1967 FIRST PRODUCTION MOS CHIPS 1969 LSI ( TRANSISTORS) PMOS, NMOS, CMOS 1969 E-BEAM PRODUCTION, DIGITAL WATCHES, CALCULATORS 1970 CCD

Size: px
Start display at page:

Download "1967 FIRST PRODUCTION MOS CHIPS 1969 LSI ( TRANSISTORS) PMOS, NMOS, CMOS 1969 E-BEAM PRODUCTION, DIGITAL WATCHES, CALCULATORS 1970 CCD"

Transcription

1 HISTORY OF VLSI 1948 TRANSISTOR INVENTED (SHOCKLEY AT&T) GERMANIUM-GOLD CONTACT 1954 SILICON TRANSISTOR (TEAL TI) HIGHT TEMP TRANSISTOR COMPUTER (CRAY) 1958 FIRST MONOLITHIC CIRCUIT (IC) BJTs (KIRBY - TI & NOYCE - FAIRCHILD) 1960 SSI (< 100 TRANSISTORS) MOSFET - PMOS, METAL GATE (BELL LABS) 1961 TTL (PACIFIC MICROTEL) - 25UM FEATURE SIZE 1962 ECL (MOTOROLA) 1964 OPAMP (WILDAR - FAIRCHILD U709) 1965 PDP-8 < $20, MSI ( TRANSISTORS)

2 1967 FIRST PRODUCTION MOS CHIPS 1969 LSI ( TRANSISTORS) PMOS, NMOS, CMOS 1969 E-BEAM PRODUCTION, DIGITAL WATCHES, CALCULATORS 1970 CCD (BELL LABS), MICROPROCESSOR (HOFT - INTEL) 1971 ION IMPLANTATION 1972 I 2 L (IBM), 16 BIT MICROS 1975 VLSI (10, ,000 TRANSISTORS) SELF-ALIGNED PROCESSES 1975 SPICE DEVELOPED (U CAL. BERKLEY) 1980 s ULSI (> 100,000 TRANSISTORS) ASICS, PLD, TRENCH CAPS, DUAL WELL, BIMOS, HVICS FEATURE SIZE 2UM 1990 s > 1,000,000 TRANSISTORS 64-bit MICROS, MICROMACHINING, FPGA SYNTHESIS, VHDL, FEATURE SIZE 0.5UM

3 STATE OF THE ART DRAMS 64MBIT, 10NS (SDRAM) SRAMS 16MBIT, 16K GaAs - < 1NS ROMS 64MBIT PLDS 100K USABLE GATES EPROMS 64MBIT

4 EEPROMS 64MBIT MICROS 64 BIT > 8M TRANSISTOR CISC > 300 MIPS RISC GATE ARRAYS 1M AVAILABLE GATES STANDARD CELLS UP TO 2M TRANSISTORS

5 FUTURE OF VLSI DENSITY 2X/YEAR > 2X s DECREASING 1990 s SPEED 2X MIPS/YEAR CHIP SIZE > (800 MIL.)**2 WSI - 12 WAFERS

6 BARRIERS COMPLEXITY > 100K TRANSISTORS TESTING INTERCONNECT DEVICE.1 U PHYSICAL 5 IN./ NS SPEED OF LIGHT LATE 1990 S 1 GBIT RAMS > 1000 MIPS PROCESSORS 10M TRANSISTOR ASIC

7

8

9 VLSI IN CANADA INDUSTRIAL STANDARD PARTS - SMALL ASIC - GROWING LSI, MOTOROLA, NCR CAPTIVE MARKETING - BIG IN COMMUNICATIONS NTE, MITEL, MICROTEL PACIFIC SASK. SMALL ASIC MARKET - COST, RELIABILITY, SPACE, PERFORMANCE PENETRATION - ALL OR NONE, HIGH NRE

10 UNIVERSITY MITEL <--> CMC <--> UNIVERSITIES (~25) NSERC CMC SERVICES - VLSI MESSAGE NETWORK - TOOLS SUPPORT - RESEARCH SUPPORT - DESIGN STATIONS - TEST STATIONS - SOFTWARE DISTRIBUTIONS - DEVELOPMENT CONTRACTS - DESIGN VERIFICATION - DESIGN SUBMISSION

