Latches and Flip-Flops UNIT 11 LATCHES AND FLIP-FLOPS. How to Remember the Past? Recap: Two Types of Switching Circuits. Iris Hui-Ru Jiang Spring 2010

Size: px
Start display at page:

Download "Latches and Flip-Flops UNIT 11 LATCHES AND FLIP-FLOPS. How to Remember the Past? Recap: Two Types of Switching Circuits. Iris Hui-Ru Jiang Spring 2010"

Transcription

1 atches and Flip-Flops UNI ACHE AN FI-FO 2 Contents et-eset latch Gated latch Edge-triggered flip-flop - flip-flop - flip-flop flip-flop Flip-flops with additional inputs eading Unit Iris Hui-u iang pring 2 ecap: wo ypes of witching Circuits How to emember the ast? 3 Combinational circuits (memoryless) Outputs depend only on present inputs X X 2 X n... Combinational circuit F equential circuits (with memory) Outputs depend on both present & past inputs Z = F(X, X 2,, X n ) In general, sequential ckts = combinational ckts + memory X X 2 X n (n-)... Combinational circuit F Memory element (n) Z = F(X, X 2,, X n, (n-)) 4 Feedback: the output of one of the gates is connected back into the input of another gate in the ckt so as to form a closed loop e.g., inverter with feedback : How fast does the circuit oscillate? A: etermined by the propagation delay of the inverter Feedback X Oscillation at inverter output X e.g., a feedback loop with two inverters wo stable states atch: basic memory unit (store bit) Now, the values can be kept t

2 et-eset (-) atch (/2) 6 5 et-eset atch - latch stable = set : ; : stable = reset : ; : - atch (2/2) Next-tate Equation 7 Cross-coupled form ' = = Unstable! Not allowed!! ' ' : eset : et 8 iming diagram (t) (t) (t) Operation (t +є) et to eset to -map Inputs not allowed (t) (t)(t) є є t t 2 t 3 t 4 t t +є t 3 +є є: 2 gate delay X X (t+є)=(t)+'(t)(t) Next-state equation: (Characteristic equation) + = +' under = (=, = not allowed)

3 Application: witch ebouncing Alternative Form with NAN-Gates 9 +V When a mechanical switch is opened or closed, switch contacts tend to vibrate before settling down ebounce with - latch e.g, when the switch is flipped from a to b Work only with a double throw switch ouble throw: switch between two contacts ingle throw: switch between one contact and open b a == unchanged - latch: active-low inputs for & + eset to et to Inputs not allowed ull down resistors witch at a Bounce at a witch between a and b Bounce at b witch at b Gated atch 2 Gated atch G G G G G + + = Update + = G + =G +G

4 Edge-riggered Flip-Flops 4 3 Edge-riggered Flip-Flop Output changes are aligned with clock edges ositive (rising-edge) trigger Negative (falling-edge) trigger ymbol ruth table ising-edge trigger Falling-edge trigger + + = iming diagram for falling-edge triggered ising Edge rigger 5 Construct from 2 gated latches 2 2 G 2 G Flip-Flop iming diagram 2 hold hold 2 hold =G 2 G : What s the difference between a latch and a?

5 - Flip Flop 7 Output changes at clock edges Construct from 2 latches Master lave 8 - Flip-Flop Operation operation No state change eset to (after active edge) et to (after active edge) Not allowed t t 2 t 3 t 4 t 5 Not an edge-triggered o not allow change while is low 9 - Flip-Flop Extension of - : jump to : clear to Master lave 2 Flip-Flop + atches & s + = + Clear to ump to oggle = =, oggle t p t p t p t t 2 t 3

6 2 Flip-Flop : oggle + = + = oggle t p t 4 t p 22 s with Additional Inputs Implementation t t 2 t 3 - based: = = = = oggle + = + = + based: input: + = = + Clock Clock with Clear and reset with Clock Enable Use additional inputs to set to an initial state independent of the clock e.g., asynchronous Clear and reset We want some Flip-flops to hold existing data even though the data input may be changing Gated clock: gate the clock by clock enable (CE) ClrN ren CE ren ClrN + x x - (not allowed) x x x x ClrN ren En in in CE,, x (no change) t t 2 t 3 t 4 + = = CE + CE in Normal eep whole cycle

