EECS150 - Digital Design Lecture 3 - Timing

Size: px
Start display at page:

Download "EECS150 - Digital Design Lecture 3 - Timing"

Transcription

1 EECS150 - Digital Design Lecture 3 - Timing January 29, 2002 John Wawrzynek Spring 2002 EECS150 - Lec03-Timing Page 1

2 Outline General Model of Synchronous Systems Performance Limits Announcements Delay in logic gates Delay in wires Delay in flip-flops Spring 2002 EECS150 - Lec03-Timing Page 2

3 General Model of Synchronous Circuit clock input input CL reg CL reg output option feedback All wires, except clock, may be multiple bits wide. Registers (reg) collections of flip-flops clock distributed to all flip-flops typical rate? output Combinational Logic Blocks (CL) no internal state output only a function of inputs Particular inputs/outputs are optional Optional Feedback Spring 2002 EECS150 - Lec03-Timing Page 3

4 Example Circuit Parallel to Serial Converter All signal paths single bit wide Registers are single flip-flops Combinational Logic blocks are simple multiplexors No feedback. Spring 2002 EECS150 - Lec03-Timing Page 4

5 General Model of Synchronous Circuit clock input input CL reg CL reg output option feedback output How do we measure performance? operations/sec? cycles/sec? What limits the clock rate? What happens as we increase the clock rate? Spring 2002 EECS150 - Lec03-Timing Page 5

6 Limitations on Clock Rate Logic Gate Delay Delays in flip-flops input output What are typical delay values? t D clk Q setup time clock to Q delay Both times contribute to limiting the clock period. What must happen in one clock cycle for correct operation? Assuming perfect clock distribution (all flip-flops see the clock at the same time): All signals must be ready and setup before rising edge of clock. Spring 2002 EECS150 - Lec03-Timing Page 6

7 Example Parallel to serial converter: T > time(clk->q) + time(mux) + time(setup) a b Spring 2002 EECS150 - Lec03-Timing Page 7

8 Announcements Lectures now being web-cast and recorded online. URL: Look at notes online before class. Suggestion: print out bring copy to class and annotate when necessary. My notes are intentionally incomplete. Homework #1 online. Turn in before 12 noon Friday. Discussions, TA office hours, and labs this week. Quiz Friday at lab lecture. Spring 2002 EECS150 - Lec03-Timing Page 8

9 Qualitative Analysis of Logic Delay Improved Transistor Model: nfet We refer to transistor "strength" as the amount of current that flows for a given Vds and Vgs. The strength is linearly proportional to the ratio of W/L. pfet Spring 2002 EECS150 - Lec03-Timing Page 9

10 Gate Switching Behavior Inverter: NAND gate: Spring 2002 EECS150 - Lec03-Timing Page 10

11 Gate Delay Cascaded gates: Vout Vin Spring 2002 EECS150 - Lec03-Timing Page 11

12 Gate Delay Fan-out: Fan-in What is the delay in this circuit? Critical Delay Spring 2002 EECS150 - Lec03-Timing Page 12

13 Wire Delay t In general wire behave as transmission lines : signal wave-front moves close to the speed of light ~1ft/ns In ICs most wires are short, therefore the transit times are relatively short compared to the clock period and can be ignored. Not so on PC boards. x Spring 2002 EECS150 - Lec03-Timing Page 13

14 Wire Delay Even in those cases where the transmission line effect is negligible: Wires posses distributed resistance and capacitance For long wires on ICs: busses, clock lines, global control signal, etc. distributed RC (and therefore long delay) significant signals are rebuffered to reduce delay: Time constant associated with distributed RC is proportional to the square of the length For short wires on ICs, resistance is insignificant (relative to effective R of transistors), but C is important. Typically around half of C of gate load is in the wires. Spring 2002 EECS150 - Lec03-Timing Page 14

15 Delay in Flip-flops Setup time results delay through first latch. Clock to Q delay results from delay through second latch. Spring 2002 EECS150 - Lec03-Timing Page 15

EECS150 - Digital Design Lecture 3 - Timing

EECS150 - Digital Design Lecture 3 - Timing EECS150 - Digital Design Lecture 3 - Timing September 3, 2002 John Wawrzynek Fall 2002 EECS150 - Lec03-Timing Page 1 Outline Finish up from lecture 2 General Model of Synchronous Systems Performance Limits

More information

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power EECS150 - Digital Design Lecture 17 - Circuit Timing March 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec16-timing Page 1 Performance, Cost, Power How do we measure performance? operations/sec? cycles/sec?

