CpE358/CS381. Switching Theory and Logical Design. Class 3

Size: px
Start display at page:

Download "CpE358/CS381. Switching Theory and Logical Design. Class 3"

Transcription

1 Switching Theor and Logical Design Class 3 Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -85

2 Toda Fundamental concepts of digital sstems (Mano Chapter ) Binar codes, number sstems, and arithmetic (Ch ) Boolean algebra (Ch 2) Simplification of switching equations (Ch 3) Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch ) Combinatoric logical design including LSI implementation (Chapter 4) Haards, Races, and time related issues in digital design (Ch 9) Flip-flops and state memor elements (Ch 5) Sequential logic analsis and design (Ch 5) Snchronous vs. asnchronous design (Ch 9) Counters, shift register circuits (Ch 6) Memor and Programmable logic (Ch 7) Minimiation of sequential sstems Introduction to Finite Automata Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -86

3 Boolean Functions in Terms of Minterms A logical function is TRUE if an of it s minterms are true: m m 4 m 7 F(,,) = Σ(,4,7) = + + = m + m 4 + m 7 Algebraic manipulation of the literal epression of the function is one wa to minimie it, manipulation of minterms is another Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -87

4 Two Variable Minterm Map Represent Boolean functions in terms of minterms in a Karnaugh map: m m m 2 m 3 Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -88

5 Two Variable Minterm Map Represent Boolean functions in terms of a Karnaugh map: m m m 2 m 3 Consider the XOR function F(, ) = = ' + ' = m + m 2 Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -89

6 Two Variable Minterm Map Represent Boolean functions in terms of a Karnaugh map: m m m 2 m 3 Consider the XOR function F(, ) = = ' + ' = m + m 2 Set the non-asserted minterms to ero Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -9

7 Minimiing Function of Two Variables F(, ) = ' + = m + m = ( ' + ) 2 3 = Covering adjacent minterms with a single region defines the variables needed to represent the function Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -9

8 Minimiing Function of Three Variables m m m 3 m 2 m 4 m 5 m 7 m 6 Minterms are numbered in Gra code order adjacent minterms differ in onl one variable If the function is asserted (i.e., TRUE) for both of these adjacent minterms, then the terms defined b those minterms do not depend on the variable that is changing between them Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -92

9 Three Variable Map m m m 3 m 2 m 4 m 5 m 7 m 6 Consider F(,,)=Σ(,3,7) F(,, ) = m + m + m 3 7 F(,, ) = = = = ' ' + ' + ' ' + ' + ' + '( ' + ) + ( ' + ) ' + Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -93

10 Three Variable Map m m m 3 m 2 m 4 m 5 m 7 m 6 Observations: All minterms must be covered Number of variables defining a sum term inversel proportional to number of minterms covered Number of sum terms required to define function equal to number of separate regions Maimie region sie Minimie number of regions Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -94

11 Three Variable Map For a 3-variable map: Covering 4 minterms with one 4-minterm region defines the function in terms of a single variable Covering the same 4 minterms with 2 2- minterm regions defines the function in terms of two terms, each requiring two variables. Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -95

12 Three Variable Map Adjacenc sometimes eists in subtle was: These four minterms are obviousl adjacent to each other. Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -96

13 Three Variable Map Adjacenc sometimes eists in subtle was: These four minterms are obviousl adjacent to each other. But so are these, if we consider the map to wrap around on itself Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -97

14 Four Variable Map w m m m 3 m 2 w w w w m 4 m 5 m 7 m 6 w w w w m 2 m 3 m 8 m 9 m 5 m 4 m m w w w w w w w w w The 4-variable map etends the concept of the 2- and 3-variable map Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -98

15 Minimiing Four Variable Map w m m m 3 m 2 m 4 m 5 m 7 m 6 m 2 m 3 m 8 m 9 m 5 m 4 m m w Minimie F(w,,,)=Σ(,2,3,5,7,8,,,3,5) F(w,,,)=+ + Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -99

16 Five Variable Map w w m m m 3 m 2 m 6 m 7 m 9 m 8 m 4 m 5 m 7 m 6 m 2 m 2 m 23 m 22 m 2 m 3 m 5 m 4 m 28 m 29 m 3 m 3 w w m 8 m 9 m m m 24 m 25 m 27 m 26 v= v= 5-variable map is etension of 4-variable map, adjacenc must be considered between pairs of 4-variable maps Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -

17 Minimiing Five Variable Map w w v w w v= w v= Minimie F(v,w,,,)=Σ(,8,9,,6,7,24,25,27,29,3) F(v,w,,,)=w+ +v Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -

18 Si Variable Map Keeping track of what minterms are adjacent becomes tedious Ensuring the maimum coverage for each term is challenging w m m m 4 m 5 m 2 m 3 m 8 m 9 w m 3 m 2 u= m 7 m 6 m 5 m 4 m m w m 32 m 33 m 36 m 37 m 44 m 45 m 4 m 4 m 35 m 34 m 39 m 38 m 47 m 46 m 43 m 42 w 6-variable maps usable, but perhaps the design needs to be modularied instead w v= v= w m m m 3 m 2 u= m 48 m 49 m 5 m 5 m 4 m 5 m 2 m 3 m 7 m 6 m 5 m 4 m 52 m 53 m 6 m 6 m 55 m 54 m 63 m 62 m 8 m 9 m m w m 56 m 57 m 59 m 58 w Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -2

19 Product of Sums Covering s Instead of s A function of N variables, F(v,v 2,,v N ), can be represented b a Karnaugh map with 2 N cells. (v,v 2,,v N ) = (,, ), (,, ),, (,,,) F( ), and it s Karnaugh map have K minterms ( s) and 2 N -K materms ( s) If K > 2 N -K, it might be easier to cover the materms rather than the minterms. E.g.: w w v= v= Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -3

20 Product of Sums Covering s Instead of s w w w w v= v= F(v,w,,,) has 4 terms F(v,w,,,) = w + w + vw +w v= v= F(v,w,,,) has 7 terms F(v,w,,,) = w + + v + + w + w + w Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -4

21 Don t Care Conditions Sometimes, not all possible output values are specified in sstem design, e.g.: Calculator, Clock, or Counter Circuit w=8 =4 =2 = f a e g b d c BCD data 7 segment LCD Consider the horiontal line in the middle of the displa (segment g): F g (w,,,)=σ(2,3,4,5,6,8,9), but we don t care what happens to minterms,, 2, 3, 4, or 5, since the displa will not be sent those states Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -5

22 Don t Care Conditions w\ w\ X X X X X X X X X X X X F(w,,,) = w F (w,,,) = w + We are free to assign whatever values we want to for minterms,, 2, 3, 4, and 5. Assign them a value X to indicate the ma be covered, or not, whichever results in the simplest epression Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -6

23 Logical Completeness. AND, OR, NOT can implement an Boolean function The form a Logicall Complete set of operators Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -7

24 Logical Completeness. AND, OR, NOT can implement an Boolean function The form a Logicall Complete set of operators 2. NAND can implement AND and NOT directl: NOT = AND = Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -8

25 Logical Completeness. AND, OR, NOT can implement an Boolean function The form a Logicall Complete set of operators 2. NAND can implement AND and NOT directl: NOT = AND = 3. NAND can implement OR b DeMorgan s Law: = = NAND is logicall complete (so is NOR) Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -9

26 NAND Implementation of Sum of Products Consider an arbitrar Sum of Products: m A m B Σ(A,B,C) m C Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -

27 NAND Implementation of Sum of Products Consider an arbitrar Sum of Products: Add inversions at each term. This is allowed, since ( ) = m A m B Σ(A,B,C) m C Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -

28 NAND Implementation of Sum of Products Consider an arbitrar Sum of Products: Add inversions at each term. This is allowed, since ( ) = Convert output gate b DeMorgan s Law: m A m B Σ(A,B,C) m C Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -2

29 Wired-AND and Open Collector Tpical TTL totem-pole output circuit: +V +V I I out out I I TTL with Open Collector output circuit Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -3

30 Wired-AND and Open Collector Each gate asserts -output with no pull-up transistor, no gate can cause output to become. Eternal pull-up resistor needed Used for wiring multiple devices together on bus, but speed is limited +V +V +V +V Pull-up resistor Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -4

