Development of New Carbon Therapy Facility and Future Plan of HIMAC

Size: px
Start display at page:

Download "Development of New Carbon Therapy Facility and Future Plan of HIMAC"

Transcription

1 Development of New Carbon Therapy Facility and Future Plan of Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences

2 1. Introduction Contents 2. New Carbon-Therapy Facility (Compact Facility) 3. Future Plan of 4. Summary

3 Motivation of Compact Facility Patients Number of Carbon Therapy (June 94 Feb. 5) Highly Advanced Medical Therapy from Nov Since 1994, Cancer treatment with has been successfully progressed. Owing to accumulation of treatment number and good result of the clinical trials, the Japanese government approved the treatment as the highly advanced medical therapy in Nov

4 Design Consideration for Compact Facility How high Energy? How large Irradiation-Field Size? How much Intensity delivered? How large Facility? Based on experience at, the specification is determined!!

5 How high beam energy? ~2 8~1 16~18 24~26 Residual Range (mm) Head&Neck Brain Lacrimal gland Esophagus Lung Linver Pancreas Bone&SoftTissu Prostate Uterus Digestive duct Others Residual range of 25 mm covers almost all treatments at. Required energy: 4 MeV/n, under range loss of 25 mm due to scatterer etc.

6 How large field size? ~1 6~7 12~13 18~19 Field Diameter (mm) Head&Neck Brain Lacrimal gland Esophagus Lung Linver Pancreas Bone&SoftTissu Prostate Uterus Digestive duct Others ~2 6~7 11~12 SOBP Size (mm) Head&Neck Brain Lacrimal gland Esophagus Lung Linver Pancreas Bone&SoftTissu Prostate Uterus Digestive duct Others The field diameter more than 2 mm is large enough to cover almost all treatments in. The SOBP more than 15 mm covers treatments more than 95%.

7 How much intensity? Synchrotron 2μA ppp 22μA 163μA 181μA LINAC η=.9 η=.9 η=.7 ECR 258μA@C ppp η inj =.4 η cap η acc =.8.8=.64 η ext = pps HEBT Irra.-Port 5GyE/min/l η= pps η= pps

8 Specification 1. Ion species: high LET (1keV/μm) charged particle - Carbon 2. Range: Max. 25cm in water 3. Maximum irradiation area: 15cm square 4. Dose rate: 5GyE/min/l pps (C ions) 5. Irradiation direction : horizontal, vertical 6. Treatment rooms: 3 (H&V, H, V) 7. Irradiation technique: gating & layer stacking irradiation

9 Design and R&D for Compact Facility Beam Study Compact RF-cavity Compact Injector RFQ + APF-IH Development Irrad. Tech. Intensity (1 1 ppp) Intensity (1 1 ppp) Veritcal tune Vertical tune High-Precision MLC

10 Compact Injector Linac Cascade 1.4MW 36kW 11kW 36kW The injector linac cascade consists of RFQ and APH-IH linac. The RFQ accelerates C 4+ ions from 1 to 6 kev/n. The APF-IH accelerates them to 4 MeV/n. Both the operation frequencies are 2 MHz.

11 ECR NIRS RFQ APF-IH Analyzer Beam Test of Compact Injector Y. Iwata et al., WEPCH169 FCN2 (eμa) FC2 Transmission (%) Pick-up voltage for IH-DTL (V) Kinetic energy distribution for 12 C Transmission (%) di/de (arb. units) E (MeV/u)

12 Synchrotron Main parameters of the synchrotron. Lattice Type Maximum intensity of C 6+ Cell number Long straight section Circumference Injection energy Extraction energy Revolution frequency Emittance and Δp/p of injection beam Acceptance (after COD correction) Momentum acceptance Qx /Qy Maximum β function transition gamma ξx/ξy FODO pps 6 3.m m 4 MeV/u 14-4 MeV/u MHz 1 π mm mrad ±.2% 24/3 π mm mrad ±.4% / / /-1.5 BMP1 H-CR 2 SXF H-CR 1 V-CR 2 SXFr1 DCCT BMPf2 BMP2 ESD QDS1 V-CR 1 SXD V-CR 3 SPRN SXD H-CR 3 ESI SXDr1 SM1 SM SXDr2 BMP3 SM2 QF H-CR 6 T. Furukawa et al., NIM A562 (6) 15. Beta & Dispersion function [m] Injection BM s [m] QD V-CR 4 V-CR 6 BMPf1 Extraction FCN QDS2 RF-Cavity SXD SXFr2 RF-KO SXF H-CR 4 H-CR 5 V-CR 5 BM filling factor of 43% is much larger than that of 31% in, which brings a compact synchrotron.

