MR Accreditation Programs - E. Jackson

Size: px
Start display at page:

Download "MR Accreditation Programs - E. Jackson"

Transcription

1 MRI Accreditation Programs: An Overview of Each and Specifics of One Edward F. Jackson, PhD Department of Imaging Physics 1 Diagnostic - MRI Safety and Accreditation Educational Objectives At the conclusion of this presentation, the attendee should: understand the MIPPA Advanced Diagnostic Imaging Accreditation requirements and choices of accrediting organizations understand the current clinical and physics requirements of the modular ACR MRI accreditation i program understand the specific ACR program requirements for medical physicists / MR scientists, including CME requirements understand the testing requirements for both the large and small ACR MRI accreditation phantoms, and understand the annual physics testing requirements for the ACR MR accreditation program 2 Requirements of MIPPA Requirements of MIPPA MIPPA Medicare Improvements for Patients and Providers Act (passed in 2008) Section 135(a) calls for advanced diagnostic imaging accreditation of all facilities that bill the technical component of diagnostic MRI, CT, and nuclear medicine such as PET services Facilities must be accredited by January 1, 2012 However, all facilities does not include hospitals Currently, the Centers for Medicare and Medicaid Services (CMS) specifically indicates that the advanced diagnostic imaging (ADI) accreditation can be provided by: The Joint Commission The The American College of Radiology Each of these accreditation programs has its own requirements 3 4 The Joint Commission The Joint Commission The Joint Commission provides Advanced Diagnostic Imaging accreditation as part of its program for accreditation of diagnostic imaging centers. Per Joint Commission posted information, providers already accredited by The Joint Commission do not need to be accredited (for ADI) until their current accreditation expires.* The ADI accreditation cost depends on the number of annual patient visits and number of sites (branches). Additional fees may be incurred for multiple modalities and sites.** * TJC online resource: Accreditation Handbook for Diagnostic Imaging Centers ** TJC online resource: Accreditation for Your Freestanding Imaging Center 5 With respect to Standard EC The organization manages safety and security. At a minimum, the organization manages safety risks in the magnetic resonance environment associated with the following: Patients t who may experience claustrophobia, anxiety, or emotional distress Patients who may require urgent or emergent medical care Metallic implants and devices Ferrous objects entering the MRI environment TJC online resource: Changes to Standards & EPs for Advanced Imaging Requirements 6 1

2 The Joint Commission The Joint Commission With respect to Standard EC The organization manages medical equipment risks. The organization identifies activities and frequencies to maintain the reliability, clarity, and accuracy of the technical quality of diagnostic images produced. With respect to Standard EC The organization inspects, tests, and maintains medical equipment. The organization maintains the reliability, clarity, and accuracy of the technical quality of diagnostic images produced. No specific additional information is available regarding the specifics of The Joint Commission ADI accreditation for MRI. It is stated that All initial surveys conducted under the Advanced Diagnostic Imaging Services survey option will be conducted on an unannounced basis. * TJC online resource: Changes to Standards & EPs for Advanced Imaging Requirements 7 * TJC online resource: Accreditation Handbook for Diagnostic Imaging Centers 8 Intersocietal Commission for the Accreditation of Magnetic Resonance Laboratories (ICAMRL) created in 2000 As of February 2012, the new name is ICA MRI Offers accreditation in the areas of: Cardiovascular MRI Breast MRI Body MRI (chest (non-cardiac), abdomen, pelvis, extremity) Musculoskelatal MRI Neurological MRI and MRA The ICA MRI accreditation process does not require purchase of a specific phantom. However, through the application process participating laboratories must provide documentation of their ongoing, comprehensive quality assessment programs. The ICA MRI standards are available online at: Part I of the standard addresses: Supervision and Personnel (training and CME requirements) Medical Director Medical Staff Technical Director Technical Staff Support Services (clerical, nursing, transport, etc.) Physical Facilities Examination Interpretation, Reports, and Records Safety and Patient Confidentiality

3 Part I of the standard addresses (continued): Instrumentation Devices must be FDA approved MRI unit must be capable of performing multiplanar T1, T2, and STIR sequences with a FOV large enough to consistently image all relevant anatomy in the region of interest The equipment specifications and performance must meet all state, federal, and local requirements (db/dt, B 0,max, max SPL, max SAR) Multiple Sites Part I of the standard addresses (continued): Quality Assurance There must be a quality assurance program in the MR laboratory Quality Assurance Committee role Quality control tests, standards, thresholds, timelines, and results review Quality control tests should be performed according to the manufacturer s performance standards by the MR technologist, service engineer, medical physicist, or qualified expert on a timely basis Quality assurance documentation must be maintained at the MR laboratory and made available to all personal Part I of the standard addresses (continued): Quality Assurance The quality assurance program must consist of MR system installation acceptance testing and major upgrade acceptance testing Acceptance testing must be performed as part of the system installation and after major upgrades, prior to patient clinical use. The manufacturer s representative, service engineer, or the MR siteappointed medical physicist, or qualified expert, should perform the acceptance testing. Acceptance testing should include, but is not limited to: B 0 homogeneity, gradient and RF calibration, resonance frequency, slice thickness and accuracy, image quality (SNR for all coils, spatial resolution, artifacts, image uniformity, geometric distortion, monitor/processor QC) 15 Part I of the standard addresses (continued): Quality Assurance Written report of the acceptance tests, signed and dated, must be maintained Routine (daily and periodic) QC tests Proper function of audible and visual patient safety equipment Center frequency tests SNR Image uniformity Artifact assessment Deviations from established thresholds must be documented and corrective action taken where appropriate 16 Part I of the standard addresses (continued): Quality Assurance Periodic preventive maintenance (PM) service is recommended for each MR scanner PM quality control assessment should include, but is not limited to: SNR, B 0 homogeneity, RF calibration of all coils, spatial resolution, artifact assessment General equipment inspection, e.g., RF coil cables, RF shielding, etc. A complete report of PM, QC tests, and service records must be maintained and must be signed and dated by the person(s) performing the tests. Ancillary equipment must be included as part of the QA program 17 Part II of the standard addresses: Indications (body, cardiovascular, MSK, neurological, breast, MRA) Techniques Positioning and coil selection Appropriate protocol & optimization of pulse sequence(s) for the indication Utilization of appropriate software, workstations, techniques, and measurements A complete, written description of each protocol must be maintained, including acquisition details, contrast agent administration, filming, etc. Procedure Volumes Technical and Interpretative Quality Assessment Technical / Administrative Quality Assessment, including appropriate use criteria Interpretative Quality Assessment over-reads, correlation with outcomes, etc

4 Application Case Studies EFFECTIVE 1/1/12 Applicant facilities must submit six (6) total case studies for each MRI unit. Cases must represent each area of testing that is performed on the scanner, i.e., Cardiovascular MRI, Breast MRI, Body MRI [chest (noncardiac), abdomen, pelvis, extremity], Musculoskeletal l l MRI, Neurological l MRI, MRA. For example, if your facility is applying in two of the following testing areas you must submit 3 cases for each testing area; if your facility is applying in one testing area, you must submit 6 case studies total. In addition, the printed or electronic final reports and MRI Scan Parameter Forms must be submitted. Cases must have been obtained within the 12 months prior to the date of submission 19 Application IAC agreement Copies of various site policies Acceptance testing results (at installation and/or after major upgrade). All acceptance tests completed after January 5, 2011 must include submission of the QC test t results with the phantom images. 5 days of daily quality control tests with the results and the phantom images Preventative maintenance (PM) report (performed six months prior to application submission) Two (2) months of QA meeting minutes (for facilities applying for reaccreditation) Note: All phantom images must be submitted on CD or DVD with a DICOM viewer ACR Accreditation Programs ACR MRI Accreditation Overview Purpose: to set quality standards for practices and to help continuously improve the quality of patient care to be educational in nature Beneficial for accrediting body and site ACR assists sites improve practice Site obtains PR benefit Sites assist ACR in gathering information about MRI practices. History 1996 ACR MR program accreditation launched 2001 Initial MR QC Manual released 2004 QC Manual update T magnets included 2006 Documentation of QC and annual system performance evaluation required 2008 Modular program introduced ACR MRI Modular Program ACR Accreditation Process Overview Whole body (brain, C-spine, L-spine spine, knee) 23 Head Spine Musculoskeletal Body MR angiography Cardiac Every unit must apply for all modules routinely performed on that unit for a facility to be accredited. Note: Breast MR accreditation is included in the Breast Imaging Accreditation program Submission materials: Scanner information Most recent annual medical physicist performance report Personnel qualifications and CME information Clinical images for each module submitted Phantom images with associated site scanning data form Most recent quarter of QC data $$$$ 24 4