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009.

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009. 55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009 Introduction In this project we will create a transistor-level model of

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

EECS150 - Digital Design Lecture 18 - Circuit Timing (2) In General...

EECS150 - Digital Design Lecture 18 - Circuit Timing (2) In General... EECS150 - Digital Design Lecture 18 - Circuit Timing (2) March 17, 2010 John Wawrzynek Spring 2010 EECS150 - Lec18-timing(2) Page 1 In General... For correct operation: T τ clk Q + τ CL + τ setup for all

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2002 4/5/02 Midterm Exam II Name: Solutions ID number:

More information

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers EEE 304 Experiment No. 07 Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers Important: Submit your Prelab at the beginning of the lab. Prelab 1: Construct a S-R Latch and

More information

Chapter 2. Digital Circuits

Chapter 2. Digital Circuits Chapter 2. Digital Circuits Logic gates Flip-flops FF registers IC registers Data bus Encoders/Decoders Multiplexers Troubleshooting digital circuits Most contents of this chapter were covered in 88-217

More information

EECS150 - Digital Design Lecture 9 - CPU Microarchitecture. CMOS Devices

EECS150 - Digital Design Lecture 9 - CPU Microarchitecture. CMOS Devices EECS150 - Digital Design Lecture 9 - CPU Microarchitecture Feb 17, 2009 John Wawrzynek Spring 2009 EECS150 - Lec9-cpu Page 1 CMOS Devices Review: Transistor switch-level models The gate acts like a capacitor.

More information

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits Nov 26, 2002 John Wawrzynek Outline SR Latches and other storage elements Synchronizers Figures from Digital Design, John F. Wakerly

More information

D Latch (Transparent Latch)

D Latch (Transparent Latch) D Latch (Transparent Latch) -One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done

More information

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Course Number: ECE 533 Spring 2013 University of Tennessee Knoxville Instructor: Dr. Syed Kamrul Islam Prepared by

More information

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043 EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP Due 16.05. İLKER KALYONCU, 10043 1. INTRODUCTION: In this project we are going to design a CMOS positive edge triggered master-slave

More information

Why FPGAs? FPGA Overview. Why FPGAs?

Why FPGAs? FPGA Overview. Why FPGAs? Transistor-level Logic Circuits Positive Level-sensitive EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 28, 2003 John Wawrzynek Transistor Level clk clk clk Positive

More information

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #9: Sequential Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Review: Static CMOS Logic Finish Static CMOS transient analysis Sequential

More information

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date:

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date: Richland College School of Engineering & Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Rev. 3 (7/2015) J. Bradbury Digital Fundamentals CETT 1425 Lab 5 Latches & Flip-Flops

More information

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review September 1, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock. Topics! Memory elements.! Basics of sequential machines. Memory elements! Stores a value as controlled by clock.! May have load signal, etc.! In CMOS, memory is created by:! capacitance (dynamic);! feedback

More information

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate Lecture 19: November 5, 2001 Midterm in Class Wed. Nov 7 th Covers Material 6 th -10 th week including W#10 Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

Experiment 8 Introduction to Latches and Flip-Flops and registers

Experiment 8 Introduction to Latches and Flip-Flops and registers Experiment 8 Introduction to Latches and Flip-Flops and registers Introduction: The logic circuits that have been used until now were combinational logic circuits since the output of the device depends

More information

CPS311 Lecture: Sequential Circuits

CPS311 Lecture: Sequential Circuits CPS311 Lecture: Sequential Circuits Last revised August 4, 2015 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

MC9211 Computer Organization

MC9211 Computer Organization MC9211 Computer Organization Unit 2 : Combinational and Sequential Circuits Lesson2 : Sequential Circuits (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage Lesson2 Outlines the formal procedures for the

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN Assoc. Prof. Dr. Burak Kelleci Spring 2018 OUTLINE Synchronous Logic Circuits Latch Flip-Flop Timing Counters Shift Register Synchronous