13 Compact RF Cavity Un-tuned RF cavity with Co-based MA Comparison between cavity Frequency [MHz] Voltage [kv] Power [kw] Cavity size [cm] Size of PS etc M. Kanazawa et al., TUOCFI3 A. Sugiuraet al., TUPCH124 1 ~ Amp. with Tetrode Bias PS New cavity.4 ~ Transister Amp

14 Intensity Modulation f k Function Generators Voltage Controlled Amplifier VCA V AM RF Switch Circulating beam RF Amp. Kicker Electrode S. Sato et al., WEPCH17 AM Function controller Spill Beam gate Intensity Current Amp 1-6 A/V, 1kHz Extracted Beam I Ionization Chanber T Scanning Irradiation System Scanning Magnets Range Shifter I Intensity T The spot scanning and layer stacking methods require an intensity modulation. Therefore, we have studied the dynamically intensity control. This figure shows three intensity steps during 5 ms. This figure shows sinusoidal intensity wave.

15 Beam Delivery System Main monitor Scatterer Sub monitor Wobbler magnet Ridge filterflatness monitor Multi-leaf collimator Range shifter Bolus Iso-center 7265 Komori M. et al; J Jpn Appl Phys.

16 Spiral Wobbler & Raster Scanning The spiral wobbler and raster scanning method can form the irradiation field by thin scatterer compared with the conventional one. This brings the longer residual range in patient. Conventional Wobbler Spiral Wobbler Raster Scanning The spiral wobbler and raster scanning can be available a larger field even under thin scatterer. Longer residual range

17 Beam-Test Result Dose normalized by the maximum Dose normalized by the maximum.8.6 Method.4 Residual Range.2 Port Length Distance from the center [mm] Forming Time Beam Efficiency Field Shape.8.6 Power supply Wobbler Distance from the center [mm] Dose normalized by the maximum Dose normalized by the maximum Spiral Distance from the center [mm] Spiral Wobbler Raster Distance from the center [mm] Raster Scann Dose normalized by the maximum Dose normalized by the maximum Meas. Calc Meas. Calc. Distance from the center (x-axis) [mm] Distance from the center [mm]

18 Future Plan of (1) For High Accurate Treatment 3D scanning on a moving target for reducing the margin of 5-1 mm Repainting with Raster Scan & Layer Stacking Method 3D scanning on a fixed target for fitting irregular shape Spot Scanning or Raster Scanning Method For Flexible Treatment and One-day Treatment Rotating Gantry Repainting with Raster Scan & Layer Stacking Method

19 Future Plan of (2) 2 treatment rooms (H&V) with both broad beam & 3D scanning system 1 gantry room New Treatment Facility y-scan Scat/IC RGF UM 354 T. Furukawa et al., WEPCH167 Broad-beam Raster & Layer Stacking Spot Scanning Iso-Cent Broad-beam Raster & Layer Stacking

20 Summary Compact carbon-therapy facility was initiated at Gunma University from April 26: 3 years project New treatment facility with was also initiated at NIRS from April 26: 7 years project Thank you for your attention!!

21 Future Plan of (3) deg. 45 deg. y-scan Scat/IC RGF UM Iso-Cent m 7.1 m T. Furukawa et al., WEPCH167 Without Scatterer With Scatterer y [mm] y [mm] x [mm] y [mm] y [mm] x [mm] 4 MeV/n Rotating Gantry Field size: 15cm x 15cm SOBP : 15cm Range : 25cm Repainting raster scan with layer stacking x [mm] x [mm] Compensation of asymmetry distribution

22 Future Plan of (2) Experiment of spot scan for irregular shape target

23 One fraction irradiation on lung cancer The treatment period and the number of fractions have been successively reduced from 18 fractions over 6 weeks to 9 fractions over 3 weeks and further 4 fractions over one week. The end-point is single fraction. It has been carried out since April GyE (18 fraction) 94/1 ~ 97/ GyE (4 fraction) /12 ~ 3/ GyE (9 fraction) 97/9 ~ / GyE (1 fraction) 3/4 ~ 6/3

24 Gated irradiation with respiration - Irradiation system of coincident with a patient s respiratory motion - Accelerator Interlock system Gated beam extraction system (RF knockout method) Treatment control Watch & record system Gate signal generator Beam monitor Ion beam PSD Respiration waveform Reference Image Compare Positioning Image Planning simulation Positioning area Irradiation room X-ray TV Positioning system using x-ray TV images

25 Layer stacking irradiation Improvement of the irradiation accuracy Procedure 1. Mini SOBP is produced by ridge filter. 2. The target volume is longitudinally divided into slices. 3. The mini SOBP is longitudinally scanned over the target volume in stepwise manner by using range shifter. 4. At same time, the lateral field is shaped by MLC in each slice. Ridge Filter Wobbler Magnets and Scatterer Dose monitor Range shifter Multi-leaf Collimator Compensator

Overview of NIRS Accelerator Activity

Overview of NIRS Accelerator Activity Overview of NIRS Accelerator Activity Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences Workshop on Hadron Beam Therapy April. 27 09, Erice, Italy Hospital