11 TECHNOLOGIES CMOS1B 5µ 1983 CMOS3 3µ 1986 CMOS4 1.5µ 1989 CMOS4S 1.2µ 1991 CMOS5.8µ 1993 BIMOS.8µ 1993 GaAs 1.2µ 1993 BIPOLAR 3µ 1988 CHIP SIZE (4000µ) 2 PACKAGES 40 PIN DIP -> 100 PIN PGA 3-4 SUBMISSIONS EACH YEAR JAN 88 SUBMISSIONS 21 UNIVERSITIES 87 DIFFERENT CHIPS > 500 CHIPS DELIVERED

12 MOS TRANSISTOR PHYSICAL CHARACTERISTICS

13

14 VIEWING TRANSISTORS AS IMPERFECT SWITCHES Figure 1.2 nmos and pmos switch symbols and characteristics

15 Complementary Switch: Transmission Gate Figure 1.3 A complementary CMOS switch

16 Figure 1.4 A CMOS inverter CMOS Logic Inverter

17 Series: Switch Combinations:

18 Parallel:

19 NAND Gate

20 NAND Gate (con t)

21 NAND Gate (con t)

22 NOR Gate

23 NOR Gate (con t)

24 NOR Gate (con t)

25 Figure 1.8 Construction of function F = ((A.B) + (C.D))

26 Figure 1.8 (con t)

27 Figure 1.11 Connection of components for a simple CMOS flip-flop

28 CMOS flip-flop (con t)

29 CMOS flip-flop (con t)

30 Multiplexer

31 heykids.wav Figure 1.14 Digital design domains and levels of abstraction

32 Figure 1.16 An abstract view of the physical representation of a CMOS adder

33 Figure 1.21 The design flow for a CMOS chip

34 Behavioral Representation - describes how design should respond to a set of inputs - e.g. boolean equations, truth tables of I/O values, high level computer algorithms, HDL (e.g. VHDL, Verilog) Structural Representation - examples of hierarchy in this type of representation: : module level, gate level, switch level, circuit level - SPICE, SPECTRE-----circuit simulators using a structural representation of circuit Physical Representation - defines how part is to be constructed to yield specific structure and behavior - layout of mask layers - lowest level is photomask information used to manufacture device-----rectangles for various layers e.g. metal, contacts, diffusions, poly, etc - module level-----geometry -----call to sub modules e.g. trans, wires, contacts

35 CIRCUIT REPRESENTATION 1. BEHAVIORAL e.g. F = ((A.B) + (C.D)) 2. STRUCTURAL How the components are interconnected to achieve desired behavior A: Schematic diagram B: Description suitable for computer representation (for simulation, etc) Part inv (in) -> out Nfet out in vss Pfet out in vdd End Type Drain Gate Source Nfet out in vss

36 Example using a NAND gate: Behavioral Structural (schematic) out = -(a&b) out = (not (and a b)) Structural (for modelling) Part nand2 (a, b) -> out Signal il Nfet il a vss Nfet out b il Pfet out a vdd Pfet out b vdd End

37

38 Part nand2 (a, b) -> out Signal il End Nfet il a vss Nfet out b il Pfet out a vdd size = 2 Pfet out b vdd size = 2 Capacitance a 100 Capacitance b 100 Capacitance out 200

39 The circuit simulator that SPICE uses a similar form:.subckt NAND2.VDD A B OUT MN1 I1 A VSS VSS NFET W=8U L=4U AD=64P AS=64P MN2 OUT B I1 VSS NFET W=8U L=4U AD=64P AS=64P MP1 OUT A VDD VDD PFET W=16U L=4U AD=128P AS=128P MP2 OUT B VDD VDD PFET W=16U L=4U AD=128P AS=128P CA A VSS 5OfF CB B VSS 5OfF COUT OUT VSS 100fF.ENDS wiring capacitance capacitance computed from areas

40 HIERARCHICAL DESCRIPTIONS Part inv (in) -> out Nfet out in vss Pfet out in vdd End Part tg (a, c, cb) -> b Nfet a c b Pfet a cb b End Part flipflop (in, ld, ldbar, q, qbar) Signal a tg (in, ld, ldbar) -> a inv (a) -> qbar inv (qbar) -> g tg (q, ldbar, ld) -> a End

41 Hierarchical Descriptions (con t) Part flipflop (in, ld, ldbar, q, qbar) Signal a tg (in, ld, ldbar) -> a inv (a) -> qbar inv (qbar) -> q tg (q, ldbar, ld) -> a End

42 3. Physical Representation How is it constructed? Represents Gate Electrode Represents n-diffusion Source and Drain n-transistor