31 XOR Function Eclusive OR (XOR) = ' i + i ' w = (( w ) ) = ( w ) ( ) XOR applications: Addition, parit, data scramblers, encrption, shift register sequences Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -5

32 N-input XOR w = (( w ) ) = ( w ) ( ) These three designs are all logicall equivalent (for static signals) Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -6

33 Hard To Minimie Functions Consider this map: w w v= v= Isolated minterms cannot be grouped Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -7

34 Hard To Minimie Functions Consider this map: w w Cover part of the map with XOR Treat the rest normall F( v, w,,, ) = ( w')' i( v w ) + w' ' ' + w' v= v= Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -8

35 Hard To Minimie Functions Consider this map: w w Cover part of the map with XOR Treat the rest normall F( v, w,,, ) = ( w')' i( v w ) + w' ' ' + w' v= v= Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -9

36 Summar Fundamental concepts of digital sstems (Mano Chapter ) Binar codes, number sstems, and arithmetic (Ch ) Boolean algebra (Ch 2) Simplification of switching equations (Ch 3) Digital device characteristics (e.g., TTL, CMOS)/design considerations (Ch ) Combinatoric logical design including LSI implementation (Chapter 4) Haards, Races, and time related issues in digital design (Ch 9) Flip-flops and state memor elements (Ch 5) Sequential logic analsis and design (Ch 5) Snchronous vs. asnchronous design (Ch 9) Counters, shift register circuits (Ch 6) Memor and Programmable logic (Ch 7) Minimiation of sequential sstems Introduction to Finite Automata Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -2

37 Homework 3 due in Class 5 As alwas, show all work: Problems 3-5, 3-7, 3-8. Design a BCD to seven segment decoder for an 2 of the 6 segments (a-f) we did not discuss in class. Switching Theor and Logical Design Copright 24 Stevens Institute of Technolog -2

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

The word digital implies information in computers is represented by variables that take a limited number of discrete values.

The word digital implies information in computers is represented by variables that take a limited number of discrete values. Class Overview Cover hardware operation of digital computers. First, consider the various digital components used in the organization and design. Second, go through the necessary steps to design a basic

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout =

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout = 1 Review of Digital Logic Design Fundamentals Logic circuits: 1. Combinational Logic: No memory, present output depends only on the present input 2. Sequential Logic: Has memory, present output depends

More information

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true.

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true. EXPERIMENT: 1 DATE: VERIFICATION OF BASIC LOGIC GATES AIM: To verify the truth tables of Basic Logic Gates NOT, OR, AND, NAND, NOR, Ex-OR and Ex-NOR. APPARATUS: mention the required IC numbers, Connecting

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

6.3 Sequential Circuits (plus a few Combinational)

6.3 Sequential Circuits (plus a few Combinational) 6.3 Sequential Circuits (plus a few Combinational) Logic Gates: Fundamental Building Blocks Introduction to Computer Science Robert Sedgewick and Kevin Wayne Copyright 2005 http://www.cs.princeton.edu/introcs

More information

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B)

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B) Where Are We Now? Chapter 1: computer systems overview and computer performance Chapter 2: ISA (machine-spoken language), different formats, and various instructions Chapter 3: We will learn how those

More information

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic COURSE TITLE : DIGITAL INSTRUMENTS PRINCIPLE COURSE CODE : 3075 COURSE CATEGORY : B PERIODS/WEEK : 4 PERIODS/SEMESTER : 72 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Number system & Boolean algebra

More information

Find the equivalent decimal value for the given value Other number system to decimal ( Sample)

Find the equivalent decimal value for the given value Other number system to decimal ( Sample) VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 65 009 Department of Information Technology Model Exam-II-Question bank PART A (Answer for all Questions) (8 X = 6) K CO Marks Find the equivalent

More information

Chapter 3. Boolean Algebra and Digital Logic

Chapter 3. Boolean Algebra and Digital Logic Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

North Shore Community College

North Shore Community College North Shore Community College Course Number: IEL217 Section: MAL Course Name: Digital Electronics 1 Semester: Credit: 4 Hours: Three hours of Lecture, Two hours Laboratory per week Thursdays 8:00am (See

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

Contents Circuits... 1

Contents Circuits... 1 Contents Circuits... 1 Categories of Circuits... 1 Description of the operations of circuits... 2 Classification of Combinational Logic... 2 1. Adder... 3 2. Decoder:... 3 Memory Address Decoder... 5 Encoder...