More information

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Particle Beam Production - A Synchrotron-Based System - Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Outline Situation/Rationale Requirements Synchrotron choice Functions

More information

National Institute of Radiological Sciences. Naoya Saotome

National Institute of Radiological Sciences. Naoya Saotome National Institute of Radiological Sciences Naoya Saotome 1 Contents Introduction History and collaboration KCC i-rock Commissioning of commercial scanning system NIRS Gantry Commissioning of NIRS s Gantry

More information

* National Laboratory for High Energy Physics (KEK) **** Institute for Nuclear Study, University of Tokyo (INS)

* National Laboratory for High Energy Physics (KEK) **** Institute for Nuclear Study, University of Tokyo (INS) Particle Accelerators, 1990, Vol. 33, pp. 147-152 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, Inc. Printed in the United

More information

Proton Engineering Frontier Project

Proton Engineering Frontier Project Proton Engineering Frontier Project OECD Nuclear Energy Agency Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators (HPPA5) (6-9 May 2007, Mol, Belgium) Yong-Sub

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

PEP II Design Outline

PEP II Design Outline PEP II Design Outline Balša Terzić Jefferson Lab Collider Review Retreat, February 24, 2010 Outline General Information Parameter list (and evolution), initial design, upgrades Collider Ring Layout, insertions,

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy

Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy Promises and Perils of Proton Therapy Beam Delivery (Implications) or Towards Cost Effective Particle Therapy Jay Flanz MGH/FBTC Harvard Medical School What is a Beam Delivery? Start with an accelerator

More information

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX

COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX COMMISSIONING SCENARIOS FOR THE J-PARC ACCELERATOR COMPLEX T. Koseki, M. Ikegami, M. Tomizawa, Accelerator Laboratory, KEK, Tsukuba, Japan F. Noda, JAEA, Tokai, Japan Abstract The J-PARC (Japan Proton

More information

Implementing a Proton Beam Scanning System within an Operating Clinical Facility

Implementing a Proton Beam Scanning System within an Operating Clinical Facility Implementing a Proton Beam Scanning System within an Operating Clinical Facility Ben Clasie Many thanks to Hassan Bentefour, Hanne Kooy, and Jay Flanz for their help preparing this presentation 1 Francis

More information

OPERATIONAL EXPERIENCE AT J-PARC

OPERATIONAL EXPERIENCE AT J-PARC OPERATIONAL EXPERIENCE AT J-PARC Hideaki Hotchi, ) for J-PARC commissioning team ), 2), ) Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki, 39-95 Japan, 2) High Energy Accelerator Research Organization

More information

Linac 4 Instrumentation K.Hanke CERN

Linac 4 Instrumentation K.Hanke CERN Linac 4 Instrumentation K.Hanke CERN CERN Linac 4 PS2 (2016?) SPL (2015?) Linac4 (2012) Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase

More information

Beam instrumentation at the 1-MW proton J-PARC RCS

Beam instrumentation at the 1-MW proton J-PARC RCS Beam instrumentation at the 1-MW proton J-PARC RCS HB2014 54th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness and High Power Hadron Beams East Lansing, MI Nov.12, 2014 Kazami Yamamoto

More information

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin RF plans for ESS Morten Jensen ESLS-RF 2013 Berlin Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average beam power will be 5 MW which is five

More information

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM

DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM DOSE DELIVERY SYSTEM OF THE VARIAN PROBEAM SYSTEM WITH CONTINUOUS BEAM EUCARD 2 WORKSHOP ON INNOVATIVE DELIVERY SYSTEMS IN PARTICLE THERAPY TORINO, 23 25 FEB 2017 VARIAN PARTICLE THERAPY HOLGER GÖBEL MANGER

More information

Beam Loss Detection for MPS at FRIB

Beam Loss Detection for MPS at FRIB Beam Loss Detection for MPS at FRIB Zhengzheng Liu Beam Diagnostics Physicist This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN

A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN A HIGH-POWER SUPERCONDUCTING H - LINAC (SPL) AT CERN E. Chiaveri, CERN, Geneva, Switzerland Abstract The conceptual design of a superconducting H - linear accelerator at CERN for a beam energy of 2.2 GeV

More information

Quality Assurance Implementation at the Roberts Proton Therapy Center. James McDonough 3 August 2013

Quality Assurance Implementation at the Roberts Proton Therapy Center. James McDonough 3 August 2013 Quality Assurance Implementation at the Roberts Proton Therapy Center James McDonough 3 August 2013 1 Roberts Proton Therapy Center Machine configuration and layout 4 gantries, 1 fixed beam line, 1 research

More information

Status of SOLARIS Arkadiusz Kisiel

Status of SOLARIS Arkadiusz Kisiel Status of SOLARIS Arkadiusz Kisiel Solaris National Synchrotron Light Source Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl Arkadiusz.Kisiel@uj.edu.pl On behalf of SOLARIS