7 Characteristic Equations for ummary ype + - latch or + = + ' ( = ) Gated latch -CE - + = G + G + = + = CE + CE' + = + + = Homework for Unit 27 roblems Homework #4: Units 9-- ue am May, 2 uiz #2: due day of Homework #4

UNIT 11 LATCHES AND FLIP-FLOPS

UNIT 11 LATCHES AND FLIP-FLOPS UNIT 11 LATCHE AN FLIP-FLOP pring 2011 Latches and Flip-Flops 2 Contents et-eset latch Gated latch Edge-triggered flip-flop - flip-flop J-K flip-flop T flip-flop Flip-flops with additional inputs eading

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design witching Circuits & Logic esign Jie-Hong oland Jiang 江介宏 epartment of Electrical Engineering National Taiwan University Fall 24 Latches and Flip-Flops http://www3.niaid.nih.gov/topics/malaria/lifecycle.htm

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching Circuits & Logic Design Jie-Hong oland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 22 Latches and Flip-Flops http://www3.niaid.nih.gov/topics/malaria/lifecycle.htm

More information

12/31/2010. Overview. 12-Latches and Flip Flops Text: Unit 11. Sequential Circuits. Sequential Circuits. Feedback. Feedback

12/31/2010. Overview. 12-Latches and Flip Flops Text: Unit 11. Sequential Circuits. Sequential Circuits. Feedback. Feedback 2/3/2 Overview 2-atches and Flip Flops Text: Unit equential Circuits et/eset atch Flip-Flops ECEG/IC 2 igital Operations and Computations Winter 2 r. ouie 2 equential Circuits equential circuits: Output

More information

Unit 9 Latches and Flip-Flops. Dept. of Electrical and Computer Eng., NCTU 1

Unit 9 Latches and Flip-Flops. Dept. of Electrical and Computer Eng., NCTU 1 Unit 9 Latches and Flip-Flops Dept. of Electrical and Computer Eng., NCTU 1 9.1 Introduction Dept. of Electrical and Computer Eng., NCTU 2 What is the characteristic of sequential circuits in contrast

More information

CH 11 Latches and Flip-Flops

CH 11 Latches and Flip-Flops CH Latches and Flip-Flops Flops Lecturer : 吳安宇 Date : 25.2.2 Ver.. ACCESS IC LAB v. Introduction v.2 Set-Reset Latch v.3 Gated D Latch Outline v.4 Edge-Triggered D Flip-Flop v.5 S-R Flip-Flop v.6 J-K Flip-Flop

More information

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Chapter 1: Switching Algebra Chapter 2: Logical Levels, Timing & Delays. Introduction to latches Chapter 9: Binary Arithmetic

Chapter 1: Switching Algebra Chapter 2: Logical Levels, Timing & Delays. Introduction to latches Chapter 9: Binary Arithmetic 12.12.216 Chapter 5 Flip Flops Dr.-ng. Stefan Werner /14 Table of content Chapter 1: Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

DIGITAL CIRCUIT LOGIC UNIT 11: SEQUENTIAL CIRCUITS (LATCHES AND FLIP-FLOPS)

DIGITAL CIRCUIT LOGIC UNIT 11: SEQUENTIAL CIRCUITS (LATCHES AND FLIP-FLOPS) DIGITAL CIRCUIT LOGIC UNIT 11: SEQUENTIAL CIRCUITS (LATCHES AND FLIP-FLOPS) 1 iclicker Question 16 What should be the MUX inputs to implement the following function? (4 minutes) f A, B, C = m(0,2,5,6,7)

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 1/25 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

6. Sequential Logic Flip-Flops

6. Sequential Logic Flip-Flops ection 6. equential Logic Flip-Flops Page of 5 6. equential Logic Flip-Flops ombinatorial components: their output values are computed entirely from their present input values. equential components: their

More information

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay)  CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 7 (07 Feb 2008) 1 Announcement 2 1 Combinational vs. Sequential Logic Combinational Logic Memoryless Outputs

More information

3 Flip-Flops. The latch is a logic block that has 2 stable states (0) or (1). The RS latch can be forced to hold a 1 when the Set line is asserted.