5 ACR CME Requirements ACR MRAP Cost Accreditation First Unit Accreditation Second Unit Repeat Add units or module (mid-cycle) $2400 (1-4 modules) $2600 (5 modules) $2800 (6 modules) $2300 (1-4 modules) $2500 (5 modules) $2700 (6 modules) $800 per unit for clinical or phantom $1600 for both $1600 per unit Clinical Images Clinical Images Examination Choices for MRAP by module: - see MRI Accreditation Program Requirements file on ACR website, p. 12 of 15 Examination Choices for MRAP by module: - see MRI Accreditation Program Requirements file on ACR website, p. 12 of ACR Accreditation Process Overview Clinical Images Evaluated for 1) appropriate pulse sequence and contrast, 2) filming technique (if appropriate), 3) anatomic coverage and imaging planes, 4) spatial resolution, 5) artifacts, and 6) appropriate labeling of images Must be submitted in DICOM format on CD with embedded viewer. Requirements for viewer must are provided in the ACR MRI Clinical Image Quality Guide

6 ACR Accreditation Process Overview ACR Accreditation Process Overview Phantom Images Discussed in detail on subsequent slides Acquired on ACR MR Accreditation Phantom using specified T 1 - and T 2 -weighted protocols plus the site s T 1 - and T 2 - weighted protocols (for brain imaging). Must be submitted in DICOM format on CD-ROM (w/o embedded viewer; no image compression) Evaluated for 1) geometric accuracy, 2) high contrast spatial resolution, 3) slice thickness accuracy, 4) slice position accuracy, 5) signal uniformity, 6) ghosting, 7) low contrast detectability. 31 Annual MRI System Performance Evaluation Mustbe performed by a medical physicist / MR scientist Includes MRAP phantom scans and tests required for weekly QC and specific tests of: Magnetic field homogeneity Slice thickness and position accuracy Radiofrequency coils SNR all coils Uniformity all volume coils Soft-copy displays (monitors) Should also provide an assessment of MR safety issues at the facility 32 ACR MR Accreditation Phantom ACR Phantom Scan Documentation Contains information on: Phantom position Pulse sequences to be used Filming and data preparation instructions Large Phantom: $1050 Small Phantom: $ 780 (Ortho) (as of 2/10/2012) Sent to site with Full Application Available from the ACR ACR Phantom Scan Documentation Alignment of the ACR Phantom Contains information on: Test analysis Performance criteria Common reasons for failure Sent to site with Full Application Available from the ACR 45 Alignment is important! Center phantom in head coil use foam, stack of paper, paper towels, or cardboard Make sure phantom is straight use bubble level Make sure phantom is centered SI, LR & AP make localizer images in all 3 planes use grid to check centering Record position for future use 46 6

7 ACR Phantom Scans ACR Accreditation Process Overview Sagittal Localizer TE/TR=20/200ms, 25 cm FOV, 256x256, 1 20-mm, 1 NEX, 0:56 ACR T1 Axial Series TE/TR=20/500ms, 25 cm FOV, 256x256, 11 5-mm slices (graphically prescribed), 1 NEX, 2:16 ACR T2 Axial Series TE1/TE2/TR=20/80/2000ms, 25 cm FOV, 256x256, 11 5-mm slices (same locations as for ACR T1 series), 1 NEX, 8:56 + Site T1 and T2 Axial Brain Series 47 #1 #7 #8 #5 #9 #10 #11 #1) Slice thickness and position, geometric accuracy, high contrast resolution #5) Geometric accuracy #7) Percent image uniformity, ghosting #8-11) Low contrast object detectability, and slice position (in #11) 48 Geometric Accuracy Slice Position ACR T1 True Dimension: 190 mm True Dimension: 148 mm ACR T1 & T2 Slice 1 Slice 5 Set WW & WL to min, then raise WL until 1/2 water is dark (mean) Set WW to mean and WL to 1/2(mean) 49 Sag Loc Criterion: ± 2 mm Slice 1 Slice 11 Criterion:<5mm 50 Slice Thickness Slice Thickness ACR T1 & T2 Slice 1 Two 10:1 ramps Magnify image by 2-4x. Define two ROIs, one on each ramp. Obtain average intensity from the two ROIs. Measurements: lower level to ½ average set window width to minimum measure lengths of top and bottom ramps calculate slice thickness Criterion: 5.0±0.7 mm

8 ACR T1 & T2 Slice 1 High Contrast Spatial Resolution Magnify by 2-4x. Use UL for horizontal resolution and LR for vertical resolution. Must be able to resolve 1.0 mm holes vertically and horizontally. UL Spatial Resolution Matrix: Registration with Phantom Resolution Holes mm LR Image Matrix Image compliments of Geoff Clarke, PhD Low Contrast Detectability Low Contrast: High vs. Low Field ACR T1 & T2 Slices 8-11 Slice 8: 1.4% Slice 9: 2.5% Slice 10: 3.6% Slice 11: 5.1% 1.5 T 0.3 T 1.5T Criterion 9 spokes 3.0T Criterion 37 spokes 55 Slice 11 - ACR T1 series 56 ACR T1 & T2 Slice 7 Percent Image Uniformity (~1 cm 2 ) ACR T1 Ghosting Slice 7 Ghost ratio = (top+bottom) - (left+right) (2 large ROI) Large ROI ( cm 2 ) percent integral uniformity = ( high low ) 1.5T ( high low) 3.0T Criterion: PIU 87.5% Criterion: PIU 82% 57 Criterion: ROIs ~ 10 cm 2 with ~4:1 length:width 58 8

9 Ghosting Window and level to make sure ROIs are in background noise! (Warping of image space due to gradient nonlinearity corrections.) Common Problems and Artifacts Potential Causes of Geometric Accuracy Failures Poor phantom positioning - relatively common problem Poor gradient calibration B o inhomogeneity Ferromagnetic objects in magnet Poor magnet shimming Gradient non-linearity (not appropriately corrected) Inappropriate receiver bandwidth Poor eddy current compensation Combination of two or more of above 61 Rotation (in-plane) 62 Poor Positioning Poor Positioning Poor Positioning Rotation (through-plane, RL) Rotation (through-plane, AP)

10 Sources of Geometric Distortion Spatial Accuracy System Limitations Poor B o homogeneity Linear scale factor errors in the gradient fields Field distortion due to induced eddy currents Nonlinearities of the gradient fields Object-Induced Chemical shift effects Magnetic susceptibility variations (patient induced) Be sure to make sagittal measurements at the center of the phantom (or as close as possible to the center) Air Bubbles Low Acquisition Bandwidth When a large air bubble is present in the phantom, geometric distortion measurement may have to be taken along diagonal instead of vertical. Note distortion as well as increased susceptibility artifacts Air Bubbles Spatial Resolution Matrix: Registration with Phantom Resolution Holes 16 khz 8 khz Image Matrix Image compliments of Geoff Clarke, PhD 10

11 High-Contrast Spatial Resolution Image Intensity Uniformity Common causes of failure; Incorrect FOV or matrix size Poor gradient calibrations Excessive filtering (smoothing) Poor eddy current compensation Gradient amplifier instability Big ROI ~ 195 cm 2 (19,500 mm 2 ) Small ROI s ~ 1 cm 2 (100 mm 2) Max Signal Min Signal ACR phantom - Slice # Image Intensity Uniformity Percent Signal Ghosting Common causes of failure: Poor phantom centering in coil (usually in AP direction) Ghosting Motion or vibration Mechanical failure in head coil Note: Uniformity becomes poorer with increasing B o (especially above 2 T) because of dielectric field focusing phenomenon (aqueous phantom). Must pass on slice #7 of ACR T1-weighted axial series. Ghost signal is measured and reported as percentage of the signal in the true image Excessive ghosting in other images may be counted as Unacceptable Artifact Phase Ghosting Ghosting is Nonspecific Phase Readout GHOST NOISE GHOST Instability in MRI signal from pulse to pulse Phantom motion Loose connections or bad cable Partial failure of radiofrequency coils or gradient subsystem Pulse sequence calibration error Eddy currents in Fast Spin Echo series NOISE 75 Image compliments of Geoff Clarke, PhD 76 11

