype Development Time Ryan Jones Corelis, Inc. An EWA Technologies Company What Is ScanExpress JET? A powerful combination of boundary-scan

More information

for Digital IC's Design-for-Test and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ

for Digital IC's Design-for-Test and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ Design-for-Test for Digital IC's and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ 07458 www.phptr.com ISBN D-13-DflMfla7-l : Ml H Contents Preface Acknowledgments Introduction

More information

Testing Digital Systems II

Testing Digital Systems II Testing Digital Systems II Lecture 5: Built-in Self Test (I) Instructor: M. Tahoori Copyright 2010, M. Tahoori TDS II: Lecture 5 1 Outline Introduction (Lecture 5) Test Pattern Generation (Lecture 5) Pseudo-Random

More information

Analog Performance-based Self-Test Approaches for Mixed-Signal Circuits

Analog Performance-based Self-Test Approaches for Mixed-Signal Circuits Analog Performance-based Self-Test Approaches for Mixed-Signal Circuits Tutorial, September 1, 2015 Byoungho Kim, Ph.D. Division of Electrical Engineering Hanyang University Outline State of the Art for

More information

BOARD TEST The powerful combination of flying probe test and JTAG test speeds up testing

BOARD TEST The powerful combination of flying probe test and JTAG test speeds up testing BOARD TEST The powerful combination of flying probe test and JTAG test speeds up testing By Olivier Artur (Alcatel CIT), Christophe Lotz (ASTER Ingénierie) and Peter de Bruyn Kops (Acugen Software, Inc.)

More information

Application Note AN SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note

Application Note AN SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note Application Note AN-1133 SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note Table of Contents Page Inspection techniques... 3 Examples of good assembly... 3 Summary of rejection criteria...

More information

Evaluating Oscilloscope Mask Testing for Six Sigma Quality Standards

Evaluating Oscilloscope Mask Testing for Six Sigma Quality Standards Evaluating Oscilloscope Mask Testing for Six Sigma Quality Standards Application Note Introduction Engineers use oscilloscopes to measure and evaluate a variety of signals from a range of sources. Oscilloscopes

More information

PACSystems* RX3i. Isolated Thermocouple Input Module, 6 Channels, IC695ALG306-EB Isolated Thermocouple Input Module, 12 Channels, IC695ALG312-EB

PACSystems* RX3i. Isolated Thermocouple Input Module, 6 Channels, IC695ALG306-EB Isolated Thermocouple Input Module, 12 Channels, IC695ALG312-EB September 2013 PACSystems* RX3i Isolated Thermocouple Input Module, 6 Channels, IC695ALG306-EB Isolated Thermocouple Input Module, 12 Channels, IC695ALG312-EB Isolated +24 VDC Power Isolated Thermocouple

More information

XJTAG. Boundary Scan Tool. diagnosys.com

XJTAG. Boundary Scan Tool. diagnosys.com XJTAG Boundary Scan Tool diagnosys.com XJLink Overview The XJLink is a small, portable, USB 2.0 to JTAG adapter that provides a high speed interface (480Mbps) to the JTAG chain. The small, lightweight

More information

EMI/EMC diagnostic and debugging

EMI/EMC diagnostic and debugging EMI/EMC diagnostic and debugging 1 Introduction to EMI The impact of Electromagnetism Even on a simple PCB circuit, Magnetic & Electric Field are generated as long as current passes through the conducting

More information

DP1 DYNAMIC PROCESSOR MODULE OPERATING INSTRUCTIONS

DP1 DYNAMIC PROCESSOR MODULE OPERATING INSTRUCTIONS DP1 DYNAMIC PROCESSOR MODULE OPERATING INSTRUCTIONS and trouble-shooting guide LECTROSONICS, INC. Rio Rancho, NM INTRODUCTION The DP1 Dynamic Processor Module provides complete dynamic control of signals

More information

PACSystems* RX3i Thermocouple Input Module, 12 Channels, IC695ALG412-CB

PACSystems* RX3i Thermocouple Input Module, 12 Channels, IC695ALG412-CB September 2013 PACSystems* RX3i Thermocouple Input Module, 12 Channels, IC695ALG412-CB The PACSystems * Thermocouple Input module IC695ALG412 provides twelve isolated differential thermocouple input channels.