3 Flip-Flops. The latch is a logic block that has 2 stable states (0) or (1). The RS latch can be forced to hold a 1 when the Set line is asserted. 3 Flip-Flops Flip-flops and latches are digital memory circuits that can remain in the state in which they were set even after the input signals have been removed. This means that the circuits have a memory

More information

Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops Sequential Circuits: Latches & Flip-Flops Overview Storage Elements Latches SR, JK, D, and T Characteristic Tables, Characteristic Equations, Eecution Tables, and State Diagrams Standard Symbols Flip-Flops

More information

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1 COC 243 equential Logic COC 243 (Computer Architecture) Lecture 5 - equential Logic 1 Overview Last Lecture This Lecture equential logic circuits ource: Chapter 11 (10 th edition) Next Lecture Computer

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states.

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. 1 The length of time the clock is high before changing states is its

More information

SEQUENTIAL CIRCUITS THE RELAY CIRCUIT

SEQUENTIAL CIRCUITS THE RELAY CIRCUIT SEQUENTIAL CIRCUITS THE RELAY CIRCUIT This circuit is one big circle. The main switch is open and the flexible contact is closed. Note: A closed inverter (NOT gate) circuit performs the same function.

More information

! Two inverters form a static memory cell " Will hold value as long as it has power applied

! Two inverters form a static memory cell  Will hold value as long as it has power applied equential Logic! equential Circuits " imple circuits with feedback " Latches " Edge-triggered flip-flops! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew! Basic egisters "

More information

Sequential Circuits. Sequential Logic. Circuits with Feedback. Simplest Circuits with Feedback. Memory with Cross-coupled Gates.

Sequential Circuits. Sequential Logic. Circuits with Feedback. Simplest Circuits with Feedback. Memory with Cross-coupled Gates. equential Logic equential Circuits equential Circuits imple circuits with feedback Latches Edge-triggered flip-flops Timing Methodologies Cascading flip-flops for proper operation Clock skew Basic egisters

More information

Sequential Logic. Sequential Circuits. ! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew

Sequential Logic. Sequential Circuits. ! Timing Methodologies  Cascading flip-flops for proper operation  Clock skew equential Logic! equential Circuits " imple circuits with feedback " Latches " Edge-triggered flip-flops! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew! Basic egisters "

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 opic Notes: Sequential Circuits Let s think about how life can be bad for a circuit. Edge Detection Consider this one: What is

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 03 February 09, 2012 Dohn Bowden 1 Today s Lecture Registers and Counters Chapter 12 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 opic Notes: Sequential Circuits Let s think about how life can be bad for a circuit. Edge Detection Consider this one: What is

More information

Clocks. Sequential Logic. A clock is a free-running signal with a cycle time.

Clocks. Sequential Logic. A clock is a free-running signal with a cycle time. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. The length of time the clock is high before changing states is its high

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

No feedback between inputs and outputs combinational What is charge sharing?

No feedback between inputs and outputs combinational What is charge sharing? EEC 1 Lab http://ziyang.eecs.umich.edu/ dickrp/eecs1/ Teacher: Office: Email: Phone: Cellphone: 17-G EEC dickrp@eecs.umich.edu 7 7 9 7 1 HW engineers GI: Email: Can assume first stage is like an inverter,

More information

Unit 11. Latches and Flip-Flops

Unit 11. Latches and Flip-Flops Unit 11 Latches and Flip-Flops 1 Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs. For n input variables,

More information

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both).

