THE STRUCTURE AND ADVANTAGES OF DIGITAL TRAINING SET FOR COMPUTER ENGINEERING

Size: px
Start display at page:

Download "THE STRUCTURE AND ADVANTAGES OF DIGITAL TRAINING SET FOR COMPUTER ENGINEERING"

Transcription

1 THE STRUCTURE AND ADVANTAGES OF DIGITAL TRAINING SET FOR COMPUTER ENGINEERING GÜLAY TEZEL ŞİRZAT KAHRAMANLI Department Of Computer Engineering Selçuk University Department Of Computer Engineering, Faculty Of Engineering - Architecture Selçuk University 4075, Konya TURKIYE gtezel@selcuk.edu.tr sirzat@selcuk.edu.tr Abstract:-The knowledge provided in theoretical computer engineering education needs to be tested in laboratory which contributes to acquiring of specifications on tools, equipment and measurement methods. During the laboratory classes, using specifically produced experimental sets reduce cost and learning time developing the designing ability of students. The theoretical courses are supported with digital design and microprocessor courses in electronics and computer education, where the fundamentals of computer hardware and digital control technologies are provided. In the present study, the established Digital Training Set (DTS) and Microcontroller 803, and their advantages in experimentally teaching and learning of basic digital circuits design and principles of microprocessors in the Computer Engineering Department of Selcuk University are presented. Keywords:-Training set, integrated circuits, logical design, digital electronics. Introduction Digital computers occupy a prominent place in modern society. They have contributed to many scientific, industrial and commercial developments that would have been unattainable otherwise. They are used in home entertainment, medical treatment, weather forecast, space exploration, air traffic control, etc. the general purpose digital computer is the best-known example of digital systems. Digital electronics issue digital systems and design and continuously change and develop [,], although the basic principles of computers and digital design remain the same. Learning of theoretical digital electronics without practice does not provide sufficiently permanent understanding and knowledge. To this purpose, special-purpose training sets are preferred in education. Therefore, a general purpose Digital Training Set (DTS) and microcontroller 803 Experiment Set are designed and developed for the courses of digital electronics and microprocessors and the other hardware projects for the Computerelectronics students. The Advantages of Digital Training Set Using special-purpose training test set has some advantages in the sense of practical and theoretical for both students and instructors. The ISSN: ISBN:

2 advantages of this experimental set are explained followingly.. The Cost Advantages Generally, either serially produced test sets are used or experiments are performed on breadboards in computer-electronics training. These serially produced test sets are much more expensive, and in case of damage, technical support can not be fast enough. The students mostly do the experiments independently, therefore, they are subject to frequent problems on the set of units or uncontrollable failures. Some other problems may occur for students or laboratory facilities in direct working on the experimental bread-board in the absence of training set with the start of the circuit design application, where the integrated circuits (IC) and other materials are directly given to the students. Eventually this will result in increase in refuse and errors during the experiment. Students who do not carefully handle the IC s structures can make wrong circuit connections producing a complete set of waste in the end of experiment. Training set prevents materials refuse. The Application Advantages In the experimental applications, students must benefit IC s datasheets even when there isn t a pre-set training set. They usually do not have catalog specifications of IC s from datasheets, therefore the connection of the IC s, input and output units are frequently mishandled at the first time they place the integrate on the board. As a result, the electronic equipments are damaged and valuable time is spent during the application. However the rate of misuse in experiments can be minimized with training sets as the names of the IC s pin connectors and some IC symbols (logical gates, flip-flops etc..) are printed with serigraphy on the upper surface of DTS. Furthermore, the sources of DTS such as power supply, synchronized signal source and pulse generator facilitate the installation of circuits. The design of a counter in an experimental application requires not only a counter ICs but some additional hardware such as power supply, switches for input, pulse generator for clock, display or LED for output are also required. In the counter experiment the students have to construct these additional hardware equipments if there is no training set such as DTS. Although the aim of the experiment is to learn how to construct a counter, they have to spent excessive time and effort for the construction of additional circuits and equipments rendering the application of the experiment highly complicated. The use of training sets facilitates the experiment for both instructors and students in the combined circuit design and construction. 3 Technical Properties of DTS The design of DTS is improved after careful consideration of current digital design course curriculums in electrical and computer science education. The purpose of DTS is to integrate the properties of logical expressions into integratedcircuit and provide the use of ICs for digital design. The improved applied flexible design method, DTS can be used with the microprocessor system to develop more complex studies. DTS of the printed circuit board was drawn using ORCAD program on a double-sided plaque at dimensions of 95x50 mm. Symbols, names and figures of ICs and connectors were printed with serigraphy on the upper surface prior to placing the equipment (Fig. and Fig. ) which facilitates the understanding of the applied experiment and prevents confusion on the set attracting the student s attention to the pin structure of IC. There are twenty-eight sections about different objectives and tasks on DTS (Fig. Fig. ). Four of these sections are input and output units (switch, display and LED), one applicationboard (bread-board) and other 3 sections are ICs for different experimental purposes and tasks. These integrated circuits can be connected to each other via a cable only mm in diameter. Connectors are added to the input and output of ICs. The bread-board is used as the application board on DTS when additional ICs are needed on it. This increases the utilization of DTS in a number of experimental studies. Minimizing the power loss during the design is one of the most important goals. t all the ICs on the set receive voltage (Vcc=+5 Volt), but the ones under experimentation. A fixed +5 V power supply can be connected to ICs with a wire ISSN: ISBN:

3 by the user in the experiments, and so, unnecessary electrical power consumption is prevented. 4 The Structure of DTS DTS will be examined in six sections and general specifications are described in the following subsections. 4. Power Supplies There is one short-circuit protected power supply on DTS. It provides 5V and adjustable V power supply to ICs on DTS. Adjustable voltage source is located on the upper left corner of the set and constant voltage source is on the upper right corner of the set. Adjustable voltage source has been added especially for ADC (Analog Digital Converter), DAC (Digital Analog Converter) and externally designed circuits. 4. Synchronized Signal Generator Synchronized signal generator described as Astable Multivibrator circuit is designed using NE555 Timer integrated circuits. Signal generator has been designed consisting of three stages using three capacitors ( F, nf and 00pF). The rising and falling time of pulse signal is around only 0 s and this property is important for many circuits requiring fast switching time. Frequency range is between Hz to 8MHz. Voltage level of square wave taken from the output is 5V [3, 4]. 4.3 Pulse Generator This circuit produces only a single pulse when it is triggered. IC 743 Monostable Multivibrator is used in its design. Two different pulses can be obtained from the output of IC 743. One of them is on the level of Logic (positive level) and the other one is on the level of Logic 0 (negative level). The pulse duration of the Logic or Logic 0 depends on external rezistor (Rx) and capacitor (Cx) value connected to the IC 743. It is approximately 5 nanoseconds for DTS. Also multi-vibrator has a very fast rise and fall times [3]. 4.4 The Section of Switching Because the size of working area of DTS is large, switches have been distributed to three different regions. Thus, 8 bit switches are available in three different areas. If the switch is in the OFF position, the value of its output named as logic 0, is on 0 Voltage level. ON position in the output called as logic has a value of +5 Voltage level. 4.5 The Section of Indicator Indicator section is an area of DTS for obtaining and observing the output of the design and implementation of the circuits. It consists of two different sections. In the first indicator s section, there are two groups of LEDs because of the large surface area of DTS. Very long cable or more complex circuits is prevented. Every group has eight LEDs on DTS. Connectors are placed on the inputs of all LEDs. If the level of information on the input s connectors of LED is Logic, LED lights, otherwise it doesn t light. The second part of this section consists of display indicators. There are two displays and two driver ICs to drive them. The number of input of driver ICs is four bits. This four-bit binary code is decoded with 7447 driver IC into display s code. Thus, according to input information codes appear on the display. 4.6 Working Area Working area is a section which contains ICs for experimental studies. The ICs in this section are grouped separately as sequential logic and combinational logic integrated. ICs located on the Working area are listed in Table. In addition, Fig. represents general overview of DTS and also Fig. shows the top view of DTS [5, 6]. 5 Results Despite the rapidly growing computer and electronics technology, the principles of digital design of ICs and the computer hardware-related concepts remain the same. Digital design courses are the fundamental courses in electronics and computer science education. Therefore, necessary tools for efficient learning is important. But, the theoretical knowledge needs to be supported with experimental training courses. ISSN: ISBN:

4 The students can learn properties of ICs, digital electronics equipments and measurement methods more efficiently in the laboratory. The easiest method of working in the digital electronics laboratory is using experimental sets. Specifically produced experiment test sets reduce learning time and cost in the laboratory classes. Also training sets develop the designing ability of students. A general purpose Digital Training Set (DTS) is described for these reasons. With this training set (DTS), students, teachers or people interested in digital electronics can perform their experiments in a less complicated method where required additional equipments such as signal generators, switches, display and LED are made ready on DTS during the application of a logical design. This provides savings in time and money. The symbol of ICs or names of pins of ICs placed on DTS reduce the risk of incorrect connections and helps the user s performance. As DTS is designed and developed for students experiments, it is easy to intervene quickly in case of any failure/error and develop the system. When both financial and technical advantages are considered, applied DTS will be useful for learners dealing with digital design and computer hardware. References [] Mano. M.M.. Digital Design. nd ed. Prentice Hall. Inc., 99. [] Mano, M.M., Sayısal Tasarım. Prentice Hall. Inc. MEB,994 [3] Sprorck, E., Logic Databook. Volume -. National Seminconductor Corporation, 984. [4] Kahramanlı, Ş., Özcan, M., Lojik Tasarımın Temelleri (Fundamentals of Logical Design). bel Press, 000 (In Turkish). [5] Texas Instruments, HC/HCT Logic Data Book. Custom Printing Company, 997. [6] Tezel, G., Digital Training Set. Masters Thesis, Institute of Natural and Applied Science, Selcuk University, Konya, Turkey, 00. Acknowledgements This work is financially supported by the Coordinating Office of Scientific Research Projects in Selcuk University Fig.. General view of DTS ISSN: ISBN:

5 Fig.. Top view of DTS obatained with the method of serigraphy Table : The names of ICs in the working area INTEGRATED CIRCUITS Part Part Description Quantity Description Quantity 7408 Quad -Input AND Dual x Decoder/Demultiplexer 743 Quad -Input OR 746 Quad 3-State Buffer Six Inverter (NOT) Octal 3-State Buffer Quad -Input NAND 8-Bit 3-State Transparent Latch Quad -Input NOR Universal Shift Register Quad -Input XOR Up/Down Decade Counter Dual D-Type Flip- Synchronous Up/Down Flops 4-Bit Binary Counter 8 74 Dual J-K Flip- Flops ALU (Arithmetic/Logic Unit) Quadruple R-S DAC Digital Analog 9 Latches 0808 Converter (DAC) Dual 4x Multiplexer 0 ADC Analog Digital 0808 Converter (ADC) ISSN: ISBN:

Sequential Digital Design. Laboratory Manual. Experiment #3. Flip Flop Storage Elements

Sequential Digital Design. Laboratory Manual. Experiment #3. Flip Flop Storage Elements The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #3 Flip Flop Storage

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

Chapter 2. Digital Circuits

Chapter 2. Digital Circuits Chapter 2. Digital Circuits Logic gates Flip-flops FF registers IC registers Data bus Encoders/Decoders Multiplexers Troubleshooting digital circuits Most contents of this chapter were covered in 88-217

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 - Introductory Digital Systems Laboratory Project Resources Project resources are allocated on a per

More information

List of the CMOS 4000 series Dual tri-input NOR Gate and Inverter Quad 2-input NOR gate Dual 4-input NOR gate

List of the CMOS 4000 series Dual tri-input NOR Gate and Inverter Quad 2-input NOR gate Dual 4-input NOR gate List of the CMOS 4000 series 4000 - Dual tri-input NOR Gate and Inverter 4001 - Quad 2-input NOR gate 4002 - Dual 4-input NOR gate 4006-18 stage Shift register 4007 - Dual Complementary Pair Plus Inverter

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. 1 ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE :

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

Reaction Game Kit MitchElectronics 2019

Reaction Game Kit MitchElectronics 2019 Reaction Game Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Schematic 3 How It Works 4 Materials 6 Construction 8 Important Information 9 Page 2 SCHEMATIC Page 3 SCHEMATIC EXPLANATION The

More information

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab Experiment #5 Shift Registers, Counters, and Their Architecture 1. Introduction: In Laboratory Exercise # 4,

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICL INSTITUTE ECE 270 Experiment #8 DIGITL CIRCUITS Prelab 1. Draw the truth table for the S-R Flip-Flop as shown in the textbook. Draw the truth table for Figure 7. 2.