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

St. MARTIN S ENGINEERING COLLEGE

St. MARTIN S ENGINEERING COLLEGE St. MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electronics and Communication Engineering : II B. Tech I Semester : SWITCHING THEORY AND LOGIC

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

6.1 Combinational Circuits

6.1 Combinational Circuits 6. Combinational Circuits Digital signals Binar (or logical ) values: or, on or off, high or low voltage Wires. Propagate logical values from place to place. ignals "flow" from left to right. ignals and

More information

Laboratory Objectives and outcomes for Digital Design Lab

Laboratory Objectives and outcomes for Digital Design Lab Class: SE Department of Information Technology Subject Logic Design Sem : III Course Objectives and outcomes for LD Course Objectives: Students will try to : COB1 Understand concept of various components.

More information

Minnesota State College Southeast

Minnesota State College Southeast ELEC 2211: Digital Electronics II A. COURSE DESCRIPTION Credits: 4 Lecture Hours/Week: 2 Lab Hours/Week: 4 OJT Hours/Week: *.* Prerequisites: None Corequisites: None MnTC Goals: None Minnesota State College

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

Course Plan. Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) PSO-1 PSO-2

Course Plan. Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) PSO-1 PSO-2 Course Plan Semester: 4 - Semester Year: 2019 Course Title: DIGITAL ELECTRONICS Course Code: EC106 Semester End Examination: 70 Continuous Internal Evaluation: 30 Lesson Plan Author: Ms. CH SRIDEVI Last

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

REPEAT EXAMINATIONS 2002

REPEAT EXAMINATIONS 2002 REPEAT EXAMINATIONS 2002 EE101 Digital Electronics Solutions Question 1. An engine has 4 fail-safe sensors. The engine should keep running unless any of the following conditions arise: o If sensor 2 is

More information

Section 6.8 Synthesis of Sequential Logic Page 1 of 8

Section 6.8 Synthesis of Sequential Logic Page 1 of 8 Section 6.8 Synthesis of Sequential Logic Page of 8 6.8 Synthesis of Sequential Logic Steps:. Given a description (usually in words), develop the state diagram. 2. Convert the state diagram to a next-state

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Department of CSIT Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Section A: (All 10 questions compulsory) 10X1=10 Very Short Answer Questions: Write

More information

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital Logic Full Marks: 60 + 0 + 0 Course No.: CSC Pass Marks:

More information

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7).

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7). VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Academic Year: 2015-16 BANK - EVEN SEMESTER UNIT I PART-A 1 Find the octal equivalent of hexadecimal

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

Department of Computer Science and Engineering Question Bank- Even Semester:

Department of Computer Science and Engineering Question Bank- Even Semester: Department of Computer Science and Engineering Question Bank- Even Semester: 2014-2015 CS6201& DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to IT & CSE, Regulation 2013) UNIT-I 1. Convert the following

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING Course Name INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK : SWITCHING THEORY AND LOGIC DESISN Course Code : A40407

More information

CS 61C: Great Ideas in Computer Architecture

CS 61C: Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture Combinational and Sequential Logic, Boolean Algebra Instructor: Alan Christopher 7/23/24 Summer 24 -- Lecture #8 Review of Last Lecture OpenMP as simple parallel

More information

UNIVERSITY OF MASSACHUSSETS LOWELL Department of Electrical & Computer Engineering Course Syllabus for Logic Design Fall 2013

UNIVERSITY OF MASSACHUSSETS LOWELL Department of Electrical & Computer Engineering Course Syllabus for Logic Design Fall 2013 UNIVERSITY OF MASSACHUSSETS LOWELL Department of Electrical & Computer Engineering Course Syllabus for 16.265 Logic Design Fall 2013 I. General Information Section 201 Instructor: Professor Anh Tran Office

More information

Logic. Andrew Mark Allen March 4, 2012

Logic. Andrew Mark Allen March 4, 2012 Logic Andrew Mark Allen - 05370299 March 4, 2012 Abstract NAND gates and inverters were used to construct several different logic gates whose operations were investigate under various inputs. Then the

More information

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1.

