CSE221- Logic Design, Spring 2003

Size: px
Start display at page:

Download "CSE221- Logic Design, Spring 2003"

Transcription

1 EE207: Digital Systems I, Semester I 2003/2004 CHAPTER 3 -ii: Combinational Logic Design Design Procedure, Encoders/Decoders (Sections ) Overview Design Procedure Code Converters Binary Decoders Expansion Circuit implementation Binary Encoders Priority Encoders ( ) 2 (Sections ) 1

2 Combinational Circuit Design Design of a combinational circuit is the development of a circuit from a description of its function. Starts with a problem specification and produces a logic diagram or set of boolean equations that represent the circuit. ( ) 3 Design Procedure 1. Determine the required number of inputs and outputs and assign variables to them. 2. Derive the truth table that defines the required relationship between inputs and outputs. 3. Obtain and simplify the Boolean function (K- maps, algebraic manipulation, CAD tools, ). Consider any design constraints (area, delay, power, available libraries, etc). 4. Draw the logic diagram. 5. Verify the correctness of the design. ( ) 4 (Sections ) 2

3 Design Example Design a combinational circuit with 4 inputs that generates a 1 when the # of 1s equals the # of 0s. Use only 2-input NOR gates ( ) 5 More Examples - Code Converters Code Converters transform/convert information from one code to another: BCD-to-Excess-3 Code Converter Useful in some cases for digital arithmetic BCD-to-Seven-Segment Segment Converter Used to display numeric info on 7 segment displays ( ) 6 (Sections ) 3

4 BCD-to-Excess-3 Code Converter Design a circuit that converts a binary- coded-decimal decimal (BCD) codeword to its corresponding excess-3 codeword. Excess-3 code: Given a decimal digit n,, its corresponding excess-3 codeword (n+3) 2 Example: n=5 n+3= excess-3 n=0 n+3= excess-3 We need 4 input variables (A,B,C,D) and 4 output functions W(A,B,C,D), X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D). ( ) 7 BCD-to-Excess-3 Converter (cont.) The truth table relating the input and output variables is shown below. Note that the outputs for inputs 1010 through 1111 are don't cares s (not shown here). ( ) 8 (Sections ) 4

5 Maps for BCD-to-Excess-3 Code Converter The K-maps for are constructed using the don't care terms ( ) 9 BCD-to-Excess-3 Converter (cont.) ( ) 10 (Sections ) 5

6 Another Code Converter Example: BCD-to-Seven-Segment Segment Converter Seven-segment display: 7 LEDs (light emitting diodes), each one controlled by an input a 1 means on, 0 means off f Display digit 3? g b Set a, b, c, d, g to 1 Set e, f to 0 e c ( ) 11 d BCD-to-Seven-Segment Segment Converter Input is a 4-bit BCD code 4 inputs (w, x, y, z). Output is a 7-bit code (a,b,c,d,e,f,g) that allows for the decimal equivalent to be displayed. a Example: Input: 0000 BCD Output: (a=b=c=d=e=f=1, g=0) ( ) 12 f e g d c b (Sections ) 6

7 BCD-to-Seven-Segment Segment (cont.) Truth Table Digit wxyz abcdefg X X0?? Digit wxyz abcdefg X XXXXXXX 1011 XXXXXXX 1100 XXXXXXX 1101 XXXXXXX 1110 XXXXXXX 1111 XXXXXXX ( ) 13 Decoders A combinational circuit that converts binary information from n coded inputs to a maximum 2 n decoded outputs n-to- 2 n decoder n-to-m decoder, m 2 n Examples: BCD-to-7-segment decoder, where n=4 and m=7 ( ) 14 (Sections ) 7

8 Decoders (cont.) ( ) 15 2-to-4 Decoder ( ) 16 (Sections ) 8

9 2-to-4 Active Low Decoder ( ) 17 3-to-8 Decoder data address ( ) 18 (Sections ) 9