43 Symbolic Level p-transistor

44

45 Topics to Cover Design Representations Basic Manufacturing Process Fabrication Technology CMOS Process CMOS3/CMOS4S

46 USE OF HIERARCHY IN PHYSICAL REPRESENTATION

47 Use of Hierarchy in Physical Representation (con t)

48 Use of Hierarchy in Physical Representation (con t)

49 THE MANUFACTURING PROCESS In simplified form, the manufacturing is done by producing the required features on silicon by a process of implantations, diffusions, and metalization (depositing metal) under the control of mask. It is the masks which must be designed with the aid of the CAD system. A common step involves depositing an insulating layer of SiO 2, then using a mask to selectively expose a portion of the underlying substrate by etching:

50 The Manufacturing Process (con t)

51 The Manufacturing Process (con t) Resist

52 Expose resist through mask The Manufacturing Process (con t)

53 The Manufacturing Process (con t)

54 Czochralski Method - most common method - large wafers - high throughput - approx o C - cut and polish Figure 3.1 Czochralski method for manufacturing silicon ingots

55 FLOAT ZONE CRYSTAL GROWTH - no crucible, avoids contamination - difficult to get large waffers - generally requires long time to form final ingots Figure 3-12 The apparatus for float-zone crystal growth

56 PREPARATION OF MASKS The tape produced by the layout CAD tool is sent to a mask house which has a machine called a pattern generator (the input tape for this machine is called a PG tape ). This machine produces a reticle for each mask, usually at 10 times the real size on the photographic plate. This is not unlike the photoplotter used to make printed circuit artwork.

57 Preparation of Masks (con t)

58 The pattern generator exposes the film by flashing rectangular patterns. when the plate is developed we get a 10X reticle for one mask layer:

59 From the repticle, a 1X master mask is made using a step and repeat camera ( photorepeater ) producing a mask (1X size). This mask contains an array of identical layout patterns which will be used to produce working plates or working masks by contact printing.

60 The working masks are used during the fabrication to expose a whole wafer of silicon at a time, which will be subsequently divided into chips. These chips will be tested and packaged as individual integrated circuits.

61 *rest of process continued on next slide

62 *process continued from previous slide

63 Lithographic Projector - finer control - slower - more control over a number of different types of chips - more expensive * see next slide for diagram

64 Figure Schematic of a demagnifying electron projection printing system

65 CHEMICAL VAPOR DEPOSITION - pyrolysis as gaseous material comes in contact with substrate surface - typically used to deposit SiO 2 and polysilicon - can be used to grow silicon crystals (epitaxial growth) - low temperature * see next slide for diagram

66

67 ION IMPLANTATION Figure 7.20 The essential components of an ion-implantation system - low temperature - can implant through other layers - fine control of implant profile - expensive - can cause damage to substrate at high energy levels

68 Sputtering - materials energized in a high energy field (also vacuum) - substrate is anode while deposition material is cathode - insulators can be sputtered by mixing with sputtering gas (reactive sputtering) * see next slide for diagram

69

70 Typical p-well CMOS process with the appropriate masks

71 Typical p-well CMOS process with required masks (con t)

72 Typical p-well CMOS process with the appropriate masks (con t)

73 Typical p-well CMOS process with required masks (con t)

74

75 Figure 3.7 Layout and process cross section of transistors and inverter in p-well CMOS technology

76

77 THE CMOS PROCESS (COMPLEMENTARY MOS) In the CMOS process, NMOS and PMOS transistors are used in complementary pairs on the same substance. Original substrate is n-type and p-tubs (or p-wells) are made (for the NMOS transistors) by diffusing the p-type material with a mask. * see next slide for diagram

78 The circuit we are illustrating is and inverter, which uses one of each type of transistor in series.

79 Notice in the actual implementation that there are additional diffusions to connect the sources of each transistor to the substrate (the PMOS transistor) or the p-well (NMOS). The substrate is, in fact, at +5V and the p-well is grounded. This ensures that all PN junctions (which act as diodes) are back biased and do not conduct (i.e. short ).

80 P-well N-well Figure C.1: CMOS3 DLM Process for a Simple Inverter and Capacitor (steps 1 and 2)

81 Figure C.1: CMOS3 DLM Process for a Simple Inverter and Capacitor (steps 3 and 4)

82 Figure C.1: CMOS3 DLM Process for a Simple Inverter and Capacitor (steps 5 and 6)

83 Figure C.1: CMOS3 DLM Process for a Simple Inverter and Capacitor (steps 7 and 8)

84 Figure C.1: CMOS3 DLM Process for a Simple Inverter and Capacitor (steps 9 and 10)

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

IC TECHNOLOGY Lecture 2.