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1. [Question 1 is compulsory] 1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. Figure 1.1 b) Minimize the following Boolean functions:

More information

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1

MODU LE DAY. Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation. Day 1 DAY MODU LE TOPIC QUESTIONS Day 1 Day 2 Day 3 Day 4 I Class-A, B, AB and C amplifiers - basic concepts, power, efficiency Basic concepts of Feedback and Oscillation Phase Shift Wein Bridge oscillators.

More information

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University

Digital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University 1 Digital Circuits Electrical & Computer Engineering Department (ECED) Course Notes ECED2200 2 Table of Contents Digital Circuits... 7 Logic Gates... 8 AND Gate... 8 OR Gate... 9 NOT Gate... 10 NOR Gate...

More information

LESSON PLAN. Sub Code: EE2255 Sub Name: DIGITAL LOGIC CIRCUITS Unit: I Branch: EEE Semester: IV

LESSON PLAN. Sub Code: EE2255 Sub Name: DIGITAL LOGIC CIRCUITS Unit: I Branch: EEE Semester: IV Unit: I Branch: EEE Semester: IV Page 1 of 6 Unit I Syllabus: BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS 9 Boolean algebra: De-Morgan s theorem, switching functions and simplification using K-maps & Quine

More information

Digital Electronic Circuits and Systems

Digital Electronic Circuits and Systems Digital Electronic Circuits and Systems Macmillan Basis Books in Electronics General Editor: Noel M. Morris, Principal Lecturer, North Staffordshire Polytechnic LINEAR ELECTRONIC CIRCUITS AND SYSTEMS:

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

Software Engineering 2DA4. Slides 3: Optimized Implementation of Logic Functions

Software Engineering 2DA4. Slides 3: Optimized Implementation of Logic Functions Software Engineering 2DA4 Slides 3: Optimized Implementation of Logic Functions Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals

More information

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100 MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2016 CS 203: Switching Theory and Logic Design Time: 3 Hrs Marks: 100 PART A ( Answer All Questions Each carries 3 Marks )

More information

Encoders and Decoders: Details and Design Issues

Encoders and Decoders: Details and Design Issues Encoders and Decoders: Details and Design Issues Edward L. Bosworth, Ph.D. TSYS School of Computer Science Columbus State University Columbus, GA 31907 bosworth_edward@colstate.edu Slide 1 of 25 slides

More information

Digital Principles and Design

Digital Principles and Design Digital Principles and Design Donald D. Givone University at Buffalo The State University of New York Grauu Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota

More information

THE KENYA POLYTECHNIC

THE KENYA POLYTECHNIC THE KENYA POLYTECHNIC ELECTRICAL/ELECTRONICS ENGINEERING DEPARTMENT HIGHER DIPLOMA IN ELECTRICAL ENGINEERING END OF YEAR II EXAMINATIONS NOVEMBER 006 DIGITAL ELECTRONICS 3 HOURS INSTRUCTIONS TO CANDIDATES:

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION Spring 2012 Question No: 1 ( Marks: 1 ) - Please choose one A SOP expression is equal to 1

More information

Combinational Logic Design

Combinational Logic Design Lab #2 Combinational Logic Design Objective: To introduce the design of some fundamental combinational logic building blocks. Preparation: Read the following experiment and complete the circuits where

More information

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem.

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State Reduction The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code: 17320 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 1 McGill University Faculty of Engineering ECSE-221B Introduction to Computer Engineering Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 Examiner: Rola Harmouche Date:

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

CPS311 Lecture: Sequential Circuits

CPS311 Lecture: Sequential Circuits CPS311 Lecture: Sequential Circuits Last revised August 4, 2015 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

EECS 140 Laboratory Exercise 7 PLD Programming

EECS 140 Laboratory Exercise 7 PLD Programming 1. Objectives EECS 140 Laboratory Exercise 7 PLD Programming A. Become familiar with the capabilities of Programmable Logic Devices (PLDs) B. Implement a simple combinational logic circuit using a PLD.