10 3-to-8 Decoder (cont.) Three inputs, A 0, A 1, A 2, are decoded into eight outputs, D 0 through D 7 Each output D i represents one of the minterms of the 3 input variables. D i = 1 when the binary number A 2 A 1 A 0 = i Shorthand: D i = m i The output variables are mutually exclusive; exactly one output has the value 1 at any time, and the other seven are 0. ( ) 19 Implementing Boolean functions using decoders Any combinational circuit can be constructed using decoders and OR gates! Why? Here is an example: Implement a full adder circuit with a decoder and two OR gates. Recall full adder equations, and let X, Y, and Z be the inputs: S(X,Y,Z) = X+Y+Z = m(1,2,4,7) C (X,Y,Z) = m(3, 5, 6, 7). Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder. ( ) 20 (Sections ) 10

11 Implementing a Binary Adder Using a Decoder S(X,Y,Z) = Σm(1,2,4,7) C(X,Y,Z) = Σm(3,5,6,7) ( ) 21 Decoder Expansions Larger decoders can be constructed using a number of smaller ones. -> HIERARCHICAL design! Example: A 6-to-64 decoder can be designed using four 4-to-16 and one 2-to-4 decoders. How? (Hint: Use the 2-to-4 decoder to generate the enable signals to the four 4- to-16 decoders). ( ) 22 (Sections ) 11

12 3-to-8 decoder using two 2-to-4 decoders ( ) 23 4-input tree decoder ( ) 24 (Sections ) 12

13 Encoders An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2 n input lines and n output lines. The output lines generate the binary equivalent of the input line whose value is 1. ( ) 25 Encoders (cont.) ( ) 26 (Sections ) 13

14 Encoder Example Example: 8-to-3 binary encoder (octal-to-binary) A 0 = D 1 + D 3 + D 5 + D 7 A 1 = D 2 + D 3 + D 6 + D 7 A 2 = D 4 + D 5 + D 6 + D 7 ( ) 27 Encoder Example (cont.) ( ) 28 (Sections ) 14

15 Simple Encoder Design Issues There are two ambiguities associated with the design of a simple encoder: 1. Only one input can be active at any given time. If two inputs are active simultaneously, the output produces an undefined combination (for example, if D 3 and D 6 are 1 simultaneously, the output of the encoder will be An output with all 0's can be generated when all the inputs are 0's,or when D 0 is equal to 1. ( ) 29 Priority Encoders Solves the ambiguities mentioned above. Multiple asserted inputs are allowed; one has priority over all others. Separate indication of no asserted inputs. ( ) 30 (Sections ) 15

16 Example: 4-to-2 Priority Encoder Truth Table ( ) 31 4-to-2 Priority Encoder (cont.) The operation of the priority encoder is such that: If two or more inputs are equal to 1 at the same time, the input in the highest- numbered position will take precedence. A valid output indicator,, designated by V, is set to 1 only when one or more inputs are equal to 1. V = D 3 + D 2 + D 1 + D 0 by inspection. ( ) 32 (Sections ) 16

17 Example: 4-to-2 Priority Encoder K-Maps ( ) 33 Example: 4-to-2 Priority Encoder Logic Diagram ( ) 34 (Sections ) 17

18 8-to-3 Priority Encoder ( ) 35 A Matrix of switches = Keypad C0 C1 C2 C F E D 0 A B C R0 R1 R2 R3 ( ) 36 (Sections ) 18

19 Keypad Decoder IC - Encoder COL. 4-bit F E D 0 A B C ROW 4-bit 4-bit Binary (encoded) ( ) 37 Priority Interrupt Encoder Schematic Interrupting Devices Interrupt Encoder Microprocessor Device A Device B Req(1:0) Device C Device D IntRq ( ) 38 (Sections ) 19

20 Priority Encoding - Interrupt Requests Interrupting Device A B C D Req (1:0) IntRq Exercise: Complete this table? ( ) 39 (Sections ) 20

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X 8. Objectives : Experiment (6) Decoders / Encoders To study the basic operation and design of both decoder and encoder circuits. To describe the concept of active low and active-high logic signals. To

More information

Combinational Logic Design

Combinational Logic Design Lab #2 Combinational Logic Design Objective: To introduce the design of some fundamental combinational logic building blocks. Preparation: Read the following experiment and complete the circuits where

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

Contents Circuits... 1

Contents Circuits... 1 Contents Circuits... 1 Categories of Circuits... 1 Description of the operations of circuits... 2 Classification of Combinational Logic... 2 1. Adder... 3 2. Decoder:... 3 Memory Address Decoder... 5 Encoder...