IC TECHNOLOGY Lecture 2. IC TECHNOLOGY Lecture 2. IC Integrated Circuit Technology Integrated Circuit: An integrated circuit (IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor

More information

Lecture 1: Circuits & Layout

Lecture 1: Circuits & Layout Lecture 1: Circuits & Layout Outline A Brief History CMOS Gate esign Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick iagrams 2 A Brief History 1958: First integrated circuit Flip-flop

More information

Lecture 1: Intro to CMOS Circuits

Lecture 1: Intro to CMOS Circuits Introduction to CMOS VLSI esign Lecture : Intro to CMOS Circuits avid Harris Steven Levitan Fall 28 Harvey Mudd College Spring 24 Outline A Brief History CMOS Gate esign Pass Transistors CMOS Latches &

More information

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response nmos transistor asics of VLSI Design and Test If the gate is high, the switch is on If the gate is low, the switch is off Mohammad Tehranipoor Drain ECE495/695: Introduction to Hardware Security & Trust

More information

VLSI Design Digital Systems and VLSI

VLSI Design Digital Systems and VLSI VLSI Design Digital Systems and VLSI Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author 1 Overview Why VLSI? IC Manufacturing CMOS Technology

More information

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor 14 12 10 8 6 IBM ES9000 Bipolar Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP)

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada 2011/12/19 1 What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails.

More information

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping Introductory Medical Device Prototyping Digital Circuits Part 1 Logic Gates, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics CMOS Logic

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails. Currently,

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITL TECHNICS Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 10. LECTURE (LOGIC CIRCUITS, PRT 2): MOS DIGITL CIRCUITS II 2016/2017 10. LECTURE: MOS DIGITL CIRCUITS II 1.

More information

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction 1 Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 2 Course Overview Lecturer Teaching Assistant Course Team E-mail:

More information

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau,

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau, CHAPTER I- CHAPTER I WELCOME TO ECE 23: Introduction to Computer Engineering* Richard M. Dansereau rdanse@pobox.com Copyright by R.M. Dansereau, 2-2 * ELEMENTS OF NOTES AFTER W. KINSNER, UNIVERSITY OF

More information

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043 EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP Due 16.05. İLKER KALYONCU, 10043 1. INTRODUCTION: In this project we are going to design a CMOS positive edge triggered master-slave

More information

Digital Circuits Part 1 Logic Gates

Digital Circuits Part 1 Logic Gates Introductory Medical Device Prototyping Digital Circuits Part 1 Logic Gates, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics CMOS Logic

More information

Why FPGAs? FPGA Overview. Why FPGAs?

Why FPGAs? FPGA Overview. Why FPGAs? Transistor-level Logic Circuits Positive Level-sensitive EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 28, 2003 John Wawrzynek Transistor Level clk clk clk Positive

More information

Designing of VLSI Circuits with MOS and CMOS

Designing of VLSI Circuits with MOS and CMOS Designing of VLSI Circuits with MOS and CMOS D. Naresh Kumar 1, N. Vasudheva Reddy 2,G. Sravan Kumar 3 1 Assistant Professor, ECE Department, MLR Institute of Technology, Dundigal, Hyderabad, Andhra Pradesh,

More information

EEE130 Digital Electronics I Lecture #1_2. Dr. Shahrel A. Suandi

EEE130 Digital Electronics I Lecture #1_2. Dr. Shahrel A. Suandi EEE130 Digital Electronics I Lecture #1_2 Dr. Shahrel A. Suandi 1-4 Overview of Basic Logic Functions Digital systems are generally built from combinations of NOT, AND and OR logic elements The combinations

More information

Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay

Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 01 A brief history of electronics Welcome to Basic Electronics. I am Mahesh Patil,

More information

Digital Systems Design

Digital Systems Design ECOM 4311 Digital Systems Design Eng. Monther Abusultan Computer Engineering Dept. Islamic University of Gaza Page 1 ECOM4311 Digital Systems Design Module #2 Agenda 1. History of Digital Design Approach

More information

[2 credit course- 3 hours per week]

[2 credit course- 3 hours per week] Syllabus of Applied Electronics for F Y B Sc Semester- 1 (With effect from June 2012) PAPER I: Components and Devices [2 credit course- 3 hours per week] Unit- I : CIRCUIT THEORY [10 Hrs] Introduction;

More information

S.K.P. Engineering College, Tiruvannamalai UNIT I

S.K.P. Engineering College, Tiruvannamalai UNIT I UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES Part - A Questions 1. Convert the hexadecimal number E3FA to binary.( Nov 2007) E3FA 16 Hexadecimal E 3 F A 11102 00112 11112 10102 So the equivalent binary