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). 1 The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop when the clock pulse occurs

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

Overview of Chapter 4

Overview of Chapter 4 Overview of hapter 4 Types of equential ircuits torage Elements Latches Flip-Flops equential ircuit nalysis tate Tables tate iagrams equential ircuit esign pecification ssignment of tate odes Implementation

More information

Basis of sequential circuits: the R-S latch

Basis of sequential circuits: the R-S latch equential logic Asynchronous sequential logic state changes occur whenever state inputs change (elements may be simple wires or delay elements) ynchronous sequential logic state changes occur in lock step

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS In the same way that logic gates are the building blocks of combinatorial circuits, latches

More information

Introduction to Microprocessor & Digital Logic

Introduction to Microprocessor & Digital Logic ME262 Introduction to Microprocessor & Digital Logic (Sequential Logic) Summer 2 Sequential Logic Definition The output(s) of a sequential circuit depends d on the current and past states of the inputs,

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Summer 29 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

Chapter 6. sequential logic design. This is the beginning of the second part of this course, sequential logic.

Chapter 6. sequential logic design. This is the beginning of the second part of this course, sequential logic. Chapter 6. sequential logic design This is the beginning of the second part of this course, sequential logic. equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops

More information

ENGR 303 Introduction to Logic Design Lecture 10. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College

ENGR 303 Introduction to Logic Design Lecture 10. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College ENG 33 Introduction to Logic esign Lecture r. Chuck Brown Engineering and Computer Information cience Folsom Lake College Outline for Todays Lecture equential Circuits Latches egisters Flip-Flops ENG 33

More information

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active.

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active. Flip-Flops Objectives The objectives of this lesson are to study: 1. Latches versus Flip-Flops 2. Master-Slave Flip-Flops 3. Timing Analysis of Master-Slave Flip-Flops 4. Different Types of Master-Slave

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs Asynchronous Preset and Clear Inputs The S-R, J-K and D inputs are known as synchronous inputs because the outputs change when appropriate input values are applied at the inputs and a clock signal is applied

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

MUX AND FLIPFLOPS/LATCHES

MUX AND FLIPFLOPS/LATCHES MUX AN FLIPFLOPS/LATCHES BY: SURESH BALPANE Multiplexers 2:1 multiplexer chooses between two inputs S 1 0 Y 0 X 0 0 0 0 0 X 1 1 1 0 X 0 1 1 X 1 1 1 S Y @BALPANECircuits and Slide 2 Gate-Level Mux esign

More information

Synchronous Sequential Logic

Synchronous Sequential Logic Synchronous Sequential Logic -A Sequential Circuit consists of a combinational circuit to which storage elements are connected to form a feedback path. The storage elements are devices capable of storing

More information

Chapter. Synchronous Sequential Circuits

Chapter. Synchronous Sequential Circuits Chapter 5 Synchronous Sequential Circuits Logic Circuits- Review Logic Circuits 2 Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs. Performs

More information

Latches, Flip-Flops, and Registers. Dr. Ouiem Bchir

Latches, Flip-Flops, and Registers. Dr. Ouiem Bchir Latches, Flip-Flops, and Registers (Chapter #7) Dr. Ouiem Bchir The slides included herein were taken from the materials accompanying Fundamentals of Logic Design, 6 th Edition, by Roth and Kinney. Sequential

More information

Figure 1 shows a simple implementation of a clock switch, using an AND-OR type multiplexer logic.

Figure 1 shows a simple implementation of a clock switch, using an AND-OR type multiplexer logic. 1. CLOCK MUXING: With more and more multi-frequency clocks being used in today's chips, especially in the communications field, it is often necessary to switch the source of a clock line while the chip

More information

ALGORITHMS IN HW EECS150 ALGORITHMS IN HW. COMBINATIONAL vs. SEQUENTIAL. Sequential Circuits ALGORITHMS IN HW

ALGORITHMS IN HW EECS150 ALGORITHMS IN HW. COMBINATIONAL vs. SEQUENTIAL. Sequential Circuits ALGORITHMS IN HW LGOITHM HW EEC150 ection 2 Introduction to equential Logic Fall 2001 pproach #2: Combinational divide & conquer a[0] a[1] a[1022] a[1023] MX MX MX 512 + 256 + K+ 1 = 1023 blocks Each MX block has: 64 s;