More information

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

SWITCH: Microcontroller Touch-switch Design & Test (Part 2) SWITCH: Microcontroller Touch-switch Design & Test (Part 2) 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON v2.09 Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Timetable... 2

More information

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011 Practical De-embedding for Gigabit fixture Ben Chia Senior Signal Integrity Consultant 5/17/2011 Topics Why De-Embedding/Embedding? De-embedding in Time Domain De-embedding in Frequency Domain De-embedding

More information

Design for Test. Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective.

Design for Test. Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective. Design for Test Definition: Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective. Types: Design for Testability Enhanced access Built-In

More information

American Power Design, Inc.

American Power Design, Inc. FEATURES 4 Customer Selects Output Voltage 4 Outputs to 8000 Vdc 4 Proportional Output Voltage 4 Six-Sided Shielded Case 4 60 khz Switching Frequency 4 5000 Vdc Output Isolation 4 Continuous Short Circuit

More information

Monoblock RF Filter Testing SMA, In-Fixture Calibration and the UDCK

Monoblock RF Filter Testing SMA, In-Fixture Calibration and the UDCK Application Note AN1008 Introduction Monoblock RF Filter Testing SMA, In-Fixture Calibration and the UDCK Factory testing needs to be accurate and quick. While the most accurate (and universally available)

More information

Is Optical Test Just an Illusion? By Lloyd Doyle. Background

Is Optical Test Just an Illusion? By Lloyd Doyle. Background Is Optical Test Just an Illusion? By Lloyd Doyle Background Automatic Optical Test first came to the printed circuits industry in the mid-1980s when its inventors were frustrated at buying their prototype

More information

M4000 Diagnostic Test System For Power Apparatus Condition Assessment

M4000 Diagnostic Test System For Power Apparatus Condition Assessment Knowledge Is Power SM The World Leader in Diagnostic Test Instruments and Knowledge Services for Electric Power M4000 Diagnostic Test System For Power Apparatus Condition Assessment The world s most advanced

More information

BTC and SMT Rework Challenges

BTC and SMT Rework Challenges BTC and SMT Rework Challenges Joerg Nolte Ersa GmbH Wertheim, Germany Abstract Rising customer demands in the field of PCB repair are a daily occurrence as the rapid electronic industry follows new trends

More information

Troubleshooting EMI in Embedded Designs White Paper

Troubleshooting EMI in Embedded Designs White Paper Troubleshooting EMI in Embedded Designs White Paper Abstract Today, engineers need reliable information fast, and to ensure compliance with regulations for electromagnetic compatibility in the most economical

More information

Remote Diagnostics and Upgrades

Remote Diagnostics and Upgrades Remote Diagnostics and Upgrades Tim Pender -Eastman Kodak Company 10/03/03 About this Presentation Motivation for Remote Diagnostics Reduce Field Maintenance costs Product needed to support 100 JTAG chains

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn: IC Layout Design of Decoder Using Electrical VLSI System Design 1.UPENDRA CHARY CHOKKELLA Assistant Professor Electronics & Communication Department, Guru Nanak Institute Of Technology-Ibrahimpatnam (TS)-India

More information

of Boundary Scan techniques.

of Boundary Scan techniques. SMT TEHNOLOGY Boundary Scan Techniques for Test Coverage Improvement When discussing the JTAG protocol, most engineers immediately think of In System Programming procedures. Indeed, there are numerous

More information

Solutions to Embedded System Design Challenges Part II

Solutions to Embedded System Design Challenges Part II Solutions to Embedded System Design Challenges Part II Time-Saving Tips to Improve Productivity In Embedded System Design, Validation and Debug Hi, my name is Mike Juliana. Welcome to today s elearning.