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

Physics 323. Experiment # 10 - Digital Circuits

Physics 323. Experiment # 10 - Digital Circuits Physics 323 Experiment # 10 - Digital Circuits Purpose This is a brief introduction to digital (logic) circuits using both combinational and sequential logic. The basic building blocks will be the Transistor

More information

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED: Electrical and Telecommunications Engineering Technology TCET 3122/TC

More information

Subject : EE6301 DIGITAL LOGIC CIRCUITS

Subject : EE6301 DIGITAL LOGIC CIRCUITS QUESTION BANK Programme : BE Subject : Semester / Branch : III/EEE UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES Review of number systems, binary codes, error detection and correction codes (Parity

More information

EE6301 DIGITAL LOGIC CIRCUITS UNIT-I NUMBERING SYSTEMS AND DIGITAL LOGIC FAMILIES 1) What are basic properties of Boolean algebra? The basic properties of Boolean algebra are commutative property, associative

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

Diagnostic Test Generation and Fault Simulation Algorithms for Transition Faults

Diagnostic Test Generation and Fault Simulation Algorithms for Transition Faults Diagnostic eneration and Fault Simulation Algorithms for Transition Faults Yu Zhang (Student Presenter) and Vishwani D. Agrawal Auburn Universit, Department of Electrical and Computer Engineering, Auburn,

More information

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No.

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No. 6.1.2 Sample Test Papers: Sample Test Paper 1 Roll No. Institute Name: Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/ET/IU Subject: Principles of Digital Techniques Marks: 25 1 Hour 1. All questions are

More information

Chapter 5: Synchronous Sequential Logic

Chapter 5: Synchronous Sequential Logic Chapter 5: Synchronous Sequential Logic NCNU_2016_DD_5_1 Digital systems may contain memory for storing information. Combinational circuits contains no memory elements the outputs depends only on the inputs

More information

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers.

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. Digital computer is a digital system that performs various computational tasks. The word DIGITAL

More information

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X 8. Objectives : Experiment (6) Decoders / Encoders To study the basic operation and design of both decoder and encoder circuits. To describe the concept of active low and active-high logic signals. To

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

PLTW Engineering Digital Electronics Course Outline

PLTW Engineering Digital Electronics Course Outline Open doors to understanding electronics and foundations in circuit design. Digital electronics is the foundation of all modern electronic devices such as cellular phones, MP3 players, laptop computers,

More information

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC)

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) 1 TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) Q.1 The flip-flip circuit is. a) Unstable b) multistable c) Monostable d) bitable Q.2 A digital counter consists of a group of a) Flip-flop b) half adders c)

More information

SUBJECT NAME : DIGITAL ELECTRONICS SUBJECT CODE : EC8392 1. State Demorgan s Theorem. QUESTION BANK PART A UNIT - I DIGITAL FUNDAMENTALS De Morgan suggested two theorems that form important part of Boolean

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICL INSTITUTE ECE 270 Experiment #8 DIGITL CIRCUITS Prelab 1. Draw the truth table for the S-R Flip-Flop as shown in the textbook. Draw the truth table for Figure 7. 2.

More information

COE328 Course Outline. Fall 2007

COE328 Course Outline. Fall 2007 COE28 Course Outline Fall 2007 1 Objectives This course covers the basics of digital logic circuits and design. Through the basic understanding of Boolean algebra and number systems it introduces the student

More information

S.K.P. Engineering College, Tiruvannamalai UNIT I

S.K.P. Engineering College, Tiruvannamalai UNIT I UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES Part - A Questions 1. Convert the hexadecimal number E3FA to binary.( Nov 2007) E3FA 16 Hexadecimal E 3 F A 11102 00112 11112 10102 So the equivalent binary

More information

Nirma University Institute of Technology. Electronics and Communication Engineering Department. Course Policy

Nirma University Institute of Technology. Electronics and Communication Engineering Department. Course Policy Nirma University Institute of Technology Electronics and Communication Engineering Department Course Policy B. Tech Semester - III Academic Year: 2017 Course Code & Name : Credit Details : L T P C 4 2

More information

Digital Electronics Course Outline

Digital Electronics Course Outline Digital Electronics Course Outline PLTW Engineering Digital Electronics Open doors to understanding electronics and foundations in circuit design. Digital electronics is the foundation of all modern electronic