More information

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi)

Commissioning of Accelerators. Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) Commissioning of Accelerators Dr. Marc Munoz (with the help of R. Miyamoto, C. Plostinar and M. Eshraqi) www.europeanspallationsource.se 6 July, 2017 Contents General points Definition of Commissioning

More information

The Construction Status of CSNS Linac

The Construction Status of CSNS Linac The Construction Status of CSNS Linac Sheng Wang Dongguan branch, Institute of High Energy Physics, CAS Sep.2, 2014, Geneva Outline The introduction to CSNS accelerators The commissoning of ion source

More information

The FAIR plinac RF Systems

The FAIR plinac RF Systems The FAIR plinac RF Systems Libera Workshop Sep. 2011 Gerald Schreiber Gerald Schreiber, GSI RF Department 2 (1) Overview GSI / FAIR (2) FAIR Proton Linear Accelerator "plinac" (3) plinac RF Systems (4)

More information

STATUS AND CONCEPTUAL DESIGN OF THE CONTROL SYSTEM FOR THE HEAVY ION THERAPY ACCELERATOR FACILITY HICAT

STATUS AND CONCEPTUAL DESIGN OF THE CONTROL SYSTEM FOR THE HEAVY ION THERAPY ACCELERATOR FACILITY HICAT 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, PO1.025-1 (2005) STATUS AND CONCEPTUAL DESIGN OF THE CONTROL SYSTEM FOR THE HEAVY ION THERAPY ACCELERATOR

More information

PRESENT STATUS OF J-PARC

PRESENT STATUS OF J-PARC PRESENT STATUS OF J-PARC # F. Naito, KEK, Tsukuba, Japan Abstract Japan Proton Accelerator Research Complex (J-PARC) is the scientific facility with the high-intensity proton accelerator aiming to realize

More information

III. Proton-therapytherapy. Rome SB - 3/5 1

III. Proton-therapytherapy. Rome SB - 3/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

G. Pittá(*), S. Braccini TERA Foundation, Novara, Italy (*) Corresponding author.

G. Pittá(*), S. Braccini TERA Foundation, Novara, Italy (*) Corresponding author. Frascati Physics Series Vol. VVVVVV (xxxx), pp. 000-000 XX Conference Location, Date-start - Date-end, Year MATRIX: AN INNOVATIVE PIXEL IONIZATION CHAMBER FOR ON-LINE BEAM MONITORING IN HADRONTHERAPY G.

More information

Low-Energy Electron Linacs and Their Applications in Cargo Inspection

Low-Energy Electron Linacs and Their Applications in Cargo Inspection Low-Energy Electron Linacs and Their Applications in Cargo Inspection Yawei Yang on behalf of Huaibi Chen *,1, Chuanxiang Tang 1 Yaohong Liu 2 *chenhb@tsinghua.edu.cn 1 Department of Engineering Physics,

More information

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics

The ESS Accelerator. For Norwegian Industry and Research. Oslo, 24 Sept Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The ESS Accelerator For Norwegian Industry and Research Oslo, 24 Sept 2013 Håkan Danared Deputy Head Accelerator Division Group Leader Beam Physics The Hadron Intensity Frontier Courtesy of M. Seidel (PSI)

More information

Status of Elettra, top-up and other upgrades

Status of Elettra, top-up and other upgrades Status of Elettra, top-up and other upgrades Emanuel Karantzoulis ELETTRA / Trieste, Italy / 2010 November 25-26 Past and Present Configurations 1994-2007 From 2008 No full energy injection Full energy

More information

4.4 Injector Linear Accelerator

4.4 Injector Linear Accelerator 4.4 Injector Linear Accelerator 100 MeV S-band linear accelerator based on the components already built for the S-Band Linear Collider Test Facility at DESY [1, 2] will be used as an injector for the CANDLE

More information

BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING

BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING BEAM DIAGNOSTICS IN THE CNAO INJECTION LINES COMMISSIONING A. Parravicini, G. Balbinot, J. Bosser, E. Bressi, M. Caldara, L. Lanzavecchia, M. Pullia, M. Spairani, CNAO Foundation, Pavia, Italy C. Biscari,

More information

DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS*

DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS* DESIGN OF 1.2-GEV SCL AS NEW INJECTOR FOR THE BNL AGS* A. G. Ruggiero, J. Alessi, M. Harrison, M. Iarocci, T. Nehring, D. Raparia, T. Roser, J. Tuozzolo, W. Weng. Brookhaven National Laboratory, PO Box

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE

A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE A NOVEL GANTRY FOR PROTON THERAPY AT THE PAUL SCHERRER INSTITUTE E. Pedroni, T. Böhringer, A. Coray, G. Goitein, M. Grossmann, A. Lomax, S. Lin, M. Jermann Paul Scherrer Institute, CH-5232 Villigen PSI,

More information

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Workshop on the future and next generation capabilities of accelerator driven neutron and muon sources