More information

Find the equivalent decimal value for the given value Other number system to decimal ( Sample)

Find the equivalent decimal value for the given value Other number system to decimal ( Sample) VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 65 009 Department of Information Technology Model Exam-II-Question bank PART A (Answer for all Questions) (8 X = 6) K CO Marks Find the equivalent

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

Half-Adders. Ch.5 Summary. Chapter 5. Thomas L. Floyd

Half-Adders. Ch.5 Summary. Chapter 5. Thomas L. Floyd Digital Fundamentals: A Systems Approach Functions of Combinational Logic Chapter 5 Half-Adders Basic rules of binary addition are performed by a half adder, which accepts two binary inputs (A and B) and

More information

NAND/NOR Implementation of Logic Functions

NAND/NOR Implementation of Logic Functions NAND/NOR Implementation of Logic Functions By: Dr. A. D. Johnson Lab Assignment #6 EECS: 1100 Digital Logic Design The University of Toledo 1. Objectives - implementing logic functions expressed in nonstandard

More information

Digital Electronic Circuits Design & Laboratory Guideline

Digital Electronic Circuits Design & Laboratory Guideline D.2. Encoders Often we use diverse peripheral devices such as switches, numeric keypads and more in order to interface the analog world with the digital one and, along with the usage of these devices,

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

Minnesota State College Southeast

Minnesota State College Southeast ELEC 2211: Digital Electronics II A. COURSE DESCRIPTION Credits: 4 Lecture Hours/Week: 2 Lab Hours/Week: 4 OJT Hours/Week: *.* Prerequisites: None Corequisites: None MnTC Goals: None Minnesota State College

More information

PURBANCHAL UNIVERSITY

PURBANCHAL UNIVERSITY [c] Implement a full adder circuit with a decoder and two OR gates. [4] III SEMESTER FINAL EXAMINATION-2006 Q. [4] [a] What is flip flop? Explain flip flop operating characteristics. [6] [b] Design and

More information

Code No: A R09 Set No. 2

Code No: A R09 Set No. 2 Code No: A109210503 R09 Set No. 2 II B.Tech I Semester Examinations,November 2010 DIGITAL LOGIC DESIGN Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer any FIVE Questions All Questions

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICL INSTITUTE ECE 270 Experiment #8 DIGITL CIRCUITS Prelab 1. Draw the truth table for the S-R Flip-Flop as shown in the textbook. Draw the truth table for Figure 7. 2.

More information

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital Logic Full Marks: 60 + 0 + 0 Course No.: CSC Pass Marks:

More information

St. MARTIN S ENGINEERING COLLEGE

St. MARTIN S ENGINEERING COLLEGE St. MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electronics and Communication Engineering : II B. Tech I Semester : SWITCHING THEORY AND LOGIC

More information

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7).

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7). VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Academic Year: 2015-16 BANK - EVEN SEMESTER UNIT I PART-A 1 Find the octal equivalent of hexadecimal

More information

Department of Computer Science and Engineering Question Bank- Even Semester:

Department of Computer Science and Engineering Question Bank- Even Semester: Department of Computer Science and Engineering Question Bank- Even Semester: 2014-2015 CS6201& DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to IT & CSE, Regulation 2013) UNIT-I 1. Convert the following

More information

SUBJECT NAME : DIGITAL ELECTRONICS SUBJECT CODE : EC8392 1. State Demorgan s Theorem. QUESTION BANK PART A UNIT - I DIGITAL FUNDAMENTALS De Morgan suggested two theorems that form important part of Boolean

More information

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No.