12 Ghosting Low Contrast Detectability ACR T1 & T2 Ghosting may obscure otherwise visible LCD spokes Slice 8: 1.4% Slice 9: 2.5% Slice 10: 3.6% Slice 11: 5.1% 77 Image compliments of Geoff Clarke, PhD 78 Low Contrast Detectability DC Offset Artifacts Some common causes of failure: Incorrectly positioned slices Contrast based on partial volume averaging Tilted phantom Incorrect slice thickness Ghosting Inadequate SNR Large artifact off to side. NEX=1; frequency shifted Image compliments of Geoff Clarke, PhD Susceptibility Artifacts Details of the ACR MRI QC Manual Small inclusions in LCD insert can make analysis difficult

13 MRI QC Manual Overview Current Version: 2004 Radiologist s Section Describes requirements and the role in a QA program Technologist s Section Outlines the recommended daily and weekly QC tests Physicist s / MRI Scientist s Section Suggestions for setting up a QC program Outlines recommended annual equipment performance tests 83 Quality Assurance Manual Should contain the following: Responsibilities and procedures for QC testing. Records of the most recent QC tests. A description of the orientation program procedures for use and maintenance of the equipment. MRI techniques to be used. Precautions in place to protect the patient. Proper maintenance of records, including records of testing, equipment service, and QA meetings. Procedures for cleaning and disinfection. 84 Radiologist s Responsibilities Radiologist s Responsibilities (cont.) To ensure adequate training and continuing education in MRI To provide an orientation program for technologists To ensure that an effective quality control program exists for all MRI procedures To select the technologist to be the primary quality control technologist To ensure that appropriate test equipment and materials are available to perform the technologist s QC tests. 85 To arrange staffing and scheduling so that QC tests can be carried out. To provide feedback to the technologists. To select a qualified lifidmedical physicist ii or MRI scientist. i To review the technologist s test results To oversee or designate a qualified individual to oversee the safety program. To ensure that records are properly maintained and updated in the MRI QC procedures manual. 86 Technologist s Responsibilities Technologist s Responsibilities Daily (weekly*) MR image QC procedures QC of hard and soft copy images Routine visual inspection of equipment Note: Effective May 2, 2002, the performance of daily QC tests is NOT required. All daily tests mentioned in the QC Manual are now required at least weekly (but daily testing is encouraged). Medical Physicist/MR Scientist interactions: Physicist assures correct implementation an execution of the QC procedures Physicist reviews QC notebook at least annually (quarterly preferred) Radiologist interactions: Radiologist informs technologist about image quality problems Radiologist decides whether or not patient studies can continue Radiologist participates in the initial assessment of image quality and regularly monitors the QC results in the intervals between annual reviews

14 Medical Physicist s Responsibilities Write purchase specifications Perform acceptance testing and establish baseline QC measurements Determine action limits for measured parameters Setup daily/weekly QC tests Perform annual MRI equipment performance reviews Details of the Technologist s Responsibilities Technologist s Section Technologist s Section Identification of the designated QC technologist(s) Maintenance of the QC Notebook QC policies and procedures Data forms where QC procedure results are recorded Notes on QC problems and corrective action(s) Document QC data review Alternative phantoms and procedures Action limits Technologist s Section Technologist s Section Routine tests using ACR phantom and ACR T 1 -weighted head scan: Center frequency (daily/weekly) Geometric and positioning accuracy (daily/weekly) y) Image quality (daily/weekly) High contrast resolution Low contrast object detectability Artifact evaluation (daily/weekly) Plus: Processor sensitometry (weekly) Physical and mechanical inspection (weekly) min 14

15 Technologist s Section Technologist s Section Daily (Weekly) Record central frequency and transmit gain (attenuation) settings for the ACR axial T 1 series. Check position accuracy by ensuring central grid structure is within 2 mm of the center of the image Verify geometric accuracy by ensuring length (sagittal localizer image) and vertical/horizontal diameter (axial slice #5) measures are within 2 mm of true values Verify high contrast resolution (vertical and horizontal) using T 1 series axial slice #1 Verify low contrast object detectability levels using T 1 series axial slice #8, 9, 10, or 11 (as determined by physicist/mr scientist) 95 Daily (Weekly) (cont) Assess level of image artifacts in axial T 1 series Phantom should appear circular There should be no ghost images in the background or overlying the phantom image There should be no streaks or artifactual bright or dark spots in the image There should be no unusual or new features in the image. 96 Daily Axial ACR T1 Series Daily Tests - Transmitter Gain and Frequency Spin-echo sequence TE/TR=20/500ms Slice thickness / gap = 5/5 mm 11 slices graphically prescribed from sagittal localizer FOV = 25 cm Matrix: 256x256 1 average (NEX, NSA, etc.) Scan time: 2:16 min 97 During the prescan for the T1 series, the scanner determines the appropriate transmitter gain (or attenuation) and transmit (center) frequency. On some scanners, these values are easily obtained at the end of prescan and/or from the series text page. On other scanners, these values will need to be obtained from special options (see service engineer). The transmit gain (attenuation) value and center frequency value should be recorded daily. 98 Daily Tests - Geometric Accuracy Daily Tests - High Contrast Spatial Resolution True Dimension: 190 mm True Dimension: 148 mm Magnify by 2-4x. Use UL for horizontal resolution and LR for vertical resolution. Must be able to resolve 1.0 mm holes vertically and horizontally. UL mm Slice 5 Set WW & WL to min, then raise WL until 1/2 water is dark (mean) Set WW to mean and WL to 1/2(mean) 99 Sag Loc Criteria: ± 2 mm 100 LR 15

16 Daily Tests - Low Contrast Detectability Daily Tests - Assessment of Artifacts Count and record the number of spokes in the slice determined by the Medical Physicist or MR Scientist. (Typically slice 11for low field and slice 8 or 9 for high field.) Action criteria: Change of more than 3 spokes (or as determined by QC procedure). 101 Look at all slices from the localizer and axial T1 series. Modify window width and level to look for ghosting artifacts and radiofrequency interference artifacts. Note any change in image quality relative to baseline scans. 102 Technologist s QC Log - Daily Tests Weekly Tests - Processor QC Weekly Tests SMPTE Pattern Gray Level Ring Weekly Tests - Processor QC Weekly Tests - Processor QC Weekly Hard Copy QC Tests: Display SMPTE test pattern. Visually examine the SMPTE pattern (0/5% and 95/100% patches). Measure the optical density (OD) of the 0, 10, 40, and 90% gray level patches with a densitometer. Plot OD values on the Laser Film QC Chart. Inspect film for streaks, uneven densities, and other artifacts

17 Weekly Tests - Visual Inspection RF Shielded Room Door At least weekly visual inspection tests: Check patient table, patient communication, patient panic buttons, transport, alignment, and system indicator lights Check RF room integrity (particularly RF doors) Check that emergency cart, safety lights, signage, and patient monitors (and supplies) are present and in working order Check that all RF coils are present and in apparent good working condition (no frayed cables, etc.) The RF door fingers provide good electrical contact of the shielded door and the rest of the Faraday cage shield. If the fingers are damaged, as they will inevitably be, the effectiveness of the shield decreases and will ultimately give rise to RF interference artifacts (or cause them on an adjacent scanner!). RF Coil Weekly Checks Be sure to check all cables on RF coils, particularly high use and/or flexible coils. Any suspicious coils, cables, or connector boxes should be reported immediately to your service organization and/or vendor s service engineer. 110 Technologist s QC Summary Technologist runs QC runs on a daily (weekly) basis, and records the results in the QC logbook. Some Details of the Medical Physicist s / MR Scientist s Responsibilities If any test result exceeds the appropriate action limit (established by Medical Physicist/MR Scientist), repeat QC test. If still fails, notify service (and log service call). Action criteria are usually set based on 10 or more repeated measurements