More information

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017

Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift Register. Fall 2017 University of Texas at El Paso Electrical and Computer Engineering Department EE 2169 Laboratory for Digital Systems Design I Lab #10 Hexadecimal-to-Seven-Segment Decoder, 4-bit Adder-Subtractor and Shift

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

LSN 12 Shift Registers

LSN 12 Shift Registers LSN 12 Shift Registers Department of Engineering Technology LSN 12 Shift Registers Digital circuits with data storage and data movement functions Storage capacity is the total number of bits of digital

More information

Universal Asynchronous Receiver- Transmitter (UART)

Universal Asynchronous Receiver- Transmitter (UART) Universal Asynchronous Receiver- Transmitter (UART) (UART) Block Diagram Four-Bit Bidirectional Shift Register Shift Register Counters Shift registers can form useful counters by recirculating a pattern

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

Sequential Logic Design CS 64: Computer Organization and Design Logic Lecture #14

Sequential Logic Design CS 64: Computer Organization and Design Logic Lecture #14 Sequential Logic Design CS 64: Computer Organization and Design Logic Lecture #14 Ziad Matni Dept. of Computer Science, UCSB Administrative Only 2.5 weeks left!!!!!!!! OMG!!!!! Th. 5/24 Sequential Logic

More information

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited April 2, 2013 John Wawrzynek Spring 2013 EECS150 - Lec19-fsm Page 1 Finite State Machines (FSMs) FSM circuits are a type of sequential

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 05 February 23, 2012 Dohn Bowden 1 Today s Lecture Analysis of Clocked Sequential Circuits Chapter 13 2 Course Admin 3 Administrative Admin

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

ECE 341. Lecture # 2

ECE 341. Lecture # 2 ECE 341 Lecture # 2 Instructor: Zeshan Chishti zeshan@pdx.edu October 1, 2014 Portland State University Announcements Course website reminder: http://www.ece.pdx.edu/~zeshan/ece341.htm Homework 1: Will

More information

! Two inverters form a static memory cell " Will hold value as long as it has power applied

! Two inverters form a static memory cell  Will hold value as long as it has power applied equential Logic! equential Circuits " imple circuits with feedback " Latches " Edge-triggered flip-flops! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew! Basic egisters "

More information

Sequential Logic. Sequential Circuits. ! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew

Sequential Logic. Sequential Circuits. ! Timing Methodologies  Cascading flip-flops for proper operation  Clock skew equential Logic! equential Circuits " imple circuits with feedback " Latches " Edge-triggered flip-flops! Timing Methodologies " Cascading flip-flops for proper operation " Clock skew! Basic egisters "

More information

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay)  CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 7 (07 Feb 2008) 1 Announcement 2 1 Combinational vs. Sequential Logic Combinational Logic Memoryless Outputs

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Bistable Storage Devices and Related Devices Introduction Latches and flip-flops are the basic single-bit memory elements used

More information

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98 More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 98 Review: Bit Storage SR latch S (set) Q R (reset) Level-sensitive SR latch S S1 C R R1 Q D C S R D latch Q

More information

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 opic Notes: Sequential Circuits Let s think about how life can be bad for a circuit. Edge Detection Consider this one: What is

More information

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1 COC 243 equential Logic COC 243 (Computer Architecture) Lecture 5 - equential Logic 1 Overview Last Lecture This Lecture equential logic circuits ource: Chapter 11 (10 th edition) Next Lecture Computer

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 03 February 09, 2012 Dohn Bowden 1 Today s Lecture Registers and Counters Chapter 12 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements EECS150 - Digital Design Lecture 15 Finite State Machines October 18, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

UNIT-3: SEQUENTIAL LOGIC CIRCUITS

UNIT-3: SEQUENTIAL LOGIC CIRCUITS UNIT-3: SEQUENTIAL LOGIC CIRCUITS STRUCTURE 3. Objectives 3. Introduction 3.2 Sequential Logic Circuits 3.2. NAND Latch 3.2.2 RS Flip-Flop 3.2.3 D Flip-Flop 3.2.4 JK Flip-Flop 3.2.5 Edge Triggered RS Flip-Flop