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No. 6.1.2 Sample Test Papers: Sample Test Paper 1 Roll No. Institute Name: Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/ET/IU Subject: Principles of Digital Techniques Marks: 25 1 Hour 1. All questions are

More information

AC103/AT103 ANALOG & DIGITAL ELECTRONICS JUN 2015

AC103/AT103 ANALOG & DIGITAL ELECTRONICS JUN 2015 Q.2 a. Draw and explain the V-I characteristics (forward and reverse biasing) of a pn junction. (8) Please refer Page No 14-17 I.J.Nagrath Electronic Devices and Circuits 5th Edition. b. Draw and explain

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

Chapter 3. Boolean Algebra and Digital Logic

Chapter 3. Boolean Algebra and Digital Logic Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

More information

Chapter 8 Functions of Combinational Logic

Chapter 8 Functions of Combinational Logic ETEC 23 Programmable Logic Devices Chapter 8 Functions of Combinational Logic Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Basic Adders

More information

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Department of CSIT Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Section A: (All 10 questions compulsory) 10X1=10 Very Short Answer Questions: Write

More information

ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL

ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL ENGG2410: Digital Design Lab 5: Modular Designs and Hierarchy Using VHDL School of Engineering, University of Guelph Fall 2017 1 Objectives: Start Date: Week #7 2017 Report Due Date: Week #8 2017, in the

More information

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers.

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. Digital computer is a digital system that performs various computational tasks. The word DIGITAL

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Keyboard Encoder Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true.

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true. EXPERIMENT: 1 DATE: VERIFICATION OF BASIC LOGIC GATES AIM: To verify the truth tables of Basic Logic Gates NOT, OR, AND, NAND, NOR, Ex-OR and Ex-NOR. APPARATUS: mention the required IC numbers, Connecting

More information

COMPUTER ENGINEERING PROGRAM

COMPUTER ENGINEERING PROGRAM COMPUTER ENGINEERING PROGRAM California Polytechnic State University CPE 169 Experiment 6 Introduction to Digital System Design: Combinational Building Blocks Learning Objectives 1. Digital Design To understand

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING Course Name INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK : SWITCHING THEORY AND LOGIC DESISN Course Code : A40407

More information

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100 MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2016 CS 203: Switching Theory and Logic Design Time: 3 Hrs Marks: 100 PART A ( Answer All Questions Each carries 3 Marks )

More information

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B)

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B) Where Are We Now? Chapter 1: computer systems overview and computer performance Chapter 2: ISA (machine-spoken language), different formats, and various instructions Chapter 3: We will learn how those

More information

FUNCTIONS OF COMBINATIONAL LOGIC

FUNCTIONS OF COMBINATIONAL LOGIC FUNCTIONS OF COMBINATIONAL LOGIC Agenda Adders Comparators Decoders Encoders Multiplexers Demultiplexers Adders Basic Adders Adders are important in computers other types of digital systems in which numerical

More information

4:1 Mux Symbol 4:1 Mux Circuit

4:1 Mux Symbol 4:1 Mux Circuit Exercise 6: Combinational Circuit Blocks Revision: October 20, 2009 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax STUDT I am submitting my own work, and I understand penalties will

More information

The word digital implies information in computers is represented by variables that take a limited number of discrete values.

The word digital implies information in computers is represented by variables that take a limited number of discrete values. Class Overview Cover hardware operation of digital computers. First, consider the various digital components used in the organization and design. Second, go through the necessary steps to design a basic

More information

Semester III. Subject Name: Digital Electronics. Subject Code: 09CT0301. Diploma Branches in which this subject is offered: Computer Engineering

Semester III. Subject Name: Digital Electronics. Subject Code: 09CT0301. Diploma Branches in which this subject is offered: Computer Engineering Semester III Subject Name: Digital Electronics Subject Code: 09CT0301 Diploma Branches in which this subject is offered: Objective: The subject aims to prepare the students, To understand the basic of

More information

Encoders and Decoders: Details and Design Issues

Encoders and Decoders: Details and Design Issues Encoders and Decoders: Details and Design Issues Edward L. Bosworth, Ph.D. TSYS School of Computer Science Columbus State University Columbus, GA 31907 bosworth_edward@colstate.edu Slide 1 of 25 slides

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION Spring 2012 Question No: 1 ( Marks: 1 ) - Please choose one A SOP expression is equal to 1

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

North Shore Community College

North Shore Community College North Shore Community College Course Number: IEL217 Section: MAL Course Name: Digital Electronics 1 Semester: Credit: 4 Hours: Three hours of Lecture, Two hours Laboratory per week Thursdays 8:00am (See

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 1. Briefly explain the stream lined method of converting binary to decimal number with example. 2. Give the Gray code for the binary number (111) 2. 3.