18 Medical Physicist/MR Scientist Responsibilities Performs acceptance tests New systems before first patient scan Following any major hardware or software upgrade Acquires baseline QC data acquisition and establishes action limits Central frequency Transmitter gain / attenuation Geometric accuracy High contrast resolution Low contrast object detectability Artifact analysis 114 Medical Physicist/MR Scientist Responsibilities Laser camera QC Establish operating levels (in consultation with laser film system service engineer) Acquire baseline data (using SMPTE test pattern) Corrective actions Determination of whether problem lies in the camera, processor, and/or MR system 115 Annual Physics Tests Magnetic field homogeneity Slice position accuracy Slice thickness accuracy RF coil checks Signal-to-noise ratio (all coils) Image uniformity (volume coils) Interslice RF interference Phase stability (ghosting) Soft copy displays (monitors) Assessment of MR safety program Medical Physicist/MR Scientist Responsibilities 116 Magnetic Field Homogeneity Ideal Homogeneity Good Homogeneity Poor Homogeneity FWHM o o o Denotes a totally uniform magnetic field. All signal is at resonant frequency, o. Fourier transform of signal produces a Lorentzian peak in well-shimmed magnet 117 FWHM Magnet field homogeneity can be characterized using FWHM of resonance peak Magnetic Field Homogeneity Magnetic Field Homogeneity One vendor s head equivalent phantom. Insert sphere can be used for homogeneity test. (Remove sphere from cylindrical loader first. Place at isocenter in head coil.) With sphere in head coil, use manual prescan. Adjust center frequency twice to determine the full width at half maximum of the spectrum

19 Magnetic Field Homogeneity Magnetic Field Homogeneity Phase images from GRE sequences with 10ms difference in TE s Phase and Unwrapped Phase Images The change in phase across the phantom is proportional to the inhomogeneity of the magnetic field. Harmonic Coefficients given for Z1, Z2, Z3, Z4, Z5, Z6, X, Y, ZX, ZY, X2-Y2, XY, Z2X, Z2Y, ZXY, etc. LVshim Report Exam 50196, Series 2, Image 1 (Fri Jan 24 20:35: ) Scan Bandwidth d = 200 Hz Field of View = 50 cm Sampling Diameter = 22 cm Inhomogeneity 3.19 Hz (0.050 ppm) Magnetic Field Homogeneity Slice Position Accuracy Either the FWHM technique (on a given spherical phantom) or the phase difference technique can be used to assess homogeneity if possible at a given site. Slice Position Slice Spacing Alternative: Use the service engineer s report on homogeneity for your site records of homogeneity. SLICE #1 SLICE #11 Crossed wedges should be of equal length if position and spacing are accurate (and phantom is not tilted!) Measurements: lower level to ½ average set window at minimum measure lengths of top and bottom ramps calculate slice thickness Slice Thickness Site & Equipment Data B o Homogeneity Slice Position Accuracy - MRI Equipment Performance Evaluation Site: Date: MRAP Number: Serial Number: Equipment: MRI System Manuafacturer: Model : Processor Manufacturer : Model: PACS Manufacturer: Model: ACR MRAP Phantom Number used: 1. Magnetic Field Homogeneity Method Used (check one): Spectral Peak Phase Difference Other (describe) Measured Homogeneity: Diameter of Spherical Homogeneity Volume (cm) (ppm) 2. Slice Position Accuracy From Slice Positionss #1 and #11 of the ACR Phantom: Wedge (mm) =+ = - =+ = Slice Location #1 Slice Location #11 Slice Thickness Accuracy 3. Slice Thickness Accuracy From Slice Position #1 of the ACR Phantom: Slice Thickness Top Calculated slice (fwhm in mm) Thickness (mm) Bottom 124 Duplicate these forms so they will be available for repeated use. 19

20 Volume RF Coil Measurements Volume Coils - SNR, Uniformity, and Ghosting 126 Must assess SNR, uniformity, and ghosting ratio for every volume coil. ACR Phantom Slice #7 Uniformity performance criteria: PIU 90% percent integral uniformity = ( high low ) ( high low) SNR (no fixed criteria) (Mean Signal ROI) / (SD of Noise ROI) Percent Signal Ghosting Left Right Top Bottom Mean Signal 127 Phased-Array Coils Phased-Array Coils Breast Phased Array Wrist Phased Array Torso Phased Array Example of a particular vendor s C-T-L spine phased array coil QC phantom Head-Neck-Spine Phased Array Surface RF Coil Measurements % Image Uniformity Signal-to-Noise Percent Signal Ghosting Volume Coil Data Max Signal Min Signal Mean Signal SD of Background Signal Ghost Signal Mean Signal Background Signal Maximum Signal-to-Noise Surface Coil Data Maximum signal SD of Background Signal

21 -2 MR Accreditation Programs - E. Jackson Volume Coil Calculated Values: Uniformity SNR Ghosting 4. RF Coil Performance Evaluation A. VOLUME RF COIL - RF Coil Description: Date: Phantom Description: Pulse Sequence: Type: TR: TE: flip angle degrees FOV: cm 2 Matrix: BW: khz ; NSA Slice thickness mm; spacing mm TX attenuation (or gain) Data Collected: Mean Maximum Minimum Background Noise Ghost Signal Signal Signal Signal Standard Signal Deviation Calculated Values: Signal-to-Noise Percent Percent Ratio Image Uniformity Signal Ghosting Requires precision luminance meter Soft Copy Displays Surface Coil Calculated Value: Maximum SNR - B. RF SURFACE COIL - RF Coil Description: Date: Phantom Description: Pulse Sequence: Type: TR: TE: FOV: cm 2 Matrix: BW: khz ; NSA Slice thickness mm; spacing mm TX attenuation (or gain) Maximum Noise Standard Maximum Signal-to- Signal Deviation Noise Ratio Image uniformity distribution OK? Image ghosting OK? HARD COPY IMAGE: Window width Window level Four tests: Maximum and minimum luminance Luminance uniformity Resolution (SMPTE) Spatial accuracy (SMPTE) Several copies of this page may be required to report on all RF coils. 133 Max luminance (WL/WW min): 90 Cd/m 2 Min luminance: <1.2 Cd/m 2 Luminance uniformity: Each of the luminance values obtained at the four corners of the screen should be within 30% of the maximum value measured at the center (WL/WW min). Resolution: Use SMPTE 100% contrast patterns (see QC manual, p. 117). Spatial accuracy: Use SMPTE grid pattern (see QC manual, p. 117). 134 Soft Copy Displays RF Slice Interference Soft ftcopy Displays Review of Routine QC Program - 90 % 80 % 5. Interslice RF Interference Phantom Description: Pulse Sequence: Type: TR: TE: FOV: cm 2 Matrix: BW: khz ; NSA Number of slices 100% S eries S lice S igna l- Number Gap to-noise (m m ) Ratio 1 2 Measured SNR % 0% 25% 50% 75% 100% Inte r-slice Gap (perce nt of slice thickne ss) 6. Soft Copy Displays Monitor Description: Maximum Luminance: Cd m 2. Minimum Luminance: Cd m -2. Luminance Uniformity: Average of values obtained in four corners of screen: Cd m -2. Luminance measured in center of screen: Cd m -2. Percent difference: % (Center Average Corners)/(Center) x 100% < 30% 7. Evaluation of Site s Technologist QC Program Set up and positioning accuracy: (daily) 4) 5) Center Frequency: (daily) 6) Transmitter Attenuation or Gain: (daily) 7) Geometric Accuracy Measurements: (daily) 8) Spatial Resolution Measurements: (daily) 9) Low Contrast Detectability: (daily) 10) Film Quality Control (weekly) Visual Checklist: (weekly) Summary Medical Sheet MRI Equipment Evaluation Summary Site Report Date: System MRAP # Survey Date: MRI System Manufacturer Model: Physicist/MRI Scientist: Signature: Equipment Evaluation Tests Pass / Fail 1. Magnetic Field Homogeneity: 2. Slice Position Accuracy 3. Slice Thickness Accuracy 4. RF Coils Performance Coils Signal-to-Noise Ratio a. Volume b. Volume Coils Image Uniformity c. Volume Coils Ghosting Ratios d. Surface Coils Signal-to-Noise Ratio 5. Inter-slice RF Interference 6. Soft copy displays M di l Physicist s i or MRI Scientist s t Recommendations for Quality Improvement: ACR MRI QC Program Summary Technologist Performs daily (weekly) tests to assess image quality using the ACR phantom Performs weekly tests of hard copy output Miti Maintains QC notebook!! tb Medical Physicist / MR Scientist Runs baseline tests of system performance Sets action limits for daily ACR phantom tests Performs annual system performance tests Reviews all QC program data annually

22 ACR MRI QC Program Summary Radiologist Ultimately responsible for all QA for the facility All measurements, problems reported, and actions required to resolve the problems must be recorded for review, as must all preventive maintenance and repair records from the vendor or service organization

4/14/2009. The Big Picture of Quality. MRI Quality Assurance and ACR MRI Accreditation Program. Basic Elements for Image Quality.