More information

CS250 VLSI Systems Design

CS250 VLSI Systems Design CS250 VLSI Systems Design Fall 2012 John Wawrzynek, Jonathan Bachrach with Krste Asanovic, John Lazzaro and Rimas Avizienis (TA) Why CS250 and not EE250 Put IC design expertise into the hands of those

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Course Number: ECE 533 Spring 2013 University of Tennessee Knoxville Instructor: Dr. Syed Kamrul Islam Prepared by

More information

CSE140L: Components and Design Techniques for Digital Systems Lab. FSMs. Tajana Simunic Rosing. Source: Vahid, Katz

CSE140L: Components and Design Techniques for Digital Systems Lab. FSMs. Tajana Simunic Rosing. Source: Vahid, Katz CSE140L: Components and Design Techniques for Digital Systems Lab FSMs Tajana Simunic Rosing Source: Vahid, Katz 1 Flip-flops Hardware Description Languages and Sequential Logic representation of clocks

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

Digital Circuits. Innovation Fellows Program

Digital Circuits. Innovation Fellows Program Innovation Fellows Program Digital Circuits, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics TTL and CMOS Logic National Instrument s

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興國立高雄大學資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 5 Sequential circuits design - Timing issues ELEN0040 5-228 1 Sequential circuits design 1.1 General procedure 1.2

More information

Music Electronics Finally DeMorgan's Theorem establishes two very important simplifications 3 : Multiplexers

Music Electronics Finally DeMorgan's Theorem establishes two very important simplifications 3 : Multiplexers Music Electronics Finally DeMorgan's Theorem establishes two very important simplifications 3 : ( A B )' = A' + B' ( A + B )' = A' B' Multiplexers A digital multiplexer is a switching element, like a mechanical

More information

Digital Integrated Circuits A Design Perspective Solution

Digital Integrated Circuits A Design Perspective Solution We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with digital integrated circuits

More information

9 Programmable Logic Devices

9 Programmable Logic Devices Introduction to Programmable Logic Devices A programmable logic device is an IC that is user configurable and is capable of implementing logic functions. It is an LSI chip that contains a 'regular' structure

More information

SA4NCCP 4-BIT FULL SERIAL ADDER

SA4NCCP 4-BIT FULL SERIAL ADDER SA4NCCP 4-BIT FULL SERIAL ADDER CLAUZEL Nicolas PRUVOST Côme SA4NCCP 4-bit serial full adder Table of contents Deeper inside the SA4NCCP architecture...3 SA4NCCP characterization...9 SA4NCCP capabilities...12

More information

Laboratory Objectives and outcomes for Digital Design Lab

Laboratory Objectives and outcomes for Digital Design Lab Class: SE Department of Information Technology Subject Logic Design Sem : III Course Objectives and outcomes for LD Course Objectives: Students will try to : COB1 Understand concept of various components.

More information

Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process

Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process (Lec 11) From Logic To Layout What you know... Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process High-level design description

More information

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009.

55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009. 55:131 Introduction to VLSI Design Project #1 -- Fall 2009 Counter built from NAND gates, timing Due Date: Friday October 9, 2009 Introduction In this project we will create a transistor-level model of

More information

ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2

ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2 ELEC 4609 IC DESIGN TERM PROJECT: DYNAMIC PRSG v1.2 The goal of this project is to design a chip that could control a bicycle taillight to produce an apparently random flash sequence. The chip should operate

More information

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics 1) Explain why & how a MOSFET works VLSI Design: 2) Draw Vds-Ids curve for a MOSFET. Now, show how this curve changes (a) with increasing Vgs (b) with increasing transistor width (c) considering Channel

More information

(Refer Slide Time: 2:03)

(Refer Slide Time: 2:03) (Refer Slide Time: 2:03) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture # 22 Application of Shift Registers Today we

More information

EE6301 DIGITAL LOGIC CIRCUITS UNIT-I NUMBERING SYSTEMS AND DIGITAL LOGIC FAMILIES 1) What are basic properties of Boolean algebra? The basic properties of Boolean algebra are commutative property, associative

More information

Electrical & Computer Engineering ECE 491. Introduction to VLSI. Report 1

Electrical & Computer Engineering ECE 491. Introduction to VLSI. Report 1 Electrical & Computer Engineering ECE 491 Introduction to VLSI Report 1 Marva` Morrow INTRODUCTION Flip-flops are synchronous bistable devices (multivibrator) that operate as memory elements. A bistable

More information

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 Project Overview This project was originally titled Fast Fourier Transform Unit, but due to space and time constraints, the