More information

NEW MEXICO STATE UNIVERSITY Electrical and Computer Engineering Department. EE162 Digital Circuit Design Fall Lab 5: Latches & Flip-Flops

NEW MEXICO STATE UNIVERSITY Electrical and Computer Engineering Department. EE162 Digital Circuit Design Fall Lab 5: Latches & Flip-Flops NEW MEXICO STATE UNIVERSITY Electrical and Computer Engineering Department EE162 Digital Circuit Design Fall 2012 OBJECTIVES: Lab 5: Latches & Flip-Flops The objective of this lab is to examine and understand

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

Chapter 11 Latches and Flip-Flops

Chapter 11 Latches and Flip-Flops Chapter 11 Latches and Flip-Flops SKEE1223 igital Electronics Mun im/arif/izam FKE, Universiti Teknologi Malaysia ecember 8, 2015 Types of Logic Circuits Combinational logic: Output depends solely on the

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 24 State Circuits : Circuits that Remember Senior Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Bio NAND gate Researchers at Imperial

More information

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1 Sequential Logic E&CE 223 igital Circuits and Systems (A. Kennings) Page 1 Sequential Circuits Have considered only combinational circuits in which circuit outputs are determined entirely by current circuit

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Sequential Circuits Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 opic Notes: Sequential Circuits Let s think about how life can be bad for a circuit. Edge Detection Consider this one: What is

More information

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division Objectives In this lab, we will see the sequential circuits latches and flip-flops. Latches and flip-flops can be used to build

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus SOLUTIONS TO INTERNAL ASSESSMENT TEST 3 Date : 8/11/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 11:30 am-1:00 pm Note:

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

Digital Logic Design ENEE x. Lecture 19

Digital Logic Design ENEE x. Lecture 19 Digital Logic Design ENEE 244-010x Lecture 19 Announcements Homework 8 due on Monday, 11/23. Agenda Last time: Timing Considerations (6.3) Master-Slave Flip-Flops (6.4) This time: Edge-Triggered Flip-Flops

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

EECS150 - Digital Design Lecture 10 - Interfacing. Recap and Topics

EECS150 - Digital Design Lecture 10 - Interfacing. Recap and Topics EECS150 - Digital Design Lecture 10 - Interfacing Oct. 1, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 5 Fall 25 R. H. Katz SOLUTIONS Problem Set #3: Combinational and Sequential Logic

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 7

ELE2120 Digital Circuits and Systems. Tutorial Note 7 ELE2120 Digital Circuits and Systems Tutorial Note 7 Outline 1. Sequential Circuit 2. Gated SR Latch 3. Gated D-latch 4. Edge-Triggered D Flip-Flop 5. Asynchronous and Synchronous reset Sequential Circuit

More information

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active.

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active. Flip-Flops Objectives The objectives of this lesson are to study: 1. Latches versus Flip-Flops 2. Master-Slave Flip-Flops 3. Timing Analysis of Master-Slave Flip-Flops 4. Different Types of Master-Slave

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

CS 250 VLSI System Design

CS 250 VLSI System Design CS 250 VLSI System Design Lecture 3 Timing 2013-9-5 Professor Jonathan Bachrach today s lecture by John Lazzaro TA: Ben Keller www-insteecsberkeleyedu/~cs250/ 1 everything doesn t happen at once Timing,

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Sequential logic circuits

Sequential logic circuits Computer Mathematics Week 10 Sequential logic circuits College of Information Science and Engineering Ritsumeikan University last week combinational digital circuits signals and busses logic gates and,

More information

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division

CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division CPSC 121: Models of Computation Lab #5: Flip-Flops and Frequency Division Objectives In this lab, you will see two types of sequential circuits: latches and flip-flops. Latches and flip-flops can be used

More information

Physics 120 Lab 10 (2018): Flip-flops and Registers

Physics 120 Lab 10 (2018): Flip-flops and Registers Physics 120 Lab 10 (2018): Flip-flops and Registers 10.1 The basic flip-flop: NAND latch This circuit, the most fundamental of flip-flop or memory circuits, can be built with either NANDs or NORs. We will

More information

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001 Flip-Flops and Related Devices Wen-Hung Liao, Ph.D. 4/11/2001 Objectives Recognize the various IEEE/ANSI flip-flop symbols. Use state transition diagrams to describe counter operation. Use flip-flops in