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Lecture material adapted from R. Katz, G. Borriello, Contemporary Logic esign (second edition), Prentice-Hall/Pearson

More information

Introduction to Sequential Circuits

Introduction to Sequential Circuits Introduction to Sequential Circuits COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Introduction to Sequential Circuits Synchronous

More information

Sequential Circuits. Introduction to Digital Logic. Course Outline. Overview. Introduction to Digital Logic. Introduction to Sequential Circuits

Sequential Circuits. Introduction to Digital Logic. Course Outline. Overview. Introduction to Digital Logic. Introduction to Sequential Circuits Introduction to igital Logic Prof. Nizamettin IN naydin@yildiz.edu.tr naydin@ieee.org ourse Outline. igital omputers, Number ystems, rithmetic Operations, ecimal, lphanumeric, and Gray odes 2. inary Logic,

More information

EE 109 Homework 6 State Machine Design Name: Score:

EE 109 Homework 6 State Machine Design Name: Score: EE 9 Homework 6 State Machine esign Name: Score: ue: See Blackboard Blackboard ONLY Submission. While the Blackboard submission may not require you to go through all the design steps (such as drawing out

More information

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1 Sequential Logic E&CE 223 igital Circuits and Systems (A. Kennings) Page 1 Sequential Circuits Have considered only combinational circuits in which circuit outputs are determined entirely by current circuit

More information

CSE140: Components and Design Techniques for Digital Systems. More D-Flip-Flops. Tajana Simunic Rosing. Sources: TSR, Katz, Boriello & Vahid

CSE140: Components and Design Techniques for Digital Systems. More D-Flip-Flops. Tajana Simunic Rosing. Sources: TSR, Katz, Boriello & Vahid CSE140: Components and esign Techniques for igital Systems More -Flip-Flops Tajana Simunic Rosing Where we are now. What we covered last time: SRAM cell, SR latch, latch, -FF What we ll do next: -FF review,

More information

Advanced Digital Logic Design EECS 303

Advanced Digital Logic Design EECS 303 Advanced Digital Logic Design EECS 303 http://ziyang.eecs.northwestern.edu/eecs303/ Teacher: Robert Dick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 Outline Introduction Reset/set

More information

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits Software Engineering 2DA4 Slides 9: Asynchronous Sequential Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Bistable Storage Devices and Related Devices Introduction Latches and flip-flops are the basic single-bit memory elements used

More information

Logic Design ( Part 3) Sequential Logic (Chapter 3)

Logic Design ( Part 3) Sequential Logic (Chapter 3) o Far: Combinational Logic Logic esign ( Part ) equential Logic (Chapter ) Based on slides McGraw-Hill Additional material 24/25/26 Lewis/Martin Additional material 28 oth Additional material 2 Taylor

More information

Chapter 6 Sequential Circuits

Chapter 6 Sequential Circuits Overview Logic and omputer esign Fundamentals hapter 6 equential ircuits Part torage Elements and equential ircuit nalysis pring 4 Part - torage Elements and nalysis Introduction to sequential circuits

More information

Digital Fundamentals 11/2/2017. Summary. Summary. Floyd. Chapter 7. Latches

Digital Fundamentals 11/2/2017. Summary. Summary. Floyd. Chapter 7. Latches igital Fundamentals Tenth Edition Floyd hapter 7 2009 Pearson Education, Upper 2008 Pearson Saddle iver, Education N 07458. All ights eserved A latch is a temporary storage device that has two stable states

More information

Computer Organization & Architecture Lecture #5

Computer Organization & Architecture Lecture #5 Computer Organization & Architecture Lecture #5 Shift Register A shift register is a register in which binary data can be stored and then shifted left or right when a shift signal is applied. Bits shifted

More information

Digital Fundamentals

Digital Fundamentals igital Fundamentals Tenth Edition Floyd Chapter 7 Modified by Yuttapong Jiraraksopakun Floyd, igital Fundamentals, 10 th 2008 Pearson Education ENE, KMUTT ed 2009 Summary Latches A latch is a temporary