4/14/2009. The Big Picture of Quality. MRI Quality Assurance and ACR MRI Accreditation Program. Basic Elements for Image Quality. The Big Picture of Quality MRI Quality Assurance and ACR MRI Accreditation Program Chen Lin, PhD Indiana University School of Medicine & Clarian Health Partners Diagnosis accuracy Image quality Knowledge

More information

Technologist Quality Control Procedures

Technologist Quality Control Procedures Technologist Quality Control Procedures The specific procedures for the Technologist Quality Control Program are those specified in the most current ACR MRI QC Manual. WEEKLY MRI EQUIPMENT QUALITY CONTROL

More information

Phantom Test Guidance for Use of the Small MRI Phantom for the MRI Accreditation Program

Phantom Test Guidance for Use of the Small MRI Phantom for the MRI Accreditation Program Phantom Test Guidance for Use of the Small MRI Phantom for the MRI Accreditation Program 1 Contents 0.0 INTRODUCTION 4 0.1 Overview and Purpose 4 0.2 The Phantom 4 0.3 The Required Images 5 0.4 The Image

More information

Display Quality Assurance: Considerations When Establishing a Display QA Program. Mike Silosky, M.S. 8/3/2017

Display Quality Assurance: Considerations When Establishing a Display QA Program. Mike Silosky, M.S. 8/3/2017 Display Quality Assurance: Considerations When Establishing a Display QA Program Mike Silosky, M.S. 8/3/2017 Objectives and Outline Why, Who, What, When, Where? Discuss the resources that may be needed

More information

Scope: All CT staff technologist

Scope: All CT staff technologist APPROVED BY: Radiology Technical Director Page 1 of 6 Purpose: The QC program assesses relative changes in system performance as determined by the technologist, service engineer, qualified medical physicist,

More information

Breast MR Imaging and Quality Control

Breast MR Imaging and Quality Control Breast MR Imaging and Quality Control Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics Educational Objectives 1. Provide an overview of breast MR imaging and MR-guided biopsy procedures. 2.

More information

2012 Computed Tomography

2012 Computed Tomography 2012 Computed Tomography QUALITY CONTROL MANUAL Radiologist s Section Radiologic Technologist s Section Medical Physicist s Section 2012 Computed Tomography QUALITY CONTROL MANUAL Radiologist s Section

More information

3/2/2016. Medical Display Performance and Evaluation. Objectives. Outline

3/2/2016. Medical Display Performance and Evaluation. Objectives. Outline Medical Display Performance and Evaluation Mike Silosky, MS University of Colorado, School of Medicine Dept. of Radiology 1 Objectives Review display function, QA metrics, procedures, and guidance provided

More information

Nuclear Associates and

Nuclear Associates and Nuclear Associates 76-907 and 76-908 AAPM MRI Phantoms Users Manual March 2005 Manual No. 38616 Rev. 3 2003, 2005 Fluke Corporation, All rights reserved. Printed in U.S.A. All product names are trademarks

More information

Equipment Quality Control for Digital Radiography February 22, Imaging Physics CancerCare Manitoba

Equipment Quality Control for Digital Radiography February 22, Imaging Physics CancerCare Manitoba Equipment Quality Control for Digital Radiography February 22, 2018 Imaging Physics CancerCare Manitoba Purpose An equipment quality control (QC) program establishes baseline performance levels, tracks

More information

2017 Computed Tomography

2017 Computed Tomography 2017 Computed Tomography QUALITY CONTROL MANUAL Radiologist s Section Radiologic Technologist s Section Qualified Medical Physicist s Section 2017 Computed Tomography QUALITY CONTROL MANUAL Radiologist

More information

Abstract. Learning Objectives 8/1/2017

Abstract. Learning Objectives 8/1/2017 SAM Practical Medical Physics TU-B-201-0 AAPM Annual Meeting 2017 1 Abstract This course will teach the participant to identify common artifacts found clinically in MR, DR, CT, PET, to determine the causes

More information

Philips Site Yearly Performance Evaluation Philips Achieva - Gibbons 1.5T 1-Jun-08. Table of Contents

Philips Site Yearly Performance Evaluation Philips Achieva - Gibbons 1.5T 1-Jun-08. Table of Contents Philips Site Yearly Performance Evaluation Philips Achieva Gibbons.T Jun8 Table of Contents Summary and Signature Page 2 Specific Comments 3 Site Information 4 Equipment Information 4 Table Position Accuracy

More information

True comfort and flexibility with the power of 3T.

True comfort and flexibility with the power of 3T. True comfort and flexibility with the power of 3T. With a large 71 cm aperture and the quietest exams in the industry, the Vantage Titan 3T is the most comfortable 3T MRI system for all of your patients.

More information

M R I Physics Course. Jerry Allison Ph.D. Chris Wright B.S. Tom Lavin M.S.M.P. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D. Chris Wright B.S. Tom Lavin M.S.M.P. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D. Chris Wright B.S. Tom Lavin M.S.M.P. Department of Radiology Medical College of Georgia M R I Physics Course chapter 12 Artifacts and Suppression Techniques Artifacts

More information

Troubleshooting Guide. Prep, Scan Errors, and Artifacts

Troubleshooting Guide. Prep, Scan Errors, and Artifacts Troubleshooting Guide Prep, Scan Errors, and Artifacts Preparing for the Study Participant Compliance with MRI Scans Participant Prep Having your participant prepped will allow you to run your study with

More information

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria Nicholas B. Bevins, Ph.D. TG270 Co-chair Display Check 2 TG270 Goals Provide an update to

More information

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria

Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria Display Quality Assurance: Recommendations from AAPM TG270 for Tests, Tools, Patterns, and Performance Criteria Nicholas B. Bevins, Ph.D. TG270 Co-chair Display Check 2 1 TG270 Goals Provide an update

More information

Request for Proposals

Request for Proposals Request for Proposals Reference: ERDFIAI2012-4006A Caring First Ltd, is a limited liability company providing healthcare services. The company is currently commissioning a private new-build hospital complete

More information

Procedure Manual for MRI of the Brain

Procedure Manual for MRI of the Brain Baxter Protocol 161003 SYN RC W H E R E S C I E N C E M E E T S S E R V I C E Baxter Protocol 161003 A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study of the Safety and Effectiveness of Immune

More information

MSK Imaging Fundamentals

MSK Imaging Fundamentals MSK Imaging Fundamentals Goals Improve image quality Provide best possible product for our customers Patient Referring clinician Radiologist Reduce number of callback cases Goal reduction of 50% in 3 months

More information

Guidelines for Assuring Softcopy Image Quality

Guidelines for Assuring Softcopy Image Quality Guidelines for Assuring Softcopy Image Quality What s inside? Quality Control Guidelines Softcopy QA testing and frequencies Danny Deroo Product and R&D Manager QA Products ABSTRACT To ensure diagnostic

More information

Experiences in ACR MRI Accreditation Vendor Nuances That Every Clinical MRI Physicist Should Know

Experiences in ACR MRI Accreditation Vendor Nuances That Every Clinical MRI Physicist Should Know Experiences in ACR MRI Accreditation Vendor Nuances That Every Clinical MRI Physicist Should Know By Kathryn (Kat) W. Huff, M.S., DABR Prepared for The 2013 AAPM Spring Clinical Meeting Validating Me I

More information

Procedures for conducting User QA on the scanner

Procedures for conducting User QA on the scanner Procedures for conducting User QA on the scanner Sample setup: The User QA phantom is clearly labeled and is stored on one of the shelves to the side of the magnet. Note proper orientation of the bottle,

More information

Overview. ACR Accreditation Update in Mammography. ACR Topics. Requirements Today. What s Coming For Tomorrow

Overview. ACR Accreditation Update in Mammography. ACR Topics. Requirements Today. What s Coming For Tomorrow ACR Accreditation Update in Mammography Eric Berns, PhD University of Colorado Hospital Denver Health Medical Center Denver, CO *No financial disclosures to report Overview ACR Topics Requirements Today

More information

RAD 465 (MRI) Lecture one (Pulse Sequences) Ruba Khushaim MSc

RAD 465 (MRI) Lecture one (Pulse Sequences) Ruba Khushaim MSc RAD 465 (MRI) Lecture one (Pulse Sequences) Ruba Khushaim MSc Outline : Spine echo pulse sequence SE Fast spin echo pulse sequence FSE Inversion recovery pulse sequence IR Gradient pulse sequence GS Pulse