More information

Adding Analog and Mixed Signal Concerns to a Digital VLSI Course

Adding Analog and Mixed Signal Concerns to a Digital VLSI Course Session Number 1532 Adding Analog and Mixed Signal Concerns to a Digital VLSI Course John A. Nestor and David A. Rich Department of Electrical and Computer Engineering Lafayette College Abstract This paper

More information

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 3, Issue 1 (Sep. Oct. 2013), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Modifying the Scan Chains in Sequential Circuit to Reduce Leakage

More information

ROM MEMORY AND DECODERS

ROM MEMORY AND DECODERS ROM MEMORY AND DECODERS INEL427 - Spring 22 RANDOM ACCESS MEMORY Random Access Memory (RAM) read and write memory volatile Static RAM (SRAM) store information as long as power is applied will not lose

More information

24. Scaling, Economics, SOI Technology

24. Scaling, Economics, SOI Technology 24. Scaling, Economics, SOI Technology Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 December 4, 2017 ECE Department, University

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) Field Programmable Gate Arrays (FPGAs) Introduction Simulations and prototyping have been a very important part of the electronics industry since a very long time now. Before heading in for the actual

More information

CCE RR REVISED & UN-REVISED KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE G È.G È.G È..

CCE RR REVISED & UN-REVISED KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE G È.G È.G È.. CCE RR REVISED & UN-REVISED O %lo ÆË v ÃO y Æ fio» flms ÿ,» fl Ê«fiÀ M, ÊMV fl 560 003 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE 560 003 G È.G È.G È.. Æ fioê, d È 2018 S.

More information

L12: Reconfigurable Logic Architectures

L12: Reconfigurable Logic Architectures L12: Reconfigurable Logic Architectures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Frank Honore Prof. Randy Katz (Unified Microelectronics

More information

L11/12: Reconfigurable Logic Architectures

L11/12: Reconfigurable Logic Architectures L11/12: Reconfigurable Logic Architectures Acknowledgements: Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University of California, Berkeley,

More information

TKK S ASIC-PIIRIEN SUUNNITTELU

TKK S ASIC-PIIRIEN SUUNNITTELU Design TKK S-88.134 ASIC-PIIRIEN SUUNNITTELU Design Flow 3.2.2005 RTL Design 10.2.2005 Implementation 7.4.2005 Contents 1. Terminology 2. RTL to Parts flow 3. Logic synthesis 4. Static Timing Analysis

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

Slide Set 14. Design for Testability

Slide Set 14. Design for Testability Slide Set 14 Design for Testability Steve Wilton Dept. of ECE University of British Columbia stevew@ece.ubc.ca Slide Set 14, Page 1 Overview Wolf 4.8, 5.6, 5.7, 8.7 Up to this point in the class, we have

More information

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power EECS150 - Digital Design Lecture 17 - Circuit Timing March 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec16-timing Page 1 Performance, Cost, Power How do we measure performance? operations/sec? cycles/sec?

More information

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533 Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop Course project for ECE533 I. Objective: REPORT-I The objective of this project is to design a 4-bit counter and implement it into a chip

More information

Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation

Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation Outline CPE 528: Session #12 Department of Electrical and Computer Engineering University of Alabama in Huntsville Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

An Introduction to VLSI (Very Large Scale Integrated) Circuit Design

An Introduction to VLSI (Very Large Scale Integrated) Circuit Design An Introduction to VLSI (Very Large Scale Integrated) Circuit Design Presented at EE1001 Oct. 16th, 2018 By Hua Tang The first electronic computer (1946) 2 First Transistor (Bipolar) First transistor Bell

More information

PHYSICAL DESIGN ESSENTIALS An ASIC Design Implementation Perspective

PHYSICAL DESIGN ESSENTIALS An ASIC Design Implementation Perspective PHYSICAL DESIGN ESSENTIALS An ASIC Design Implementation Perspective PHYSICAL DESIGN ESSENTIALS An ASIC Design Implementation Perspective Khosrow Golshan Conexant Systems, Inc. 1 3 Khosrow Golshan Conexant

More information

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices March 13, 2007 14:36 vra80334_appe Sheet number 1 Page number 893 black appendix E Commercial Devices In Chapter 3 we described the three main types of programmable logic devices (PLDs): simple PLDs, complex

More information

COE328 Course Outline. Fall 2007

COE328 Course Outline. Fall 2007 COE28 Course Outline Fall 2007 1 Objectives This course covers the basics of digital logic circuits and design. Through the basic understanding of Boolean algebra and number systems it introduces the student