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

EE Chip list. Page 1

EE Chip list. Page 1 Chip # Description 7400 Quadruple 2-Input Positive NANDS 7401 Quadruple 2-Input Positive NAND with Open-Collector Outputs 7402 Quadruple 2-input Positive NOR 7403 Quadruple 2-Intput Positive NAND with

More information

North Shore Community College

North Shore Community College North Shore Community College Course Number: IEL217 Section: MAL Course Name: Digital Electronics 1 Semester: Credit: 4 Hours: Three hours of Lecture, Two hours Laboratory per week Thursdays 8:00am (See

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Bistable Storage Devices and Related Devices Introduction Latches and flip-flops are the basic single-bit memory elements used

More information

SIGNETICS INTEGRATED CIRCUITS Low Power Schottky TTL 54LS00-74LS00 Series. Supply Current/typmA Delay/typns Quad 2-Input NAND Gate 54LS00/C,D

SIGNETICS INTEGRATED CIRCUITS Low Power Schottky TTL 54LS00-74LS00 Series. Supply Current/typmA Delay/typns Quad 2-Input NAND Gate 54LS00/C,D SIGNETICS INTEGRATED CIRCUITS Low Power Schottky TTL 54LS00-74LS00 Series Rating Value Unit Voltage - V CC +7.0 V Input Voltage Range - V I -0.5 to +7.0 V Output Voltage - V out +5.5 V Operating Temperature

More information

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur SEQUENTIAL LOGIC Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com OSCILLATORS Oscillators is an amplifier which derives its input from output. Oscillators

More information

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date:

Digital Fundamentals. Lab 5 Latches & Flip-Flops CETT Name: Date: Richland College School of Engineering & Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Rev. 3 (7/2015) J. Bradbury Digital Fundamentals CETT 1425 Lab 5 Latches & Flip-Flops

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

4.S-[F] SU-02 June All Syllabus Science Faculty B.Sc. II Yr. Instrumentation Practice [Sem.III & IV] S.Lot

4.S-[F] SU-02 June All Syllabus Science Faculty B.Sc. II Yr. Instrumentation Practice [Sem.III & IV] S.Lot [Sem.III & IV] S.Lot. - 1 - [Sem.III & IV] S.Lot. - 2 - [Sem.III & IV] S.Lot. - 3 - Syllabus B.Sc. ( Instrumentation Practice ) Second Year ( Third and Forth Semester ) ( Effective from June 2014 ) [Sem.III

More information

Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

More information

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC)

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) 1 TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) Q.1 The flip-flip circuit is. a) Unstable b) multistable c) Monostable d) bitable Q.2 A digital counter consists of a group of a) Flip-flop b) half adders c)

More information

Sequential Logic and Clocked Circuits

Sequential Logic and Clocked Circuits Sequential Logic and Clocked Circuits Clock or Timing Device Input Variables State or Memory Element Combinational Logic Elements From combinational logic, we move on to sequential logic. Sequential logic

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER ECB2212 - DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER SUBMITTED BY ASHRAF HUSSAIN (160051601105) S SAMIULLAH (160051601059) CONTENTS >AIM >INTRODUCTION

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #7 Counters Objectives

More information

EXPERIMENT #6 DIGITAL BASICS

EXPERIMENT #6 DIGITAL BASICS EXPERIMENT #6 DIGITL SICS Digital electronics is based on the binary number system. Instead of having signals which can vary continuously as in analog circuits, digital signals are characterized by only

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals CHAPTER 7 Latches, Flip-Flops

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No.