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential Circuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking Clocked inverters James Morizio 1 Sequential Logic FFs

More information

Flip-flop and Registers

Flip-flop and Registers ECE 322 Digital Design with VHDL Flip-flop and Registers Lecture Textbook References n Sequential Logic Review Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, 2 nd or

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Latches, Flip-Flops, and Timers Chapter 6 Traffic Signal Control Traffic Signal Control: State Diagram Traffic Signal Control: Block Diagram Traffic Signal Control:

More information

Administrative issues. Sequential logic

Administrative issues. Sequential logic Administrative issues Midterm #1 will be given Tuesday, October 29, at 9:30am. The entire class period (75 minutes) will be used. Open book, open notes. DDPP sections: 2.1 2.6, 2.10 2.13, 3.1 3.4, 3.7,

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 25: Sequential Logic: Flip-flop Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

The NOR latch is similar to the NAND latch

The NOR latch is similar to the NAND latch 5-2 NOR Gate Latch The NOR latch is similar to the NAND latch except that the Q and Q outputs are reversed. The set and clear inputs are active high, that is, the output will change when the input is pulsed

More information

Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

More information

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur SEQUENTIAL LOGIC Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com OSCILLATORS Oscillators is an amplifier which derives its input from output. Oscillators

More information

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs Asynchronous Preset and Clear Inputs The S-R, J-K and D inputs are known as synchronous inputs because the outputs change when appropriate input values are applied at the inputs and a clock signal is applied

More information

Slide Set 7. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 7. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 7 for ENEL 353 Fall 216 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 216 SN s ENEL 353 Fall 216 Slide Set 7 slide

More information

Synchronous Sequential Logic

Synchronous Sequential Logic Synchronous Sequential Logic -A Sequential Circuit consists of a combinational circuit to which storage elements are connected to form a feedback path. The storage elements are devices capable of storing

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

Chapter 6 Digital Circuit 6-5 Department of Mechanical Engineering

Chapter 6 Digital Circuit 6-5 Department of Mechanical Engineering MEMS1082 Chapter 6 Digital Circuit 6-5 General digital system D Flip-Flops, The D flip-flop is a modification of the clocked SR flip-flop. The D input goes directly into the S input and the complement

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

CS3350B Computer Architecture Winter 2015

CS3350B Computer Architecture Winter 2015 CS3350B Computer Architecture Winter 2015 Lecture 5.2: State Circuits: Circuits that Remember Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

EE 447/547 VLSI Design. Lecture 9: Sequential Circuits. VLSI Design EE 447/547 Sequential circuits 1

EE 447/547 VLSI Design. Lecture 9: Sequential Circuits. VLSI Design EE 447/547 Sequential circuits 1 EE 447/547 VLSI esign Lecture 9: Sequential Circuits Sequential circuits 1 Outline Floorplanning Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking Sequential

More information

Slide 1. Flip-Flops. Cross-NOR SR flip-flop S R Q Q. hold reset set not used. Cross-NAND SR flip-flop S R Q Q. not used reset set hold 1 Q.

Slide 1. Flip-Flops. Cross-NOR SR flip-flop S R Q Q. hold reset set not used. Cross-NAND SR flip-flop S R Q Q. not used reset set hold 1 Q. Slide Flip-Flops Cross-NOR SR flip-flop Reset Set Cross-NAND SR flip-flop Reset Set S R reset set not used S R not used reset set 6.7 Digital ogic Slide 2 Clocked evel-triggered NAND SR Flip-Flop S R SR

More information

Lecture 11: Sequential Circuit Design

Lecture 11: Sequential Circuit Design Lecture 11: Sequential Circuit esign Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing q Two-Phase Clocking 2 Sequencing q Combinational logic output depends

More information

Sequential Logic and Clocked Circuits

Sequential Logic and Clocked Circuits Sequential Logic and Clocked Circuits Clock or Timing Device Input Variables State or Memory Element Combinational Logic Elements From combinational logic, we move on to sequential logic. Sequential logic

More information

Introduction. Serial In - Serial Out Shift Registers (SISO)

Introduction. Serial In - Serial Out Shift Registers (SISO) Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flip-flops connected in a chain so that the output from one flip-flop becomes

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information