More information

Agilent 87075C Multiport Test Set Product Overview

Agilent 87075C Multiport Test Set Product Overview Agilent 87075C Multiport Test Set Product Overview A complete 75 ohm system for cable TV device manufacturers Now, focus on testing, not reconnecting! For use with the Agilent 8711 C-Series of network

More information

Lecture 18 Design For Test (DFT)

Lecture 18 Design For Test (DFT) Lecture 18 Design For Test (DFT) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ASIC Test Two Stages Wafer test, one die at a time, using probe card production

More information

Application Note AN39

Application Note AN39 AN39 9380 Carroll Park Drive San Diego, CA 92121, USA Tel: 858-731-9400 Fax: 858-731-9499 www.psemi.com Vector De-embedding of the PE42542 and PE42543 SP4T RF Switches Introduction Obtaining accurate measurement

More information

What to look for when choosing an oscilloscope

What to look for when choosing an oscilloscope What to look for when choosing an oscilloscope Alan Tong (Pico Technology Ltd.) Introduction For many engineers, choosing a new oscilloscope can be daunting there are hundreds of different models to choose

More information

Digital Strobe Tuner. w/ On stage Display

Digital Strobe Tuner. w/ On stage Display Page 1/7 # Guys EEL 4924 Electrical Engineering Design (Senior Design) Digital Strobe Tuner w/ On stage Display Team Members: Name: David Barnette Email: dtbarn@ufl.edu Phone: 850-217-9147 Name: Jamie

More information

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

data and is used in digital networks and storage devices. CRC s are easy to implement in binary Introduction Cyclic redundancy check (CRC) is an error detecting code designed to detect changes in transmitted data and is used in digital networks and storage devices. CRC s are easy to implement in

More information

#P46. Time Domain Reflectometry. Q: What is TDR and how does it work?

#P46. Time Domain Reflectometry. Q: What is TDR and how does it work? #P46 Time Domain Reflectometry is a technique used to determine the signal s distance from source to load. The delay found inherent in the environment can be compensated for through automatic calibration,

More information

Computer-Guided Harness Assembly

Computer-Guided Harness Assembly 1 Computer-Guided Harness Assembly Computer-Guided Harness Assembly 1 Background Advances in computer automation over the last 30 years have brought huge increases in productivity to electronics manufacturing.

More information

Innovative Fast Timing Design

Innovative Fast Timing Design Innovative Fast Timing Design Solution through Simultaneous Processing of Logic Synthesis and Placement A new design methodology is now available that offers the advantages of enhanced logical design efficiency

More information

Testing Digital Systems II

Testing Digital Systems II Testing Digital Systems II Lecture 2: Design for Testability (I) structor: M. Tahoori Copyright 2010, M. Tahoori TDS II: Lecture 2 1 History During early years, design and test were separate The final

More information

VLSI System Testing. BIST Motivation

VLSI System Testing. BIST Motivation ECE 538 VLSI System Testing Krish Chakrabarty Built-In Self-Test (BIST): ECE 538 Krish Chakrabarty BIST Motivation Useful for field test and diagnosis (less expensive than a local automatic test equipment)

More information

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model Norio Matsui Applied Simulation Technology 2025 Gateway Place #318 San Jose, CA USA 95110 matsui@apsimtech.com Neven Orhanovic

More information

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function.

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function. Triple RTD SMART INPUT MODULE State-of-the-art Electromagnetic Noise Suppression Circuitry. Ensures signal integrity even in harsh EMC environments. On-board Digital Signal Processor. Linearization RTDs

More information

Optimizing BNC PCB Footprint Designs for Digital Video Equipment

Optimizing BNC PCB Footprint Designs for Digital Video Equipment Optimizing BNC PCB Footprint Designs for Digital Video Equipment By Tsun-kit Chin Applications Engineer, Member of Technical Staff National Semiconductor Corp. Introduction An increasing number of video

More information

DSO138mini Troubleshooting Guide

DSO138mini Troubleshooting Guide DSO138mini Troubleshooting Guide Applicable main board: 109-13800-00I Applicable analog board: 109-13801-00H 1. Frequently Found Problems 1) LCD completely dark. No backlight 2) LCD lights up but no display