More information

HIGH-INTENSITY PROTON BEAMS AT CERN AND THE SPL STUDY

HIGH-INTENSITY PROTON BEAMS AT CERN AND THE SPL STUDY HIGH-INTENSITY PROTON BEAMS AT CERN AND THE STUDY E. Métral, M. Benedikt, K. Cornelis, R. Garoby, K. Hanke, A. Lombardi, C. Rossi, F. Ruggiero, M. Vretenar, CERN, Geneva, Switzerland Abstract The construction

More information

SPEAR 3: Operations Update and Impact of Top-Off Injection

SPEAR 3: Operations Update and Impact of Top-Off Injection SPEAR 3: Operations Update and Impact of Top-Off Injection R. Hettel for the SSRL ASD 2005 SSRL Users Meeting October 18, 2005 SPEAR 3 Operations Update and Development Plans Highlights of 2005 SPEAR 3

More information

ILC Damping Ring Lattice Status Report. Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007

ILC Damping Ring Lattice Status Report. Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007 Status Report Louis Emery and Aimin Xiao Argonne National Laboratory Presented at KEK workshop Dec 18th, 2007 Outline New 8-fold symmetric lattice on ILC Cornell wiki pages, as of 12/18/2007 Separated

More information

Upgrading LHC Luminosity

Upgrading LHC Luminosity 1 Upgrading LHC Luminosity 2 Luminosity (cm -2 s -1 ) Present (2011) ~2 x10 33 Beam intensity @ injection (*) Nominal (2015?) 1 x 10 34 1.1 x10 11 Upgraded (2021?) ~5 x10 34 ~2.4 x10 11 (*) protons per

More information

CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS. Jason Matney, MS, PhD

CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS. Jason Matney, MS, PhD CHAPTER 4: HIGH ENERGY X-RAY GENERATORS: LINEAR ACCELERATORS Jason Matney, MS, PhD Objectives Medical electron linear accelerators (often shortened to LINAC) The Basics Power Supply Magnetron/Klystron

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

Recent developments in cyclotrons for proton therapy at IBA

Recent developments in cyclotrons for proton therapy at IBA Recent developments in cyclotrons for proton therapy at IBA Yves Jongen. Founder & CRO IBA sa We Protect, Enhance and Save Lives. A typical PT center 30-55 millions for equipment 45-100 millions for the

More information

Summary of the 1 st Beam Line Review Meeting Injector ( )

Summary of the 1 st Beam Line Review Meeting Injector ( ) Summary of the 1 st Beam Line Review Meeting Injector (23.10.2006) 15.11.2006 Review the status of: beam dynamics understanding and simulations completeness of beam line description conceptual design of

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

LIGHT PROTON THERAPY PROJECT

LIGHT PROTON THERAPY PROJECT 17 th of MAY 2018 LIGHT PROTON THERAPY PROJECT Yevgeniy Ivanisenko on behalf of ADAM team FORM-01040-A AVO-ADAM Advanced Oncotherapy (AVO) is a public company ADAM is R&D center of AVO ~ 100 employees

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

30 GHz Power Production / Beam Line

30 GHz Power Production / Beam Line 30 GHz Power Production / Beam Line Motivation & Requirements Layout Power mode operation vs. nominal parameters Beam optics Achieved performance Problems Beam phase switch for 30 GHz pulse compression

More information

Linatron - M9 & M9A. Modular high-energy X-ray source. 2.0 Performance

Linatron - M9 & M9A. Modular high-energy X-ray source. 2.0 Performance The Linatron -M is a modular system. The control console, modulator, and RF unit are common to all model configurations. Only the X-ray head changes to match the application. The Linatron - M is designed

More information

DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION

DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION DARK CURRENT IN SUPERCONDUCTING RF PHOTOINJECTORS MEASUREMENTS AND MITIGATION J. Teichert #, A. Arnold, P. Murcek, G. Staats, R. Xiang, HZDR, Dresden, Germany P. Lu, H. Vennekate, HZDR & Technische Universität,

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

THE OPERATION EXPERIENCE AT KOMAC*

THE OPERATION EXPERIENCE AT KOMAC* THAM2X01 Proceedings of HB2016, Malmö, Sweden THE OPERATION EXPERIENCE AT KOMAC* Yong-Sub Cho, Kye-Ryung Kim, Kui Young Kim, Hyeok-Jung Kwon, Han-Sung Kim, Young-Gi Song Korea Atomic Energy Research Institute,

More information

ESS: The Machine. Bucharest, 24 April Håkan Danared Deputy Head Accelerator Division. H. Danared Industry & Partner Days Bucharest Page 1

ESS: The Machine. Bucharest, 24 April Håkan Danared Deputy Head Accelerator Division. H. Danared Industry & Partner Days Bucharest Page 1 ESS: The Machine Bucharest, 24 April 2014 Håkan Danared Deputy Head Accelerator Division H. Danared Industry & Partner Days Bucharest Page 1 2025 ESS construction complete 2009 Decision: ESS will be built