More information

Multiparametric MRI Prostate Imaging Protocol November 2015 Full Acquisition Protocol with Parameters GE 3T Magnet with Software Version DV25

Multiparametric MRI Prostate Imaging Protocol November 2015 Full Acquisition Protocol with Parameters GE 3T Magnet with Software Version DV25 3Plane Loc SSFSE Multiparametric MRI Prostate Imaging Protocol November 2015 Full Acquisition Protocol with Parameters GE 3T Magnet with Software Version DV25 Save Series Scan After acquisition, scroll

More information

Equipment Quality Control for Primary Displays June 5, Imaging Physics CancerCare Manitoba

Equipment Quality Control for Primary Displays June 5, Imaging Physics CancerCare Manitoba Equipment Quality Control for Primary Displays June 5, 2018 Imaging Physics CancerCare Manitoba Purpose An equipment quality control (QC) program establishes baseline performance levels, tracks system

More information

More Info at Open Access Database Process Control for Computed Tomography using Digital Detector Arrays

More Info at Open Access Database  Process Control for Computed Tomography using Digital Detector Arrays Digital Industrial Radiology and Computed Tomography (DIR 2015) 22-25 June 2015, Belgium, Ghent - www.ndt.net/app.dir2015 More Info at Open Access Database www.ndt.net/?id=18082 Process Control for Computed

More information

The American College of Radiology Mammography Accreditation Program Screen-Film: Frequently Asked Questions (Updated: March 16, 2018)

The American College of Radiology Mammography Accreditation Program Screen-Film: Frequently Asked Questions (Updated: March 16, 2018) The American College of Radiology Mammography Accreditation Program Screen-Film: Frequently Asked Questions (Updated: March 16, 2018) Table of Contents ACR Mammography Accreditation... 1 The 1999 ACR Mammography

More information

Interface Practices Subcommittee SCTE STANDARD SCTE Measurement Procedure for Noise Power Ratio

Interface Practices Subcommittee SCTE STANDARD SCTE Measurement Procedure for Noise Power Ratio Interface Practices Subcommittee SCTE STANDARD SCTE 119 2018 Measurement Procedure for Noise Power Ratio NOTICE The Society of Cable Telecommunications Engineers (SCTE) / International Society of Broadband

More information

VeriLUM 5.2. Video Display Calibration And Conformance Tracking. IMAGE Smiths, Inc. P.O. Box 30928, Bethesda, MD USA

VeriLUM 5.2. Video Display Calibration And Conformance Tracking. IMAGE Smiths, Inc. P.O. Box 30928, Bethesda, MD USA VeriLUM 5.2 Video Display Calibration And Conformance Tracking IMAGE Smiths, Inc. P.O. Box 30928, Bethesda, MD 20824 USA Voice: 240-395-1600 Fax: 240-395-1601 Web: www.image-smiths.com Technical Support

More information

ENGINEERING COMMITTEE

ENGINEERING COMMITTEE ENGINEERING COMMITTEE Interface Practices Subcommittee SCTE STANDARD SCTE 45 2017 Test Method for Group Delay NOTICE The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices

More information

FFDM Quality Control in Canada - a Vendor Neutral Approach

FFDM Quality Control in Canada - a Vendor Neutral Approach FFDM Quality Control in Canada - a Vendor Neutral Approach Rasika Rajapakshe, PhD, FCCPM BC Cancer Agency-Center for the Southern Interior Kelowna, BC, Canada 2011 Joint AAPM/COMP Meeting August 4, 2011

More information

HONEYWELL VIDEO SYSTEMS HIGH-RESOLUTION COLOR DOME CAMERA

HONEYWELL VIDEO SYSTEMS HIGH-RESOLUTION COLOR DOME CAMERA Section 00000 SECURITY ACCESS AND SURVEILLANCE HONEYWELL VIDEO SYSTEMS HIGH-RESOLUTION COLOR DOME CAMERA PART 1 GENERAL 1.01 SUMMARY The intent of this document is to specify the minimum criteria for the

More information

QUALITY CONTROL AND PATIENT DOSES FROM X-RAY EXAMINATIONS IN SOME HOSPITALS IN THAILAND

QUALITY CONTROL AND PATIENT DOSES FROM X-RAY EXAMINATIONS IN SOME HOSPITALS IN THAILAND QUALITY CONTROL AND PATIENT DOSES FROM X-RAY EXAMINATIONS IN SOME HOSPITALS IN THAILAND P. Plainoi, W. Diswath, N. Manatrakul Ministry of Public Health, Nonthaburi, Thailand XA0101612 Abstract Quality

More information

CARESTREAM VITA/VITA LE/VITA SE CR System Long Length Imaging User Guide

CARESTREAM VITA/VITA LE/VITA SE CR System Long Length Imaging User Guide CARESTREAM VITA/VITA LE/VITA SE CR System Long Length Imaging User Guide Use of the Guide Carestream CR Systems are designed to meet international safety and performance standards. Personnel operating

More information

Understanding CT image quality

Understanding CT image quality IAEA RER/9/135 COURSE ON OPTIMIZATION IN COMPUTED TOMOGRAPHY Sofia, Bulgaria, 2017 Understanding CT image quality Dean Pekarovič UMC Ljubljana, Institute of Radiology Quality and Safety office Role of

More information

Image quality in non-gated versus gated reconstruction of tongue motion using Magnetic Resonance Imaging:

Image quality in non-gated versus gated reconstruction of tongue motion using Magnetic Resonance Imaging: This talk was presented 26 June 2008, at the 22nd International Congress and Exhibition of Computer Assisted Radiology and Surgery, in Barcelona at the Hotel Constanza from June 25 to 28, 2008. See http://kochanski.org/gpk/papers/2008/carstalk.html

More information

Agilent 86120B, 86120C, 86122A Multi-Wavelength Meters Technical Specifications

Agilent 86120B, 86120C, 86122A Multi-Wavelength Meters Technical Specifications Agilent 86120B, 86120C, 86122A Multi-Wavelength Meters Technical Specifications March 2006 Agilent multi-wavelength meters are Michelson interferometer-based instruments that measure wavelength and optical

More information

Quality Assurance (QA) Guidelines for Medical Imaging Display Systems

Quality Assurance (QA) Guidelines for Medical Imaging Display Systems 41-1 Japan Industries Association of Radiological Systems Standards (JESRA X-0093*A -2010 ) -English version- Enacted August 8, 2005 Revised June 11, 2010 Quality Assurance (QA) Guidelines for Medical

More information

Standard. Substitute Test or Procedure. Required Test or. 1 Scan Increment Accuracy. Initially and Annually Initially and Annually

Standard. Substitute Test or Procedure. Required Test or. 1 Scan Increment Accuracy. Initially and Annually Initially and Annually Manufacturer s Recommendations for Alternate Dental CBCT QA Program VaTech: Model PAX i3d, i3d Green, i3d Smart Table 6 Medical Physicist s Computed Tomography QC Survey Required Test or Item Procedure

More information

Vascular. Development of Trinias FPD-Equipped Angiography System. 1. Introduction. MEDICAL NOW No.73 (2013.2) Yoshiaki Miura

Vascular. Development of Trinias FPD-Equipped Angiography System. 1. Introduction. MEDICAL NOW No.73 (2013.2) Yoshiaki Miura Vascular Development of Trinias FPD-Equipped Angiography System Medical Systems Division, Shimadzu Corporation Yoshiaki Miura 1. Introduction Shimadzu has developed Trinias (one ceiling-mounted type C12

More information

Standard Operating Procedure of nanoir2-s

Standard Operating Procedure of nanoir2-s Standard Operating Procedure of nanoir2-s The Anasys nanoir2 system is the AFM-based nanoscale infrared (IR) spectrometer, which has a patented technique based on photothermal induced resonance (PTIR),

More information

PINMRF. Checkout Quiz - Varian Inova-300 Version

PINMRF. Checkout Quiz - Varian Inova-300 Version PINMRF Checkout Quiz - Varian Inova-300 Version Please carefully read every question and select the best answer(s). Some questions may have more than one correct answer. You must select all the correct

More information

Coronis 5MP Mammo. The standard of care for digital mammography

Coronis 5MP Mammo. The standard of care for digital mammography Coronis 5MP Mammo The standard of care for digital mammography The standard of care For thousands of women every day, details make all the difference. This understanding, along with many years of commitment

More information

Classic. Best Practice QA Solutions for All Rotational Therapies & IMRT For International Use Only. Classic. RIT113 Technical Specifications

Classic. Best Practice QA Solutions for All Rotational Therapies & IMRT For International Use Only. Classic. RIT113 Technical Specifications Technical Specifications Best Practice QA Solutions for All Rotational Therapies & IMRT For International Use Only for detailed Technical Specifications visit www.radimage.com Can I get just the right

More information

-Technical Specifications-

-Technical Specifications- Annex I to Contract 108733 NL-Petten: the delivery, installation, warranty and maintenance of one (1) X-ray computed tomography system at the JRC-IET -Technical Specifications- INTRODUCTION In the 7th

More information

RF (Wireless) Fundamentals 1- Day Seminar

RF (Wireless) Fundamentals 1- Day Seminar RF (Wireless) Fundamentals 1- Day Seminar In addition to testing Digital, Mixed Signal, and Memory circuitry many Test and Product Engineers are now faced with additional challenges: RF, Microwave and

More information

+ Human method is pattern recognition based upon multiple exposure to known samples.