More information

"shell" digital storage oscilloscope (Beta)

shell digital storage oscilloscope (Beta) "shell" digital storage oscilloscope (Beta) 1. Main board: solder the element as the picture shows: 2. 1) Check the main board is normal or not Supply 9V power supply through the connector J7 (Note: The

More information

Based on slides/material by. Topic Testing. Logic Verification. Testing

Based on slides/material by. Topic Testing. Logic Verification. Testing Based on slides/material by Topic 4 K. Masselos http://cas.ee.ic.ac.uk/~kostas J. Rabaey http://bwrc.eecs.berkeley.edu/classes/icbook/instructors.html igital Integrated Circuits: A esign Perspective, Prentice

More information

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43 Testability: Lecture 23 Design for Testability (DFT) Shaahin hi Hessabi Department of Computer Engineering Sharif University of Technology Adapted, with modifications, from lecture notes prepared p by

More information

INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy

INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy (steps A and B). Gain, which affects DC Accuracy, cannot

More information

Nutube.US. 6P1 Evaluation Board. User Manual

Nutube.US. 6P1 Evaluation Board. User Manual Nutube.US 6P1 Evaluation Board User Manual Introduction The 6P1 Evaluation Board (EVB) is a vehicle for testing and evaluating the Korg Nutube 6P1 dual triode in audio circuits. This product is designed

More information

Application Note AN-LD09 Rev. B Troubleshooting Low Noise Systems. April, 2015 Page 1 NOISE MEASUREMENT SYSTEM BASELINES INTRODUCTION

Application Note AN-LD09 Rev. B Troubleshooting Low Noise Systems. April, 2015 Page 1 NOISE MEASUREMENT SYSTEM BASELINES INTRODUCTION Troubleshooting Low Noise Systems April, 2015 Page 1 INTRODUCTION The exceedingly low level of electronic noise produced by the QCL family of drivers makes narrower linewidths and stable center wavelengths

More information

POET-1 P.O.E. TEST PORT MEASUREMENT TOOL INSTRUCTION BOOK

POET-1 P.O.E. TEST PORT MEASUREMENT TOOL INSTRUCTION BOOK POET-1 P.O.E. TEST PORT MEASUREMENT TOOL INSTRUCTION BOOK IB6386-01 9-1-2015 TABLE OF CONTENTS DESCRIPTION 2 HOW TO CABLE THE POET-1 2 HOW TO TAKE A MEASUREMENT 3 EASE OF USE 3 APPLICATIONS 3 CARE AND

More information

Logic Analyzer Triggering Techniques to Capture Elusive Problems

Logic Analyzer Triggering Techniques to Capture Elusive Problems Logic Analyzer Triggering Techniques to Capture Elusive Problems Efficient Solutions to Elusive Problems For digital designers who need to verify and debug their product designs, logic analyzers provide

More information

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET476) Lecture 9 (2) Built-In-Self Test (Chapter 5) Said Hamdioui Computer Engineering Lab Delft University of Technology 29-2 Learning aims Describe the concept and

More information

Auto-Teach. Vision Inspection that Learns What a Good Part Is

Auto-Teach. Vision Inspection that Learns What a Good Part Is Auto-Teach Vision Inspection that Learns What a Good Part Is Jeff Johnson National Product Sales Director- Machine Vision Keyence Corporation of America Keyence Corporation Global Headquarters: Osaka Japan

More information

Low Cost RF Amplifier for Community TV

Low Cost RF Amplifier for Community TV IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Low Cost RF Amplifier for Community TV To cite this article: Syafaruddin Ch et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 105 012030

More information

HDMI Demystified. Industry View. Xiaozheng Lu, AudioQuest. What Is HDMI? Video Signal Resolution And Data Rate

HDMI Demystified. Industry View. Xiaozheng Lu, AudioQuest. What Is HDMI? Video Signal Resolution And Data Rate HDMI Demystified Xiaozheng Lu, AudioQuest Industry View The release of the new HDMI 1.3 specification in June 2006 created both excitement and confusion in the consumer electronics industry. The discussion

More information

BSDL Validation: A Case Study

BSDL Validation: A Case Study ASSET InterTech, Inc. Validation: A Case Study Michael R. Johnson Sr. Applications Engineer ASSET InterTech, Inc. Agilent Boundary Scan User Group Meeting December 15, 2008 About The Presenter Michael