More information

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR

RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR RUNNING EXPERIENCE OF FZD SRF PHOTOINJECTOR Rong Xiang On behalf of the BESSY-DESY-FZD-MBI collaboration and the ELBE team FEL 2009, Liverpool, United Kingdom, August 23 ~ 28, 2009 Outline Introduction

More information

Present Status and Future Upgrade of KEKB Injector Linac

Present Status and Future Upgrade of KEKB Injector Linac Present Status and Future Upgrade of KEKB Injector Linac Kazuro Furukawa, for e /e + Linac Group Present Status Upgrade in the Near Future R&D towards SuperKEKB 1 Machine Features Present Status and Future

More information

Production of quasi-monochromatic MeV photon in a synchrotron radiation facility

Production of quasi-monochromatic MeV photon in a synchrotron radiation facility Production of quasi-monochromatic MeV photon in a synchrotron radiation facility Presentation at University of Saskatchewan April 22-23, 2010 Yoshitaka Kawashima Brookhaven National Laboratory NSLS-II,

More information

A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator

A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator S. Cousineau (On behalf of the SNS project) HB2016, Sweden July 04, 2016 ORNL is managed by UT-Battelle for the US Department

More information

Linac upgrade plan using a C-band system for SuperKEKB

Linac upgrade plan using a C-band system for SuperKEKB Linac upgrade plan using a C-band system for SuperKEKB S. Fukuda, M. Akemono, M. Ikeda, T. Oogoe, T. Ohsawa, Y. Ogawa, K. Kakihara, H. Katagiri, T. Kamitani, M. Sato, T. Shidara, A. Shirakawa, T. Sugimura,

More information

Top-Up Experience at SPEAR3

Top-Up Experience at SPEAR3 Top-Up Experience at SPEAR3 Contents SPEAR 3 and the injector Top-up requirements Hardware systems and modifications Safety systems & injected beam tracking Interlocks & Diagnostics SPEAR3 Accelerator

More information

Hadron Therapy Technologies

Hadron Therapy Technologies Hadron Therapy Technologies S. Peggs, BNL & ESS-S Bevalac 1950-1993 Many figures courtesy of Jay Flanz 1 Consumer demand 1 in 3 Europeans will confront some form of cancer in their lifetime. Cancer is

More information

Studies on an S-band bunching system with hybrid buncher

Studies on an S-band bunching system with hybrid buncher Submitted to Chinese Physics C Studies on an S-band bunching system with hybrid buncher PEI Shi-Lun( 裴士伦 ) 1) XIAO Ou-Zheng( 肖欧正 ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing

More information

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics High Brightness Injector Development and ERL Planning at Cornell Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics June 22, 2006 JLab CASA Seminar 2 Background During 2000-2001,

More information

UPGRADE OF THE PSI CYCLOTRON FACILITY TO 1.8 MW

UPGRADE OF THE PSI CYCLOTRON FACILITY TO 1.8 MW UPGRADE OF THE PSI CYCLOTRON FACILITY TO 1.8 MW M. Seidel, P.A. Schmelzbach Paul Scherrer Insititute, CH-53 Villigen PSI, Switzerland Abstract The cyclotron based proton accelerator facility at PSI is

More information

NEW CYCLOTRON DEVELOPMENTS AT IBA

NEW CYCLOTRON DEVELOPMENTS AT IBA NEW CYCLOTRON DEVELOPMENTS AT Y. Jongen, W. Kleeven and S.Zaremba, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve, Belgium Abstract This paper describes some recent cyclotron developments done at - Ion

More information

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A.Beunas and G. Faillon Thales Electron Devices, Vélizy, France S. Choroba DESY, Hamburg, Germany Abstract THALES ELECTRON DEVICES has developed

More information

CYCLINACS: FAST-CYCLING ACCELERATORS FOR HADRONTHERAPY

CYCLINACS: FAST-CYCLING ACCELERATORS FOR HADRONTHERAPY CYCLINACS: FAST-CYCLING ACCELERATORS FOR HADRONTHERAPY U. Amaldi a,1, S. Braccini a,2,*, A. Citterio a,3, K. Crandall a, M. Crescenti a,4, M. Dominietto a,5, A. Giuliacci a,6, G. Magrin a, C. Mellace a,

More information

BEAM DYNAMICS AND EXPERIMENT OF CPHS LINAC *

BEAM DYNAMICS AND EXPERIMENT OF CPHS LINAC * BEAM DYNAMICS AND EXPERIMENT OF CPHS LINAC * L. Du #, C.T. Du, X.L. Guan, C.X. Tang, R. Tang, X.W. Wang, Q.Z. Xing, S.X. Zheng, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry

More information

Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron

Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron Particle Therapy with the Varian / ACCEL 250 MeV S.C. Proton Cyclotron 1st Workshop HADRON BEAM THERAPY OF CANCER ERICE SICILY, 24 APRIL - 1 MAY 2009 D. W. Krischel, A.E. Geisler, J.H. Timmer, Volker Schirrmeister

More information

Photo cathode RF gun -

Photo cathode RF gun - Photo cathode RF gun - *),,, ( 05 Nov. 2004 Spring8 UTNL Linac & Mg Photocathode RF Gun Mg photocathode NERL, 18 MeV Linac and the RF gun Electron Beam Mg photocathode Mg photocathode RF gun of SPring8

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

The FLASH objective: SASE between 60 and 13 nm

The FLASH objective: SASE between 60 and 13 nm Injector beam control studies winter 2006/07 talk from E. Vogel on work performed by W. Cichalewski, C. Gerth, W. Jalmuzna,W. Koprek, F. Löhl, D. Noelle, P. Pucyk, H. Schlarb, T. Traber, E. Vogel, FLASH

More information

Preparations for Installation, Testing and Commissioning based on Experience at CERN, SNS and Siemens

Preparations for Installation, Testing and Commissioning based on Experience at CERN, SNS and Siemens Preparations for Installation, Testing and Commissioning based on Experience at CERN, SNS and Siemens Eugène Tanke FRIB / MSU ESS Seminar, Lund, 6 March 2013 Outline Project Goal for the Accelerator Path

More information

Design Studies For The LCLS 120 Hz RF Gun Injector

Design Studies For The LCLS 120 Hz RF Gun Injector BNL-67922 Informal Report LCLS-TN-01-3 Design Studies For The LCLS 120 Hz RF Gun Injector X.J. Wang, M. Babzien, I. Ben-Zvi, X.Y. Chang, S. Pjerov, and M. Woodle National Synchrotron Light Source Brookhaven

More information

Empirical Model For ESS Klystron Cathode Voltage

Empirical Model For ESS Klystron Cathode Voltage Empirical Model For ESS Klystron Cathode Voltage Dave McGinnis 2 March 2012 Introduction There are 176 klystrons in the superconducting portion of ESS linac. The power range required spans a factor of

More information

Transverse collimation with the Superconducting ECR ion source SuSI at the Coupled Cyclotron Facility (CCF)

Transverse collimation with the Superconducting ECR ion source SuSI at the Coupled Cyclotron Facility (CCF) Transverse collimation with the Superconducting ECR ion source SuSI at the Coupled Cyclotron Facility (CCF) Outline CCF / Motivations to build SuSI Features of SuSI Intensity Performances Installation

More information

SRF-gun Development Overview. J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada

SRF-gun Development Overview. J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada SRF-gun Development Overview J. Sekutowicz 17 th September, 2015 SRF15, Whistler, Canada Acknowledgment Many thanks to: A. Arnold, J. Hao, E. Kako, T. Konomi, D. Kostin, J. Lorkiewicz, A. Neumann, J. Teichert

More information

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS Marc Delrieux, CERN, BE/OP/PS CERN S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS CERN s Proton Synchrotron (PS) complex How are we involved? Review of some diagnostics applications

More information

EPJ Web of Conferences 95,

EPJ Web of Conferences 95, EPJ Web of Conferences 95, 04012 (2015) DOI: 10.1051/ epjconf/ 20159504012 C Owned by the authors, published by EDP Sciences, 2015 The ELENA (Extra Low Energy Antiproton) project is a small size (30.4

More information

XFEL High Power RF System Recent Developments

XFEL High Power RF System Recent Developments XFEL High Power RF System Recent Developments for the XFEL RF Group Outline XFEL RF System Requirements Overview Basic Layout RF System Main Components Multibeam Klystrons Modulator RF Waveguide Distribution

More information

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 Low Level RF for PIP-II Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 PIP-II LLRF Team Fermilab Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah Holzbauer, Dan Klepec, Yuriy Pischalnikov,

More information

DELIVERY RECORD. Location: Ibaraki, Japan

DELIVERY RECORD. Location: Ibaraki, Japan DELIVERY RECORD Client: Japan Atomic Energy Agency (JAEA) High Energy Accelerator Research Organization (KEK) Facility: J-PARC (Japan Proton Accelerator Research Complex) Location: Ibaraki, Japan 1 October

More information

Trigger-timing signal distribution system for the KEK electron/positron injector linac

Trigger-timing signal distribution system for the KEK electron/positron injector linac Trigger-timing signal distribution system for the KEK electron/positron injector linac T. Suwada, 1 K. Furukawa, N. Kamikubota, and M. Satoh, Accelerator Laboratory, High Energy Accelerator Research Organization