More information

A.R. ENGINEERING COLLEGE, VILLUPURAM ECE DEPARTMENT

A.R. ENGINEERING COLLEGE, VILLUPURAM ECE DEPARTMENT .R. ENGINEERING COLLEGE, VILLUPURM ECE EPRTMENT QUESTION BNK SUB. NME: IGITL ELECTRONICS SUB. COE: EC223 SEM: III BRNCH/YER: ECE/II UNIT-I MINIMIZTION TECHNIQUESN LOGIC GTES PRT- ) efine Minterm & Maxterm.

More information

An Introduction to Digital Logic

An Introduction to Digital Logic An Introduction to Digital Logic Other titles in Electrical and Electronic Engineering B. A. Gregory: An Introduction to Electrical Instrumentation P. and A. Lynn: An Introduction to the Analysis and Processing

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

Lecture 11: Synchronous Sequential Logic

Lecture 11: Synchronous Sequential Logic Lecture 11: Synchronous Sequential Logic Syed M. Mahmud, Ph.D ECE Department Wayne State University Aby K George, ECE Department, Wayne State University Contents Characteristic equations Analysis of clocked

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) B. Sc. III Semester (Electronics) - (2013-14) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) Section-[A] i. (B) ii. (A) iii. (D) iv. (C) v. (C) vi. (C) vii. (D) viii. (B) Ans-(ix): In JK flip flop

More information

A Review of logic design

A Review of logic design Chapter 1 A Review of logic design 1.1 Boolean Algebra Despite the complexity of modern-day digital circuits, the fundamental principles upon which they are based are surprisingly simple. Boolean Algebra

More information

LORDS INSTITUTE OF ENGINEERING & TECHNOLOGY

LORDS INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Digital Electronics 1. Define binary logic? Part - A Unit 1 Binary logic consists of binary variables and logical operations. The variables are designated by the

More information

Note 5. Digital Electronic Devices

Note 5. Digital Electronic Devices Note 5 Digital Electronic Devices Department of Mechanical Engineering, University Of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 1 1. Binary and Hexadecimal Numbers Digital systems perform

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

CSE221- Logic Design, Spring 2003

CSE221- Logic Design, Spring 2003 EE207: Digital Systems I, Semester I 2003/2004 CHAPTER 3 -ii: Combinational Logic Design Design Procedure, Encoders/Decoders (Sections 3.4 3.6) Overview Design Procedure Code Converters Binary Decoders

More information

Semester III. Subject Name: Digital Electronics. Subject Code: 09CT0301. Diploma Branches in which this subject is offered: Computer Engineering

Semester III. Subject Name: Digital Electronics. Subject Code: 09CT0301. Diploma Branches in which this subject is offered: Computer Engineering Semester III Subject Name: Digital Electronics Subject Code: 09CT0301 Diploma Branches in which this subject is offered: Objective: The subject aims to prepare the students, To understand the basic of

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

Chapter 11 State Machine Design

Chapter 11 State Machine Design Chapter State Machine Design CHAPTER OBJECTIVES Upon successful completion of this chapter, you will be able to: Describe the components of a state machine. Distinguish between Moore and Mealy implementations

More information

G. D. Bishop, Electronics II. G. D. Bishop, Electronics III. John G. Ellis, and Norman J. Riches, Safety and Laboratory Practice

G. D. Bishop, Electronics II. G. D. Bishop, Electronics III. John G. Ellis, and Norman J. Riches, Safety and Laboratory Practice DIGITAL TECHNIQUES Macmillan Technician Series P. Astley, Engineering Drawing and Design II P. J. Avard and J. Cross, Workshop Processes and Materials I G. D. Bishop, Electronics II G. D. Bishop, Electronics

More information

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS)

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) 1. Convert Binary number (111101100) 2 to Octal equivalent. 2. Convert Binary (1101100010011011) 2 to Hexadecimal equivalent. 3. Simplify the following Boolean function

More information

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Unit I Number system, Binary, decimal, octal, hexadecimal-conversion from one another-binary addition, subtraction, multiplication, division-binary

More information