More information

Cascadable 4-Bit Comparator

Cascadable 4-Bit Comparator EE 415 Project Report for Cascadable 4-Bit Comparator By William Dixon Mailbox 509 June 1, 2010 INTRODUCTION... 3 THE CASCADABLE 4-BIT COMPARATOR... 4 CONCEPT OF OPERATION... 4 LIMITATIONS... 5 POSSIBILITIES

More information

Using the XC9500/XL/XV JTAG Boundary Scan Interface

Using the XC9500/XL/XV JTAG Boundary Scan Interface Application Note: XC95/XL/XV Family XAPP69 (v3.) December, 22 R Using the XC95/XL/XV JTAG Boundary Scan Interface Summary This application note explains the XC95 /XL/XV Boundary Scan interface and demonstrates

More information

What really changes with Category 6

What really changes with Category 6 1 What really changes with Category 6 Category 6, the standard recently completed by TIA/EIA, represents an important accomplishment for the telecommunications industry. Find out which are the actual differences

More information

CMOS Testing-2. Design for testability (DFT) Design and Test Flow: Old View Test was merely an afterthought. Specification. Design errors.

CMOS Testing-2. Design for testability (DFT) Design and Test Flow: Old View Test was merely an afterthought. Specification. Design errors. Design and test CMOS Testing- Design for testability (DFT) Scan design Built-in self-test IDDQ testing ECE 261 Krish Chakrabarty 1 Design and Test Flow: Old View Test was merely an afterthought Specification

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response nmos transistor asics of VLSI Design and Test If the gate is high, the switch is on If the gate is low, the switch is off Mohammad Tehranipoor Drain ECE495/695: Introduction to Hardware Security & Trust

More information

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology.

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. T.Vijay Kumar, M.Tech Associate Professor, Dr.K.V.Subba Reddy Institute of Technology.

More information

Innovation in Magnetic Measuring Instruments. Operation Manual for. Mag648 and Mag649 Low Power Three-Axis Magnetic Field Sensors.

Innovation in Magnetic Measuring Instruments. Operation Manual for. Mag648 and Mag649 Low Power Three-Axis Magnetic Field Sensors. Innovation in Magnetic Measuring Instruments Operation Manual for Mag648 and Mag649 Low Power Three-Axis Magnetic Field Sensors www.bartington.com Table of Contents 1. Legal notices 3 1.1. Copyright 3

More information

30 GHz Attenuator Performance and De-Embedment

30 GHz Attenuator Performance and De-Embedment 30GHz De-Embedment Application Note - Page 1 of 6 Theory of De-Embedment. Due to the need for smaller packages and higher signal integrity a vast majority of todays RF and Microwave components are utilizing

More information

THE NOISE PERFORMANCE OF EVALUATION BOARDS FOR A UNIVERSAL TRANSDUCER INTERFACE WITH USB CONNECTION

THE NOISE PERFORMANCE OF EVALUATION BOARDS FOR A UNIVERSAL TRANSDUCER INTERFACE WITH USB CONNECTION THE NOISE PERFORMANCE OF EVALUATION BOARDS FOR A UNIVERSAL TRANSDUCER INTERFACE WITH CONNECTION Zu-yao Chang, Gerard C. M. Meijer Electronic Instrumentation Laboratory, Delft University of Technology,

More information

Auto classification and simulation of mask defects using SEM and CAD images

Auto classification and simulation of mask defects using SEM and CAD images Auto classification and simulation of mask defects using SEM and CAD images Tung Yaw Kang, Hsin Chang Lee Taiwan Semiconductor Manufacturing Company, Ltd. 25, Li Hsin Road, Hsinchu Science Park, Hsinchu

More information

The use of an available Color Sensor for Burn-In of LED Products

The use of an available Color Sensor for Burn-In of LED Products As originally published in the IPC APEX EXPO Conference Proceedings. The use of an available Color Sensor for Burn-In of LED Products Tom Melly Ph.D. Feasa Enterprises Ltd., Limerick, Ireland Abstract