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No. 6.1.2 Sample Test Papers: Sample Test Paper 1 Roll No. Institute Name: Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/ET/IU Subject: Principles of Digital Techniques Marks: 25 1 Hour 1. All questions are

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code: 17320 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 9 Sequential Circuit Author: ID Co-Authors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre lab 10

More information

Rangkaian Sekuensial. Flip-flop

Rangkaian Sekuensial. Flip-flop Rangkaian Sekuensial Rangkaian Sekuensial Flip-flop Combinational versus Sequential Functions Logic functions are categorized as being either combinational (sometimes referred to as combinatorial) or sequential.

More information

FLIP-FLOPS AND RELATED DEVICES

FLIP-FLOPS AND RELATED DEVICES C H A P T E R 5 FLIP-FLOPS AND RELATED DEVICES OUTLINE 5- NAND Gate Latch 5-2 NOR Gate Latch 5-3 Troubleshooting Case Study 5-4 Digital Pulses 5-5 Clock Signals and Clocked Flip-Flops 5-6 Clocked S-R Flip-Flop

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Event Counter Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital Logic Full Marks: 60 + 0 + 0 Course No.: CSC Pass Marks:

More information

Integrated Circuits 7

Integrated Circuits 7 7 IC Test Clip Series For temporary connections to DIP package components Heavy-duty spring loaded hinge provides positive contact 20 AWG insulated gold contacts Color: white 22103 Part No. Product No.

More information

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201)

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) Instructor Name: Student Name: Roll Number: Semester: Batch: Year: Department:

More information

Chapter 3: Sequential Logic Systems

Chapter 3: Sequential Logic Systems Chapter 3: Sequential Logic Systems 1. The S-R Latch Learning Objectives: At the end of this topic you should be able to: design a Set-Reset latch based on NAND gates; complete a sequential truth table

More information

Digital Systems Laboratory 3 Counters & Registers Time 4 hours

Digital Systems Laboratory 3 Counters & Registers Time 4 hours Digital Systems Laboratory 3 Counters & Registers Time 4 hours Aim: To investigate the counters and registers constructed from flip-flops. Introduction: In the previous module, you have learnt D, S-R,

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

UNIT V 8051 Microcontroller based Systems Design

UNIT V 8051 Microcontroller based Systems Design UNIT V 8051 Microcontroller based Systems Design INTERFACING TO ALPHANUMERIC DISPLAYS Many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. Light

More information

[2 credit course- 3 hours per week]

[2 credit course- 3 hours per week] Syllabus of Applied Electronics for F Y B Sc Semester- 1 (With effect from June 2012) PAPER I: Components and Devices [2 credit course- 3 hours per week] Unit- I : CIRCUIT THEORY [10 Hrs] Introduction;

More information

Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010

Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010 Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010 Andrew C. and Julia A. DLD Final Project Spring 2010 Abstract For our final project, we created a game on a grid of 72 LED s (9 rows

More information

CHAPTER 1 LATCHES & FLIP-FLOPS

CHAPTER 1 LATCHES & FLIP-FLOPS CHAPTER 1 LATCHES & FLIP-FLOPS 1 Outcome After learning this chapter, student should be able to; Recognize the difference between latches and flipflops Analyze the operation of the flip flop Draw the output

More information

Spring 2011 Microprocessors B Course Project (30% of your course Grade)

Spring 2011 Microprocessors B Course Project (30% of your course Grade) Course Project guidelines Spring 2011 Microprocessors B 17.384 Course Project (30% of your course Grade) Overall Guidelines Design a fairly complex system that contains at least one microcontroller (the

More information

A New Hardware Implementation of Manchester Line Decoder

A New Hardware Implementation of Manchester Line Decoder Vol:4, No:, 2010 A New Hardware Implementation of Manchester Line Decoder Ibrahim A. Khorwat and Nabil Naas International Science Index, Electronics and Communication Engineering Vol:4, No:, 2010 waset.org/publication/350

More information

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore)

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Laboratory 10 Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Required Components: 1x 330 resistor 4x 1k resistor 2x 0.F capacitor 1x 2N3904 small signal transistor 1x LED 1x