More information

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS)

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) 1. Convert Binary number (111101100) 2 to Octal equivalent. 2. Convert Binary (1101100010011011) 2 to Hexadecimal equivalent. 3. Simplify the following Boolean function

More information

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW QUICK GUIDE http://www.tutorialspoint.com/computer_logical_organization/computer_logical_organization_quick_guide.htm COMPUTER LOGICAL ORGANIZATION - OVERVIEW Copyright tutorialspoint.com In the modern

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 37 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 0 Office Hours: BKD 360-7 Monday 9:00-0:30, :30-3:30 Tuesday 0:30-:30 Announcement HW4 posted on the course web site Chapter 5:

More information

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output ECE 201 - Lab 5 MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output PURPOSE To familiarize students with Medium Scale Integration (MSI) technology, specifically adders. The student should also

More information

Chapter 9 MSI Logic Circuits

Chapter 9 MSI Logic Circuits Chapter 9 MSI Logic Circuits Chapter 9 Objectives Selected areas covered in this chapter: Analyzing/using decoders & encoders in circuits. Advantages and disadvantages of LEDs and LCDs. Observation/analysis

More information

Combinational / Sequential Logic

Combinational / Sequential Logic Digital Circuit Design and Language Combinational / Sequential Logic Chang, Ik Joon Kyunghee University Combinational Logic + The outputs are determined by the present inputs + Consist of input/output

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/20 Disclaimer The contents of the slides

More information

A.R. ENGINEERING COLLEGE, VILLUPURAM ECE DEPARTMENT

A.R. ENGINEERING COLLEGE, VILLUPURAM ECE DEPARTMENT .R. ENGINEERING COLLEGE, VILLUPURM ECE EPRTMENT QUESTION BNK SUB. NME: IGITL ELECTRONICS SUB. COE: EC223 SEM: III BRNCH/YER: ECE/II UNIT-I MINIMIZTION TECHNIQUESN LOGIC GTES PRT- ) efine Minterm & Maxterm.

More information

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic COURSE TITLE : DIGITAL INSTRUMENTS PRINCIPLE COURSE CODE : 3075 COURSE CATEGORY : B PERIODS/WEEK : 4 PERIODS/SEMESTER : 72 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Number system & Boolean algebra

More information

Prepared By Verified By Approved By Mr M.Kumar Mrs R.Punithavathi Dr. V.Parthasarathy Asst. Professor / IT HOD / IT Principal

Prepared By Verified By Approved By Mr M.Kumar Mrs R.Punithavathi Dr. V.Parthasarathy Asst. Professor / IT HOD / IT Principal DEPARTMENT OF INFORMATION TECHNOLOGY Question Bank Subject Name : Digital Principles and System Design Year / Sem : II Year / III Sem Batch : 2011 2015 Name of the Staff : Mr M.Kumar AP / IT Prepared By

More information

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Unit I Number system, Binary, decimal, octal, hexadecimal-conversion from one another-binary addition, subtraction, multiplication, division-binary

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design E.g. Port A, Port B Used to interface with many devices Switches LEDs LCD Keypads Relays Stepper Motors Interface with digital IO requires us to connect the devices correctly and write code to interface

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

THE KENYA POLYTECHNIC

THE KENYA POLYTECHNIC THE KENYA POLYTECHNIC ELECTRICAL/ELECTRONICS ENGINEERING DEPARTMENT HIGHER DIPLOMA IN ELECTRICAL ENGINEERING END OF YEAR II EXAMINATIONS NOVEMBER 006 DIGITAL ELECTRONICS 3 HOURS INSTRUCTIONS TO CANDIDATES:

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC)

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) 1 TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) Q.1 The flip-flip circuit is. a) Unstable b) multistable c) Monostable d) bitable Q.2 A digital counter consists of a group of a) Flip-flop b) half adders c)

More information

Chapter 5 Sequential Circuits

Chapter 5 Sequential Circuits Logic and Computer Design Fundamentals Chapter 5 Sequential Circuits Part 2 Sequential Circuit Design Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1 DAY MODU LE TOPIC QUESTIONS Day 1 Day 2 Day 3 Day 4 I Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation Phase Shift Wein Bridge oscillators.