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 7

ELE2120 Digital Circuits and Systems. Tutorial Note 7 ELE2120 Digital Circuits and Systems Tutorial Note 7 Outline 1. Sequential Circuit 2. Gated SR Latch 3. Gated D-latch 4. Edge-Triggered D Flip-Flop 5. Asynchronous and Synchronous reset Sequential Circuit

More information

Computer Organization and Components

Computer Organization and Components 2 Course tructure Computer Organization and Components odule 4: emory Hierarchy odule : esign I5, fall 24 Lecture 2: equential esign F C Ö F2 C Ö2 F7b Lab: dicom F odule 2: C and ssembly Programming ssociate

More information

To design a sequential logic circuit using D-Flip-flop. To implement the designed circuit.

To design a sequential logic circuit using D-Flip-flop. To implement the designed circuit. 6.1 Objectives To design a sequential logic circuit using D-Flip-flop. To implement the designed circuit. 6.2 Sequential Logic So far we have implemented digital circuits whose outputs depend only on its

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

Review of digital electronics. Storage units Sequential circuits Counters Shifters

Review of digital electronics. Storage units Sequential circuits Counters Shifters Review of digital electronics Storage units Sequential circuits ounters Shifters ounting in Binary A counter can form the same pattern of 0 s and 1 s with logic levels. The first stage in the counter represents

More information

CHAPTER 1 LATCHES & FLIP-FLOPS

CHAPTER 1 LATCHES & FLIP-FLOPS CHAPTER 1 LATCHES & FLIP-FLOPS 1 Outcome After learning this chapter, student should be able to; Recognize the difference between latches and flipflops Analyze the operation of the flip flop Draw the output

More information

Sequential Logic Circuits

Sequential Logic Circuits Sequential Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has memory

More information

Chapter 5: Synchronous Sequential Logic

Chapter 5: Synchronous Sequential Logic Chapter 5: Synchronous Sequential Logic NCNU_2016_DD_5_1 Digital systems may contain memory for storing information. Combinational circuits contains no memory elements the outputs depends only on the inputs

More information

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1 Spring 27 EE 363: Computer Organization Chapter 5: The Processor: atapath & Control - Avinash Kodi epartment of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 457 E-mail: kodi@ohio.edu

More information

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers EEE 304 Experiment No. 07 Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers Important: Submit your Prelab at the beginning of the lab. Prelab 1: Construct a S-R Latch and

More information

Lecture 7: Sequential Networks

Lecture 7: Sequential Networks Lecture 7: Sequential Networks CSE 14: Components and Design Techniques for Digital Systems Spring 214 CK Cheng, Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego

More information

ECE 341. Lecture # 2

ECE 341. Lecture # 2 ECE 341 Lecture # 2 Instructor: Zeshan Chishti zeshan@pdx.edu October 1, 2014 Portland State University Announcements Course website reminder: http://www.ece.pdx.edu/~zeshan/ece341.htm Homework 1: Will

More information

Experiment 8 Introduction to Latches and Flip-Flops and registers

Experiment 8 Introduction to Latches and Flip-Flops and registers Experiment 8 Introduction to Latches and Flip-Flops and registers Introduction: The logic circuits that have been used until now were combinational logic circuits since the output of the device depends

More information

Week 4: Sequential Circuits

Week 4: Sequential Circuits Week 4: equential ircuits omething to consider omputer specs use terms like 8 GB of AM and 2.2GHz processors. ú What do these terms mean? AM = andom Access Memory; 8GB = 8 billion ints 2.2 GHz = 2.2 billion

More information

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 1 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Sequential Circuits Memory Elements Latches Flip-Flops Combinational

More information

CSE115: Digital Design Lecture 23: Latches & Flip-Flops

CSE115: Digital Design Lecture 23: Latches & Flip-Flops Faculty of Engineering CSE115: Digital Design Lecture 23: Latches & Flip-Flops Sections 7.1-7.2 Suggested Reading A Generic Digital Processor Building Blocks for Digital Architectures INPUT - OUTPUT Interconnect:

More information

ASYNCHRONOUS COUNTER CIRCUITS

ASYNCHRONOUS COUNTER CIRCUITS ASYNCHRONOUS COUNTER CIRCUITS Asynchronous counters do not have a common clock that controls all the Hipflop stages. The control clock is input into the first stage, or the LSB stage of the counter. The

More information

PGT104 Digital Electronics. PGT104 Digital Electronics

PGT104 Digital Electronics. PGT104 Digital Electronics 1 Part 5 Latches, Flip-flop and Timers isclaimer: Most of the contents (if not all) are extracted from resources available for igital Fundamentals 10 th Edition 2 Latches A latch is a temporary storage

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

Logic Circuits. A gate is a circuit element that operates on a binary signal.

Logic Circuits. A gate is a circuit element that operates on a binary signal. Logic Circuits gate is a circuit element that operates on a binary signal. Logic operations typically have three methods of description:. Equation symbol 2. Truth table 3. Circuit symbol The binary levels

More information

Multiplexor (aka MUX) An example, yet VERY useful circuit!

Multiplexor (aka MUX) An example, yet VERY useful circuit! Multiplexor (aka MUX) An example, yet VERY useful circuit! A B 0 1 Y S A B Y 0 0 x 0 0 1 x 1 1 x 0 0 1 x 1 1 S=1 S=0 Y = (S)? B:A; Y=S A+SB when S = 0: output A 1: output B 56 A 32-bit MUX Use 32 1-bit

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Latches, Flip-Flops, and Timers Chapter 6 Traffic Signal Control Traffic Signal Control: State Diagram Traffic Signal Control: Block Diagram Traffic Signal Control:

More information

Sequential Design Basics

Sequential Design Basics Sequential Design Basics Lecture 2 topics A review of devices that hold state A review of Latches A review of Flip-Flops Unit of text Set-Reset Latch/Flip-Flops/D latch/ Edge triggered D Flip-Flop 8/22/22

More information

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany Digital Logic Design Sequential Circuits Dr. Basem ElHalawany Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs

More information

SEQUENTIAL LOGIC. Sequential Logic

SEQUENTIAL LOGIC. Sequential Logic EUENTIAL LOGIC equential Logic FF s LOGIC t p,comb 2 storage mechanisms positive feedback charge-based Flip-Flop: Timing efinitions t t setup thold ATA TABLE t t pff ATA TABLE t Maximum Clock Frequency

More information

Traversing Digital Design. EECS Components and Design Techniques for Digital Systems. Lec 22 Sequential Logic - Advanced

Traversing Digital Design. EECS Components and Design Techniques for Digital Systems. Lec 22 Sequential Logic - Advanced Traversing igital esign EEC 5 - Components and esign Techniques for igital ystems EEC5 wks 6-5 Lec 22 equential Logic - Advanced avid Culler Electrical Engineering and Computer ciences University of California,

More information

Last time, we saw how latches can be used as memory in a circuit

Last time, we saw how latches can be used as memory in a circuit Flip-Flops Last time, we saw how latches can be used as memory in a circuit Latches introduce new problems: We need to know when to enable a latch We also need to quickly disable a latch In other words,

More information

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic Chapter 5. Synchronous Sequential Logic 1 5.1 Introduction Electronic products: ability to send, receive, store, retrieve, and process information in binary format Dependence on past values of inputs Sequential

More information

2 Sequential Circuits

2 Sequential Circuits 2 2.1 State Diagrams and General Form 0/0 1/0 Start State 0 /0 1/1 State 1 /1 0/1 State Diagram of a Change Detector ( Mealy-machine). The output Y assumes 1 whenever the input X has changed. Otherwise

More information

Sequential Logic and Clocked Circuits

Sequential Logic and Clocked Circuits Sequential Logic and Clocked Circuits Clock or Timing Device Input Variables State or Memory Element Combinational Logic Elements From combinational logic, we move on to sequential logic. Sequential logic

More information