More information

EE 367 Lab Part 1: Sequential Logic

EE 367 Lab Part 1: Sequential Logic EE367: Introduction to Microprocessors Section 1.0 EE 367 Lab Part 1: Sequential Logic Contents 1 Preface 1 1.1 Things you need to do before arriving in the Laboratory............... 2 1.2 Summary of material

More information

Digital Circuits. Innovation Fellows Program

Digital Circuits. Innovation Fellows Program Innovation Fellows Program Digital Circuits, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics TTL and CMOS Logic National Instrument s

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Logic. Andrew Mark Allen March 4, 2012

Logic. Andrew Mark Allen March 4, 2012 Logic Andrew Mark Allen - 05370299 March 4, 2012 Abstract NAND gates and inverters were used to construct several different logic gates whose operations were investigate under various inputs. Then the

More information

Physics 323. Experiment # 10 - Digital Circuits

Physics 323. Experiment # 10 - Digital Circuits Physics 323 Experiment # 10 - Digital Circuits Purpose This is a brief introduction to digital (logic) circuits using both combinational and sequential logic. The basic building blocks will be the Transistor

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Latches, Flip-Flops, and Timers Chapter 6 Traffic Signal Control Traffic Signal Control: State Diagram Traffic Signal Control: Block Diagram Traffic Signal Control:

More information

Jawaharlal Nehru Engineering College

Jawaharlal Nehru Engineering College Jawaharlal Nehru Engineering College Laboratory Manual DIGITAL LOGIC DESIGN For Second Year Students Manual made by Dr. V. A. More Author JNEC, Aurangabad MGM S Jawaharlal Nehru Engineering College N-6,

More information

Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties. All rights reserved. Printed in Taiwan.

Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties. All rights reserved. Printed in Taiwan. Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties All rights reserved. Printed in Taiwan. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

VU Mobile Powered by S NO Group

VU Mobile Powered by S NO Group Question No: 1 ( Marks: 1 ) - Please choose one A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register.

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

Laboratory Sequential Circuits

Laboratory Sequential Circuits Laboratory Sequential Circuits Digital Design IE1204/5 Attention! To access the laboratory experiment you must have: booked a lab time in the reservation system (Daisy). completed your personal knowledge

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

Timing Pulses. Important element of laboratory electronics. Pulses can control logical sequences with precise timing.

Timing Pulses. Important element of laboratory electronics. Pulses can control logical sequences with precise timing. Timing Pulses Important element of laboratory electronics Pulses can control logical sequences with precise timing. If your detector sees a charged particle or a photon, you might want to signal a clock

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics by Agner Fog, 2018-10-15. Contents 1. Number systems... 3 1.1. Decimal, binary, and hexadecimal numbers... 3 1.2. Conversion from another number system to decimal...

More information

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH CPE 200L LABORATORY 3: SEUENTIAL LOGIC CIRCUITS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Learn to use Function Generator and Oscilloscope on the breadboard.

More information

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter Digital Clock The timing diagram figure 30.1a shows the time interval t 6 to t 11 and t 19 to t 21. At time interval t 9 the units counter counts to 1001 (9) which is the terminal count of the 74x160 decade

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M CSE-4523 Latches and Flip-flops Dr. Izadi NOR gate property: A B Z A B Z Cross coupled NOR gates: S M S R M R S M R S R S R M S S M R R S ' Gate R Gate S R S G R S R (t+) S G R Flip_flops:. S-R flip-flop

More information

HS Digital Electronics Pre-Engineering

HS Digital Electronics Pre-Engineering Course This course covers fundamentals of analog and digital electronics. Students learn about the different number systems used in the design of digital circuitry. They design circuits to solve open-ended

More information

10.1 Sequential logic circuits are a type of logic circuit where the output of the circuit depends not only on

10.1 Sequential logic circuits are a type of logic circuit where the output of the circuit depends not only on CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 10 INTRODUCTION TO SEQUENTIAL LOGIC EE 2449 Experiment 10 nwp & jgl 1/1/18

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

EECS 140 Laboratory Exercise 7 PLD Programming

EECS 140 Laboratory Exercise 7 PLD Programming 1. Objectives EECS 140 Laboratory Exercise 7 PLD Programming A. Become familiar with the capabilities of Programmable Logic Devices (PLDs) B. Implement a simple combinational logic circuit using a PLD.