More information

High Performance Carry Chains for FPGAs

High Performance Carry Chains for FPGAs High Performance Carry Chains for FPGAs Matthew M. Hosler Department of Electrical and Computer Engineering Northwestern University Abstract Carry chains are an important consideration for most computations,

More information

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output ECE 201 - Lab 5 MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output PURPOSE To familiarize students with Medium Scale Integration (MSI) technology, specifically adders. The student should also

More information

Leakage Current Reduction in Sequential Circuits by Modifying the Scan Chains

Leakage Current Reduction in Sequential Circuits by Modifying the Scan Chains eakage Current Reduction in Sequential s by Modifying the Scan Chains Afshin Abdollahi University of Southern California (3) 592-3886 afshin@usc.edu Farzan Fallah Fujitsu aboratories of America (48) 53-4544

More information

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology.

IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. IC Layout Design of Decoders Using DSCH and Microwind Shaik Fazia Kausar MTech, Dr.K.V.Subba Reddy Institute of Technology. T.Vijay Kumar, M.Tech Associate Professor, Dr.K.V.Subba Reddy Institute of Technology.

More information

Saturated Non Saturated PMOS NMOS CMOS RTL Schottky TTL ECL DTL I I L TTL

Saturated Non Saturated PMOS NMOS CMOS RTL Schottky TTL ECL DTL I I L TTL EC6302-DIGITAL ELECTRONICS UNIT I MINIMIZATION TECHNIQUES AND LOGIC GATES 1. Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets

More information

G. D. Bishop, Electronics II. G. D. Bishop, Electronics III. John G. Ellis, and Norman J. Riches, Safety and Laboratory Practice

G. D. Bishop, Electronics II. G. D. Bishop, Electronics III. John G. Ellis, and Norman J. Riches, Safety and Laboratory Practice DIGITAL TECHNIQUES Macmillan Technician Series P. Astley, Engineering Drawing and Design II P. J. Avard and J. Cross, Workshop Processes and Materials I G. D. Bishop, Electronics II G. D. Bishop, Electronics

More information

CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm

CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm CS/EE 6710 Digital VLSI Design CAD Assignment #3 Due Thursday September 21 st, 5:00pm Overview: In this assignment you will design a register cell. This cell should be a single-bit edge-triggered D-type

More information

IMPACT OF PROCESS VARIATIONS ON SOFT ERROR SENSITIVITY OF 32-NM VLSI CIRCUITS IN NEAR-THRESHOLD REGION. Lingbo Kou. Thesis

IMPACT OF PROCESS VARIATIONS ON SOFT ERROR SENSITIVITY OF 32-NM VLSI CIRCUITS IN NEAR-THRESHOLD REGION. Lingbo Kou. Thesis IMPACT OF PROCESS VARIATIONS ON SOFT ERROR SENSITIVITY OF 32-NM VLSI CIRCUITS IN NEAR-THRESHOLD REGION By Lingbo Kou Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial

More information

Parts of dicing machines for scribing or scoring semiconductor wafers , , , , ,

Parts of dicing machines for scribing or scoring semiconductor wafers , , , , , US-Rev3 26 March 1997 With respect to any product described in or for Attachment B to the Annex to the Ministerial Declaration on Trade in Information Technology Products (WT/MIN(96)/16), to the extent

More information

UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 1. Briefly explain the stream lined method of converting binary to decimal number with example. 2. Give the Gray code for the binary number (111) 2. 3.

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model Norio Matsui Applied Simulation Technology 2025 Gateway Place #318 San Jose, CA USA 95110 matsui@apsimtech.com Neven Orhanovic

More information

Imperial College OF SCIENCE, TECHNOLOGY AND MEDICINE University of London. Digital IC Design Course

Imperial College OF SCIENCE, TECHNOLOGY AND MEDICINE University of London. Digital IC Design Course Scalable CMOS Layout Design Rules Scalable CMOS Layout Design Rules Imperial College OF SCIENCE, TECHNOLOGY AND MEDICINE University of London Department of Electrical & Electronic Engineering Digital IC

More information

Hardware Design I Chap. 5 Memory elements

Hardware Design I Chap. 5 Memory elements Hardware Design I Chap. 5 Memory elements E-mail: shimada@is.naist.jp Why memory is required? To hold data which will be processed with designed hardware (for storage) Main memory, cache, register, and

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation

Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation Harris Introduction to CMOS VLSI Design (E158) Lecture 11: Decoders and Delay Estimation David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University