More information

LORDS INSTITUTE OF ENGINEERING & TECHNOLOGY

LORDS INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Digital Electronics 1. Define binary logic? Part - A Unit 1 Binary logic consists of binary variables and logical operations. The variables are designated by the

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Theory Lecture Day Topic Practical Day. Week. number systems and their inter-conversion Decimal, Binary. 3rd. 1st. 1st

Theory Lecture Day Topic Practical Day. Week. number systems and their inter-conversion Decimal, Binary. 3rd. 1st. 1st Lesson Plan Name of the Faculty : Priyanka Nain Discipline: Electronics & Communication Engg. Semester:5th Subject:DEMP Lesson Plan Duration: 15 Weeks Work Load(Lecture/Practical) per week (In Hours):

More information

CS 61C: Great Ideas in Computer Architecture

CS 61C: Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture Combinational and Sequential Logic, Boolean Algebra Instructor: Alan Christopher 7/23/24 Summer 24 -- Lecture #8 Review of Last Lecture OpenMP as simple parallel

More information

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED: Electrical and Telecommunications Engineering Technology TCET 3122/TC

More information

Course Plan. Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) PSO-1 PSO-2

Course Plan. Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) PSO-1 PSO-2 Course Plan Semester: 4 - Semester Year: 2019 Course Title: DIGITAL ELECTRONICS Course Code: EC106 Semester End Examination: 70 Continuous Internal Evaluation: 30 Lesson Plan Author: Ms. CH SRIDEVI Last

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

4.S-[F] SU-02 June All Syllabus Science Faculty B.Sc. II Yr. Instrumentation Practice [Sem.III & IV] S.Lot

4.S-[F] SU-02 June All Syllabus Science Faculty B.Sc. II Yr. Instrumentation Practice [Sem.III & IV] S.Lot [Sem.III & IV] S.Lot. - 1 - [Sem.III & IV] S.Lot. - 2 - [Sem.III & IV] S.Lot. - 3 - Syllabus B.Sc. ( Instrumentation Practice ) Second Year ( Third and Forth Semester ) ( Effective from June 2014 ) [Sem.III

More information

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University 1 Digital Circuits Electrical & Computer Engineering Department (ECED) Course Notes ECED2200 2 Table of Contents Digital Circuits... 7 Logic Gates... 8 AND Gate... 8 OR Gate... 9 NOT Gate... 10 NOR Gate...

More information

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 2065 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 Time: 3 hours. Candidates are required to give their answers in their own words as for as practicable. Attempt any TWO questions:

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Section 6.8 Synthesis of Sequential Logic Page 1 of 8

Section 6.8 Synthesis of Sequential Logic Page 1 of 8 Section 6.8 Synthesis of Sequential Logic Page of 8 6.8 Synthesis of Sequential Logic Steps:. Given a description (usually in words), develop the state diagram. 2. Convert the state diagram to a next-state

More information

Department of Electrical Engineering University of Hail Ha il - Saudi Arabia

Department of Electrical Engineering University of Hail Ha il - Saudi Arabia Department of Electrical Engineering University of Hail Ha il - Saudi Arabia Laboratory Manual EE 200 Digital Logic Circuit Design October 2017 1 PREFACE This document is prepared to serve as a laboratory

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

A Review of logic design

A Review of logic design Chapter 1 A Review of logic design 1.1 Boolean Algebra Despite the complexity of modern-day digital circuits, the fundamental principles upon which they are based are surprisingly simple. Boolean Algebra

More information

CHAPTER 4 RESULTS & DISCUSSION

CHAPTER 4 RESULTS & DISCUSSION CHAPTER 4 RESULTS & DISCUSSION 3.2 Introduction This project aims to prove that Modified Baugh-Wooley Two s Complement Signed Multiplier is one of the high speed multipliers. The schematic of the multiplier