+ Human method is pattern recognition based upon multiple exposure to known samples. Main content + Segmentation + Computer-aided detection + Data compression + Image facilities design + Human method is pattern recognition based upon multiple exposure to known samples. + We build up mental

More information

ECE 4220 Real Time Embedded Systems Final Project Spectrum Analyzer

ECE 4220 Real Time Embedded Systems Final Project Spectrum Analyzer ECE 4220 Real Time Embedded Systems Final Project Spectrum Analyzer by: Matt Mazzola 12222670 Abstract The design of a spectrum analyzer on an embedded device is presented. The device achieves minimum

More information

Performance Evaluation of Industrial Computed Radiography Image Display System

Performance Evaluation of Industrial Computed Radiography Image Display System Performance Evaluation of Industrial Computed Radiography Image Display System More info about this article: http://www.ndt.net/?id=21169 Lakshminarayana Yenumula *, Rajesh V Acharya, Umesh Kumar, and

More information

Open up to Extremity MRI

Open up to Extremity MRI The Open E-MRI Open up to Extremity MRI After having changed the world of musculoskeletal MR imaging in 1992 with the introduction of Artoscan, the first dedicated MRI, Esaote reached a new target, merging

More information

INSTALATION PROCEDURE

INSTALATION PROCEDURE INSTALLATION PROCEDURE Overview The most difficult part of an installation is in knowing where to start and the most important part is starting in the proper start. There are a few very important items

More information

TSG 90 PATHFINDER NTSC Signal Generator

TSG 90 PATHFINDER NTSC Signal Generator Service Manual TSG 90 PATHFINDER NTSC Signal Generator 070-8706-01 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless

More information

EPI. Thanks to Samantha Holdsworth!

EPI. Thanks to Samantha Holdsworth! EPI Faster Cartesian approach Single-shot, Interleaved, segmented, half-k-space Delays, etc -> Phase corrections Flyback EPI GRASE Thanks to Samantha Holdsworth! 1 EPI: Speed vs Distortion Fast Spin Echo

More information

Monitor QA Management i model

Monitor QA Management i model Monitor QA Management i model 1/10 Monitor QA Management i model Table of Contents 1. Preface ------------------------------------------------------------------------------------------------------- 3 2.

More information

Communication Theory and Engineering

Communication Theory and Engineering Communication Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 Practice work 14 Image signals Example 1 Calculate the aspect ratio for an image

More information

Calibrate, Characterize and Emulate Systems Using RFXpress in AWG Series

Calibrate, Characterize and Emulate Systems Using RFXpress in AWG Series Calibrate, Characterize and Emulate Systems Using RFXpress in AWG Series Introduction System designers and device manufacturers so long have been using one set of instruments for creating digitally modulated

More information

RSNA 2006 November 26 to December 1 Chicago. Guest author for ImPACT Dr. Koos Geleijns, Medical Physicist, Leiden University Medical Center.

RSNA 2006 November 26 to December 1 Chicago. Guest author for ImPACT Dr. Koos Geleijns, Medical Physicist, Leiden University Medical Center. RSNA 2006 November 26 to December 1 Chicago Guest author for ImPACT Dr. Koos Geleijns, Medical Physicist, Leiden University Medical Center. Once again, more than 60,000 participants (including professional

More information

Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing

Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing ECNDT 2006 - Th.1.1.4 Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing R.H. PAWELLETZ, E. EUFRASIO, Vallourec & Mannesmann do Brazil, Belo Horizonte,

More information

Multi echo Multi slice (MEMS) High Performance fmri at CFMRI... 1

Multi echo Multi slice (MEMS) High Performance fmri at CFMRI... 1 Multi echo Multi slice (MEMS) High Performance fmri at CFMRI Table of Contents Multi echo Multi slice (MEMS) High Performance fmri at CFMRI... 1 Introduction... 2 MEMS Protocols... 4 Run MEMS protocol...

More information

High Value-Added IT Display - Technical Development and Actual Products

High Value-Added IT Display - Technical Development and Actual Products High Value-Added IT Display - Technical Development and Actual Products ITAKURA Naoki, ITO Tadayuki, OOKOSHI Yoichiro, KANDA Satoshi, MUTO Hideaki Abstract The multi-display expands the desktop area to

More information

What really changes with Category 6

What really changes with Category 6 1 What really changes with Category 6 Category 6, the standard recently completed by TIA/EIA, represents an important accomplishment for the telecommunications industry. Find out which are the actual differences

More information

Peacefully quiet. Remarkably fast.

Peacefully quiet. Remarkably fast. Peacefully quiet. Remarkably fast. Excellent image quality Streamlined workflow Outstanding patient comfort Canon Medical Systems Vantage Galan 3T offers a transformational experience for you and your

More information

Application Note AN-708 Vibration Measurements with the Vibration Synchronization Module

Application Note AN-708 Vibration Measurements with the Vibration Synchronization Module Application Note AN-708 Vibration Measurements with the Vibration Synchronization Module Introduction The vibration module allows complete analysis of cyclical events using low-speed cameras. This is accomplished

More information

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher.

National Park Service Photo. Utah 400 Series 1. Digital Routing Switcher. National Park Service Photo Utah 400 Series 1 Digital Routing Switcher Utah Scientific has been involved in the design and manufacture of routing switchers for audio and video signals for over thirty years.

More information

Light. Engineered for Performance- Esaote MRI, designed to make a difference.

Light. Engineered for Performance- Esaote MRI, designed to make a difference. Engineered for Performance- Light Esaote MRI, designed to make a difference. Esaote MRI systems are designed to make a difference and the O-scan is fully in line with Esaote s design philosophy. For the

More information

Standard Definition. Commercial File Delivery. Technical Specifications

Standard Definition. Commercial File Delivery. Technical Specifications Standard Definition Commercial File Delivery Technical Specifications (NTSC) May 2015 This document provides technical specifications for those producing standard definition interstitial content (commercial

More information

F250. Advanced algorithm enables ultra high speed and maximum flexibility. High-performance Vision Sensor. Features

F250. Advanced algorithm enables ultra high speed and maximum flexibility. High-performance Vision Sensor. Features High-performance Vision Sensor Advanced algorithm enables ultra high speed and maximum flexibility Features Inspection and positioning that was difficult with previous vision sensors is now surprisingly

More information

PATIENT POSITION IMAGING PARAMETERS

PATIENT POSITION IMAGING PARAMETERS 3 PLANE LOC Patient Entry Feet First Imaging Mode 2D Patient Position Prone Pulse Sequence Gradient Echo Coil Configuration 7breast both MRI Imaging Options Seq, Fast Plane 3-PLANE Acceleration Factor

More information

This talk covers currently available display technology.

This talk covers currently available display technology. Introduction to Current Display Technologies for Medical Image Viewing Perspectives for the TG270 Update on Display Quality Control Alisa Walz-Flannigan, PhD (DABR) Mayo Clinic, Rochester, Minnesota AAPM

More information

Approved by Principal Investigator Date: Approved by Super User: Date:

Approved by Principal Investigator Date: Approved by Super User: Date: Approved by Principal Investigator Date: Approved by Super User: Date: Standard Operating Procedure BNC Dektak 3030 Stylus Profilometer Version 2011 May 16 I. Purpose This Standard Operating Procedure

More information

SPM Training Manual Veeco Bioscope II NIFTI-NUANCE Center Northwestern University

SPM Training Manual Veeco Bioscope II NIFTI-NUANCE Center Northwestern University SPM Training Manual Veeco Bioscope II NIFTI-NUANCE Center Northwestern University Introduction: Scanning Probe Microscopy (SPM) is a general term referring to surface characterization techniques that utilize

More information

Peacefully quiet. Remarkably fast.