More information

Review of Flip-Flop. Divya Aggarwal. Student, Department of Physics and Astro-Physics, University of Delhi, New Delhi. their state.

Review of Flip-Flop. Divya Aggarwal. Student, Department of Physics and Astro-Physics, University of Delhi, New Delhi. their state. pp. 4-9 Krishi Sanskriti Publications http://www.krishisanskriti.org/jbaer.html Review of Flip-Flop Divya Aggarwal Student, Department of Physics and Astro-Physics, University of Delhi, New Delhi Abstract:

More information

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 2065 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 Time: 3 hours. Candidates are required to give their answers in their own words as for as practicable. Attempt any TWO questions:

More information

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1 DAY MODU LE TOPIC QUESTIONS Day 1 Day 2 Day 3 Day 4 I Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation Phase Shift Wein Bridge oscillators.

More information

Experimental Study to Show the Effect of Bouncing On Digital Systems

Experimental Study to Show the Effect of Bouncing On Digital Systems Journal Name, Vol. 1, Journal of Networks and Telecommunication Systems, Vol. 1 (1), 28-38, September, 2015 ISSN: Pending,, Published online: www.unitedscholars.net/archive Experimental Study to Show the

More information

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari Sequential Circuits The combinational circuit does not use any memory. Hence the previous state of input does not have any effect on the present state of the circuit. But sequential circuit has memory

More information

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School Course Name : : ELECTRICAL ENGINEERING 2 ND YEAR ELECTRONIC DESIGN LAB Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School of

More information

Sequential Logic Notes

Sequential Logic Notes Sequential Logic Notes Andrew H. Fagg igital logic circuits composed of components such as AN, OR and NOT gates and that do not contain loops are what we refer to as stateless. In other words, the output

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EECTRICA ENGINEERING DEPARTMENT California Polytechnic State University EE 361 NAND ogic Gate, RS Flip-Flop & JK Flip-Flop Pre-lab 7 1. Draw the logic symbol and construct the truth table for a NAND gate.

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001 Flip-Flops and Related Devices Wen-Hung Liao, Ph.D. 4/11/2001 Objectives Recognize the various IEEE/ANSI flip-flop symbols. Use state transition diagrams to describe counter operation. Use flip-flops in

More information

Lab #12: 4-Bit Arithmetic Logic Unit (ALU)

Lab #12: 4-Bit Arithmetic Logic Unit (ALU) Lab #12: 4-Bit Arithmetic Logic Unit (ALU) ECE/COE 0501 Date of Experiment: 4/3/2017 Report Written: 4/5/2017 Submission Date: 4/10/2017 Nicholas Haver nicholas.haver@pitt.edu 1 H a v e r PURPOSE The purpose

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

Although the examples given in this application note are based on the ZX-24, the principles can be equally well applied to the other ZX processors.

Although the examples given in this application note are based on the ZX-24, the principles can be equally well applied to the other ZX processors. ZBasic Application Note Introduction On more complex projects it is often the case that more I/O lines are needed than the number that are available on the chosen processor. In this situation, you might

More information

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter page 1 of 5 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter Introduction In this lab, you will learn about the behavior of the D flip-flop, by employing it in 3 classic circuits:

More information

Laboratory Sequence Circuits

Laboratory Sequence Circuits Laboratory Sequence Circuits Digital Design IE1204/5 Attention! To access the laboratory experiment you must have: booked a lab time in the reservation system (Daisy). completed your personal knowledge

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS In the same way that logic gates are the building blocks of combinatorial circuits, latches

More information

Digital Electronics Course Outline

Digital Electronics Course Outline Digital Electronics Course Outline PLTW Engineering Digital Electronics Open doors to understanding electronics and foundations in circuit design. Digital electronics is the foundation of all modern electronic

More information

Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet

Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet Praween Sinha Department of Electronics & Communication Engineering Maharaja Agrasen Institute Of Technology, Rohini sector -22,

More information