More information

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME Mr.N.Vetriselvan, Assistant Professor, Dhirajlal Gandhi College of Technology Mr.P.N.Palanisamy,

More information

Explosive growth over years - now dominates applications, still growing

Explosive growth over years - now dominates applications, still growing Digital electronics Explosive growth over 10-20 years - now dominates applications, still growing Why? computing communications: mobile/fixed phones, radio, data links,... other: digital audio, consumer

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes

STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes http://cmp.imag.fr STMicroelectronics Technology offers at CMP: 160nm CMOS: BCD8SP 1994 at CMP 160nm

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 07 July p-issn: IC Layout Design of Decoder Using Electrical VLSI System Design 1.UPENDRA CHARY CHOKKELLA Assistant Professor Electronics & Communication Department, Guru Nanak Institute Of Technology-Ibrahimpatnam (TS)-India

More information

ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL

ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL School of Engineering, University of Guelph Fall 2017 1 Objectives: Start Date: Week #7 2017 Report Due Date: Week #8 2017, in the

More information

Automation in Semiconductor Manufacturing IEDM, San Francisco, 1982 Keynote Speech

Automation in Semiconductor Manufacturing IEDM, San Francisco, 1982 Keynote Speech Automation in Semiconductor Manufacturing IEDM, San Francisco, 1982 Keynote Speech Commentary Alongside ISSCC, IEDM is the most traditional academic conference in the semiconductor field, and it is held

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED)

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) Chapter 2 Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) ---------------------------------------------------------------------------------------------------------------

More information

CS Part 1 1 Dr. Rajesh Subramanyan, 2005

CS Part 1 1 Dr. Rajesh Subramanyan, 2005 CS25 -- Part Dr. Rajesh Subramanyan, 25 Basics Chapter 2 Digital Logic CS25 -- Part 2 Dr. Rajesh Subramanyan, 25 Topics Voltage And Current Transistor Logic Gates Symbols Used For Gates Interconnection

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

Wafer Thinning and Thru-Silicon Vias

Wafer Thinning and Thru-Silicon Vias Wafer Thinning and Thru-Silicon Vias The Path to Wafer Level Packaging jreche@trusi.com Summary A new dry etching technology Atmospheric Downstream Plasma (ADP) Etch Applications to Packaging Wafer Thinning

More information

ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE

ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE ANALYSIS OF POWER REDUCTION IN 2 TO 4 LINE DECODER DESIGN USING GATE DIFFUSION INPUT TECHNIQUE *Pranshu Sharma, **Anjali Sharma * Assistant Professor, Department of ECE AP Goyal Shimla University, Shimla,

More information

Microprocessor System Data Transfer Interface Design: An Expert System Approach Using Signal Timing Behavioral Patterns

Microprocessor System Data Transfer Interface Design: An Expert System Approach Using Signal Timing Behavioral Patterns Microprocessor System Data Transfer Interface Design: An Expert System Approach Using Signal Timing Behavioral Patterns by BENEDIKT THEODOR HUBER MSc, University of Victoria, 1986 BSc, University of Victoria,

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Subject Code: 17320 Model Answer Page 1 of 32 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the Model answer scheme. 2) The model

More information

Digital Principles and Design

Digital Principles and Design Digital Principles and Design Donald D. Givone University at Buffalo The State University of New York Grauu Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota

More information

FPGA Design with VHDL

FPGA Design with VHDL FPGA Design with VHDL Justus-Liebig-Universität Gießen, II. Physikalisches Institut Ming Liu Dr. Sören Lange Prof. Dr. Wolfgang Kühn ming.liu@physik.uni-giessen.de Lecture Digital design basics Basic logic

More information

Current Mode Double Edge Triggered Flip Flop with Enable

Current Mode Double Edge Triggered Flip Flop with Enable Current Mode Double Edge Triggered Flip Flop with Enable Remil Anita.D 1, Jayasanthi.M 2 PG Student, Department of ECE, Karpagam College of Engineering, Coimbatore, India 1 Associate Professor, Department

More information

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall,

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, Sequencing ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2013 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Introduction Sequencing

More information

Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet

Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet Design of a Low Power Four-Bit Binary Counter Using Enhancement Type Mosfet Praween Sinha Department of Electronics & Communication Engineering Maharaja Agrasen Institute Of Technology, Rohini sector -22,

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: VLSI (COURSE CODE: )

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: VLSI (COURSE CODE: ) LSI Course Code 3361104 GUJARAT TECHNOLOGICAL UNIERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: LSI (COURSE CODE:3361103) Diploma Programme in which this course is offered Semester in which

More information