More information

Feedback: Part A - Basics

Feedback: Part A - Basics Feedback: Part A - Basics Slides taken from: A.R. Hambley, Electronics, Prentice Hall, 2/e, 2000 1 Overview The Concept of Feedback Effects of feedback on Gain Effects of feedback on non linear distortion

More information

Advances in VLSI Testing at MultiGb per Second Rates

Advances in VLSI Testing at MultiGb per Second Rates SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 2, No. 1, May 2005, 43-55 Advances in VLSI Testing at MultiGb per Second Rates Dragan Topisiroviç 1 Abstract: Today's high performance manufacturing of digital

More information

Lecture 23 Design for Testability (DFT): Full-Scan (chapter14)

Lecture 23 Design for Testability (DFT): Full-Scan (chapter14) Lecture 23 Design for Testability (DFT): Full-Scan (chapter14) Definition Ad-hoc methods Scan design Design rules Scan register Scan flip-flops Scan test sequences Overheads Scan design system Summary

More information

Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory. National Central University

Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory. National Central University Chapter 3 Basics of VLSI Testing (2) Jin-Fu Li Advanced Reliable Systems (ARES) Laboratory Department of Electrical Engineering National Central University Jhongli, Taiwan Outline Testing Process Fault

More information

At-speed testing made easy

At-speed testing made easy At-speed testing made easy By Bruce Swanson and Michelle Lange, EEdesign.com Jun 03, 2004 (5:00 PM EDT) URL: http://www.eedesign.com/article/showarticle.jhtml?articleid=21401421 Today's chip designs are

More information

Cable Tester Automation by Christopher E. Strangio, CAMI Research Inc.

Cable Tester Automation by Christopher E. Strangio, CAMI Research Inc. Cable Tester Automation p.1 Cable Tester Automation by Christopher E. Strangio, CAMI Research Inc. (Reprinted from the May, 1998 Issue of Connector Specifier Magazine) Strong demand for contract manufacturing

More information

CHAPTER 3 EXPERIMENTAL SETUP

CHAPTER 3 EXPERIMENTAL SETUP CHAPTER 3 EXPERIMENTAL SETUP In this project, the experimental setup comprised of both hardware and software. Hardware components comprised of Altera Education Kit, capacitor and speaker. While software

More information

Telephony Training Systems

Telephony Training Systems Telephony Training Systems LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 07/2018 Table of Contents General Description 2 Topic Coverage 6 Features & Benefits 6 List of Available Training Systems

More information

Hardware Verification after Installation. D0 Run IIB L1Cal Technical Readiness Review. Presented by Dan Edmunds August 2005

Hardware Verification after Installation. D0 Run IIB L1Cal Technical Readiness Review. Presented by Dan Edmunds August 2005 Hardware Verification after Installation D0 Run IIB L1Cal Technical Readiness Review Presented by Dan Edmunds 26-27 August 2005 The purpose of this talk is to describe to the committee how various aspects

More information

M i N T the refreshing technologies

M i N T the refreshing technologies School of Engineering Science Burnaby, BC V5A1S6 http://www.sfu.ca/~sschang/mint 340-2001@sfu.ca Sept 6, 2001 Dr. Andrew Rawicz School of Engineering Science Simon Fraser University Burnaby, British Columbia

More information

MAX2660/MAX2661/MAX2663/MAX2671 Evaluation Kits

MAX2660/MAX2661/MAX2663/MAX2671 Evaluation Kits 9-382; Rev ; 9/99 MAX2660/MAX266/MAX2663/MAX267 General Description The MAX2660/MAX266/MAX2663/MAX267 evaluation kits simplify evaluation of the MAX2660/MAX266/ MAX2663/MAX267 upconverter s. They enable

More information

Chapter 8 Design for Testability

Chapter 8 Design for Testability 電機系 Chapter 8 Design for Testability 測試導向設計技術 2 Outline Introduction Ad-Hoc Approaches Full Scan Partial Scan 3 Design For Testability Definition Design For Testability (DFT) refers to those design techniques

More information