More information

DIAGNOSTIC INSTRUMENTATION FOR MEDICAL ACCELERATOR FACILITIES

DIAGNOSTIC INSTRUMENTATION FOR MEDICAL ACCELERATOR FACILITIES DIAGNOSTIC INSTRUMENTATION FOR MEDICAL ACCELERATOR FACILITIES M. Schwickert, GSI, Darmstadt, Germany A. Peters, Hit GmbH, Heidelberg, Germany Abstract A number of accelerator facilities are presently emerging

More information

INSTALLATION STATUS OF THE ELECTRON BEAM PROFILER FOR THE FERMILAB MAIN INJECTOR*

INSTALLATION STATUS OF THE ELECTRON BEAM PROFILER FOR THE FERMILAB MAIN INJECTOR* TUPB77 INSTALLATION STATUS OF THE ELECTRON BEAM PROFILER FOR THE FERMILAB MAIN INJECTOR* R. Thurman-Keup #, M. Alvarez, J. Fitzgerald, C. Lundberg, P. Prieto, M. Roberts, J. Zagel, FNAL, Batavia, IL 651,

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

Karin Rathsman. Calculations on the RF Source and Distribution

Karin Rathsman. Calculations on the RF Source and Distribution Accelerator Division ESS AD Technical Note ESS/AD/0002 Karin Rathsman Calculations on the RF Source and Distribution 26 March 2010 Calculations on the rf source and distribution system for the ESS elliptical

More information

Development, construction and testing of a room temperature CH-DTL

Development, construction and testing of a room temperature CH-DTL Development, construction and testing of a room temperature CH-DTL G.Clemente 1, H.Podlech 1, R. Tiede 1, U.Ratzinger 1, L.Groening 2, S.Minaev 3 1) Institute for Applied Physics, J.W. Goethe University,

More information

Electron Bypass Line (EBL) Design Electrons to A-line bypassing LCLS T. Fieguth, R. Arnold

Electron Bypass Line (EBL) Design Electrons to A-line bypassing LCLS T. Fieguth, R. Arnold September 2007 SLAC-TN-08-001 Electron Bypass Line (EBL) Design Electrons to A-line bypassing LCLS T. Fieguth, R. Arnold Introduction Forty one years ago, September 20, 1966, the first beam entered End

More information

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB S. Michizono for the KEK electron/positron Injector Linac and the Linac Commissioning Group KEK KEKB injector linac Brief history of the KEK electron linac

More information

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera

Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera Bingxin Yang, Alex H. Lumpkin, Katherine Harkay, Louis Emery, Michael Borland, and Frank Lenkszus Advanced

More information

PBS Products from Pyramid

PBS Products from Pyramid PBS Products from Pyramid Pyramid was founded in 1986 and is an established supplier of instrument control systems for the medical, semiconductor, physics and biological research markets. The systems typically

More information

RF Solutions for Science.

RF Solutions for Science. RF Solutions for Science www.thalesgroup.com State-of-the-art RF sources for your scientific needs High-power klystrons HIGH KLYSTRONS WITH RF LONG PULSE above 50 μs Thales has been one of the leading

More information

Design of the linear accelerator for the MYRRHA project

Design of the linear accelerator for the MYRRHA project MYRRHA Multipurpose hybrid Research Reactor for High-tech Applications Design of the linear accelerator for the MYRRHA project Roberto Salemme ADT - Outline What is MYRRHA? MYRRHA accelerator: requirements

More information

Drift Tubes as Muon Detectors for ILC

Drift Tubes as Muon Detectors for ILC Drift Tubes as Muon Detectors for ILC Dmitri Denisov Fermilab Major specifications for muon detectors D0 muon system tracking detectors Advantages and disadvantages of drift chambers as muon detectors

More information

HAPD and Electronics Updates

HAPD and Electronics Updates S. Nishida KEK 3rd Open Meeting for Belle II Collaboration 1 Contents Frontend Electronics Neutron Irradiation News from Hamamtsu 2 144ch HAPD HAPD (Hybrid Avalanche Photo Detector) photon bi alkali photocathode

More information

Periodic Seasonal Variation of Magnets Level of the STB ring

Periodic Seasonal Variation of Magnets Level of the STB ring Periodic Seasonal Variation of Magnets Level of the STB ring Shigenobu Takahashi Laboratory of Nuclear Science,Tohoku University, Mikamine 1-2-1, Taihaku-ku, Sendai 982-0826, Japan 1. Introduction The

More information

Hall-B Beamline Commissioning Plan for CLAS12

Hall-B Beamline Commissioning Plan for CLAS12 Hall-B Beamline Commissioning Plan for CLAS12 Version 1.5 S. Stepanyan December 19, 2017 1 Introduction The beamline for CLAS12 utilizes the existing Hall-B beamline setup with a few modifications and

More information

RF Power Generation II

RF Power Generation II RF Power Generation II Klystrons, Magnetrons and Gyrotrons Professor R.G. Carter Engineering Department, Lancaster University, U.K. and The Cockcroft Institute of Accelerator Science and Technology Scope

More information