More information

LAB 3 Verilog for Combinational Circuits

LAB 3 Verilog for Combinational Circuits Goals To Do LAB 3 Verilog for Combinational Circuits Learn how to implement combinational circuits using Verilog. Design and implement a simple circuit that controls the 7-segment display to show a 4-bit

More information

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau,

WELCOME. ECE 2030: Introduction to Computer Engineering* Richard M. Dansereau Copyright by R.M. Dansereau, CHAPTER I- CHAPTER I WELCOME TO ECE 23: Introduction to Computer Engineering* Richard M. Dansereau rdanse@pobox.com Copyright by R.M. Dansereau, 2-2 * ELEMENTS OF NOTES AFTER W. KINSNER, UNIVERSITY OF

More information

Engineering College. Electrical Engineering Department. Digital Electronics Lab

Engineering College. Electrical Engineering Department. Digital Electronics Lab Engineering College Electrical Engineering Department Digital Electronics Lab Prepared by: Dr. Samer Mayaleh Eng. Nuha Odeh 2009/2010-1 - CONTENTS Experiment Name Page 1- Measurement of Basic Logic Gates

More information

LESSON PLAN. Sub Code: EE2255 Sub Name: DIGITAL LOGIC CIRCUITS Unit: I Branch: EEE Semester: IV

LESSON PLAN. Sub Code: EE2255 Sub Name: DIGITAL LOGIC CIRCUITS Unit: I Branch: EEE Semester: IV Unit: I Branch: EEE Semester: IV Page 1 of 6 Unit I Syllabus: BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS 9 Boolean algebra: De-Morgan s theorem, switching functions and simplification using K-maps & Quine

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

gate symbols will appear in schematic Dierent of a circuit. Standard gate symbols have been diagram Figures 5-3 and 5-4 show standard shapes introduce

gate symbols will appear in schematic Dierent of a circuit. Standard gate symbols have been diagram Figures 5-3 and 5-4 show standard shapes introduce chapter is concerned with examples of basic This circuits including decoders, combinational xor gate and parity circuits, multiplexers, comparators, adders. Those basic building circuits frequently and

More information

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1.

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1. [Question 1 is compulsory] 1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. Figure 1.1 b) Minimize the following Boolean functions:

More information

[2 credit course- 3 hours per week]

[2 credit course- 3 hours per week] Syllabus of Applied Electronics for F Y B Sc Semester- 1 (With effect from June 2012) PAPER I: Components and Devices [2 credit course- 3 hours per week] Unit- I : CIRCUIT THEORY [10 Hrs] Introduction;

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

2 Marks Q&A. Digital Electronics. K. Michael Mahesh M.E.,MIET. Asst. Prof/ECE Dept.

2 Marks Q&A. Digital Electronics. K. Michael Mahesh M.E.,MIET. Asst. Prof/ECE Dept. 2 Marks Q&A Digital Electronics 3rd SEM CSE & IT ST. JOSEPH COLLEGE OF ENGINEERING (DMI & MMI GROUP OF INSTITUTIONS) CHENNAI- 600 117 K. Michael Mahesh M.E.,MIET. Asst. Prof/ECE Dept. K. Michael Mahesh

More information

Midterm Examination II

Midterm Examination II Midterm Examination II EE 203 - Digital Systems DESIGN (Fall 2015) MEF University Instructions Assigned: 6:30pm on December 17, 2015. Due: 8:00pm on December 17, 2015. Instructor: Şuayb Ş. Arslan. Name:

More information

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem.

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State Reduction The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興國立高雄大學資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error

More information

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Aim To investigate the basic digital circuit building blocks constructed from combinatorial logic or dedicated Integrated

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics by Agner Fog, 2018-10-15. Contents 1. Number systems... 3 1.1. Decimal, binary, and hexadecimal numbers... 3 1.2. Conversion from another number system to decimal...

More information

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition DIGITAL LOGIC DESIGN DIGITAL LOGIC DESIGN Press No: 42 Second Edition Qafqaz University Press Bakı - 2010 Ministry of Education of Azerbaijan Republic Institute of Educational Problems Çağ Educational

More information