Peacefully quiet. Remarkably fast. Peacefully quiet. Remarkably fast. 2 Excellent image quality Streamlined workflow Outstanding patient comfort Toshiba Medical s Vantage Galan 3T offers a transformational experience for you and your patients

More information

Results of the June 2000 NICMOS+NCS EMI Test

Results of the June 2000 NICMOS+NCS EMI Test Results of the June 2 NICMOS+NCS EMI Test S. T. Holfeltz & Torsten Böker September 28, 2 ABSTRACT We summarize the findings of the NICMOS+NCS EMI Tests conducted at Goddard Space Flight Center in June

More information

Iterative Reconstruction with Philips idose Characterising Image Quality in Attempting to Realise its Potential

Iterative Reconstruction with Philips idose Characterising Image Quality in Attempting to Realise its Potential Iterative Reconstruction with Philips idose Characterising Image Quality in Attempting to Realise its Potential Julie Smyth & Philip Doyle Regional Medical Physics Service Outline Preamble Image Quality

More information

Guidance for Quality Assurance of PACS Diagnostic Display Devices

Guidance for Quality Assurance of PACS Diagnostic Display Devices Guidance for Quality Assurance of PACS Diagnostic Display Programme NPFIT DOCUMENT RECORD ID KEY Sub-Prog / PACS Project NPFIT-PAC-DES-0042.06 Prog. Director Max Jones Owner Jerry Norman Version 1.0 Author

More information

Global Trade Medical Supplies

Global Trade Medical Supplies Features: Achieve Clarity True to the Source Data A medical monitor needs to be capable of high brightness in order to meet performance standards. However, in order to achieve high brightness in an LCD

More information

Practicum 3, Fall 2010

Practicum 3, Fall 2010 A. F. Miller 2010 T1 Measurement 1 Practicum 3, Fall 2010 Measuring the longitudinal relaxation time: T1. Strychnine, dissolved CDCl3 The T1 is the characteristic time of relaxation of Z magnetization

More information

XCOM1002JE (8602JE) Optical Receiver Manual

XCOM1002JE (8602JE) Optical Receiver Manual XCOM1002JE (8602JE) Optical Receiver Manual - 2 - 1. Product Summary XCOM1002JE (8602JE) outdoor optical receiver is our latest 1GHz optical receiver. With wide range receiving optical power, high output

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

User's Manual. Rev 1.0

User's Manual. Rev 1.0 User's Manual Rev 1.0 Digital TV sales have increased dramatically over the past few years while the sales of analog sets are declining precipitously. First quarter of 2005 has brought the greatest volume

More information

1995 Metric CSJ SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT

1995 Metric CSJ SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT 1995 Metric CSJ 0508-01-258 SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT 1.0 Description This Item shall govern for the furnishing and installation of color Single

More information

WVR500 Waveform/Vector Monitor

WVR500 Waveform/Vector Monitor Service Manual WVR500 Waveform/Vector Monitor 070-8897-01 Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are

More information

Nio. Industry-standard diagnostic display systems

Nio. Industry-standard diagnostic display systems Nio Industry-standard diagnostic display systems Diagnostic confidence in grayscale With the Nio diagnostic display system, Barco brings dependable diagnostic imaging to its true potential. Presenting

More information

Agilent 81600B Tunable Laser Source Family

Agilent 81600B Tunable Laser Source Family Agilent 81600B Tunable Laser Source Family Technical Specifications August 2007 The Agilent 81600B Tunable Laser Source Family offers the full wavelength range from 1260 nm to 1640 nm with the minimum

More information

Quality Assurance Implementation at the Roberts Proton Therapy Center. James McDonough 3 August 2013

Quality Assurance Implementation at the Roberts Proton Therapy Center. James McDonough 3 August 2013 Quality Assurance Implementation at the Roberts Proton Therapy Center James McDonough 3 August 2013 1 Roberts Proton Therapy Center Machine configuration and layout 4 gantries, 1 fixed beam line, 1 research

More information

THE NEW LASER FAMILY FOR FINE WELDING FROM FIBER LASERS TO PULSED YAG LASERS

THE NEW LASER FAMILY FOR FINE WELDING FROM FIBER LASERS TO PULSED YAG LASERS FOCUS ON FINE SOLUTIONS THE NEW LASER FAMILY FOR FINE WELDING FROM FIBER LASERS TO PULSED YAG LASERS Welding lasers from ROFIN ROFIN s laser sources for welding satisfy all criteria for the optimized laser

More information

SECTION 686 VIDEO DECODER DESCRIPTION

SECTION 686 VIDEO DECODER DESCRIPTION 686 SECTION 686 VIDEO DECODER DESCRIPTION 686.01.01 GENERAL A. This specification describes the functional, performance, environmental, submittal, documentation, and warranty requirements, as well as the

More information

DirectView Elite CR System. Improve workflow, productivity, and patient throughput.

DirectView Elite CR System. Improve workflow, productivity, and patient throughput. Improve workflow, productivity, and patient throughput. DirectView DirectView Compact, single cassette CR systems designed to improve workflow, productivity, and patient throughput. The is small, easy

More information

PRACTICAL APPLICATION OF THE PHASED-ARRAY TECHNOLOGY WITH PAINT-BRUSH EVALUATION FOR SEAMLESS-TUBE TESTING

PRACTICAL APPLICATION OF THE PHASED-ARRAY TECHNOLOGY WITH PAINT-BRUSH EVALUATION FOR SEAMLESS-TUBE TESTING PRACTICAL APPLICATION OF THE PHASED-ARRAY TECHNOLOGY WITH PAINT-BRUSH EVALUATION FOR SEAMLESS-TUBE TESTING R.H. Pawelletz, E. Eufrasio, Vallourec & Mannesmann do Brazil, Belo Horizonte, Brazil; B. M. Bisiaux,

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) E stablished 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar

More information

White Paper. Uniform Luminance Technology. What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved?

White Paper. Uniform Luminance Technology. What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved? White Paper Uniform Luminance Technology What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved? Tom Kimpe Manager Technology & Innovation Group Barco Medical Imaging

More information

MS2540 Current Loop Receiver with RS485 Communication

MS2540 Current Loop Receiver with RS485 Communication MS2540 Current Loop Receiver with RS485 Communication User Manual Metal Samples Company A Division of Alabama Specialty Products, Inc. 152 Metal Samples Rd., Munford, AL 36268 Phone: (256) 358 4202 Fax:

More information

DRAFT. Proposal to modify International Standard IEC

DRAFT. Proposal to modify International Standard IEC Imaging & Color Science Research & Product Development 2528 Waunona Way, Madison, WI 53713 (608) 222-0378 www.lumita.com Proposal to modify International Standard IEC 61947-1 Electronic projection Measurement

More information

NMR. picospin. Maintenance Guide

NMR. picospin. Maintenance Guide NMR picospin Maintenance Guide 269-302600 Revision A January 2013 2013 Thermo Fisher Scientific Inc. All rights reserved. For U.S. Technical Support, please contact: Thermo Fisher Scientific 5225 Verona

More information

Role of Color in Telemedicine Applications. Elizabeth A. Krupinski, PhD

Role of Color in Telemedicine Applications. Elizabeth A. Krupinski, PhD Role of Color in Telemedicine Applications Elizabeth A. Krupinski, PhD Background Color displays common clinical practice Radiology growing acceptance & use Other ologies & telemed routinely used No validated

More information

EMI/EMC diagnostic and debugging

EMI/EMC diagnostic and debugging EMI/EMC diagnostic and debugging 1 Introduction to EMI The impact of Electromagnetism Even on a simple PCB circuit, Magnetic & Electric Field are generated as long as current passes through the conducting

More information

Calibrating the timecode signal input

Calibrating the timecode signal input Chapter 5 Calibrating the timecode signal input Computer hardware can introduce an offset between the timecode signal and the video signal, which causes the timecode and video to be offset when they are

More information