Analog High Voltage ASIC Design Techniques

Size: px
Start display at page:

Download "Analog High Voltage ASIC Design Techniques"

Transcription

1 ASIC Technology Symposium 2009 Analog High Voltage ASIC Design Techniques Otto Manck January 20th 2009 Israel Air Force Center, 15 Jabotinski St. Hertzelia

2 Topics Introduction Laws and rules of microelectronics NRE and device costs 0.18µm High Voltage Technologies State of the Art Package Technologies WLCSP, Wafer Level Chip Size Package Stacked Die Packages Special HV Technologies (600V) Open Discussion 2

3 Introduction Moore s Law all 3 years 4 x more components on the same silicon area constant price of unit area silicon is achieved by always smaller line width/geometries e.g , 0.250, 0.180, 0.130, 0.090, 0.065, 0.045, µm and results in always lower chip costs at same functionality always more functionality at the same silicon area What is the state of the art in 2009, in term of performance and costs, with respect to ASIC design? 3

4 Introduction Basic Properties of Microelectronic Scenery I 2. Return of Invest The investment in a new fabrication line has to be earned inside the first 3 years of production. but 2. The cost of a new line grows exponentially with decreasing line width Therefore, under the requirements of constant costs of unit area 3. The output/throughput of a line in terms of silicon area has to grow exponentially achieved by increasing wafer diameter but, last not least 4. The increased silicon area has to be sold 4

5 Introduction Basic properties of Microelectronic Scenery II 2. Mass applications have to make the money Standard devices like memories (in 2008 only 17% of the market) CPU s (better, standard SoC s) ASSP s of consumer telecommunication chip card market (in Billion mobiles ) The bandwagon theory: One has to take advantage from these drivers for special niche applications, called ASIC s 5

6 Introduction (My) ASIC problem/definition (mostly) minor quantities (mostly) restricted development costs/nre s How to find solutions inside reasonable NRE s using the (worldwide offered) technological possibilities so that the result is remarkable better than solutions based on ASSP s/fpga s 6

7 Introduction ASIC problem/definition II The main candidates for improvement IC cost BoM of standard devices against integrated SoC Asic physical size state of the art of packaging technologies (WLCSP) reliability/qualification e.g. 20 years of guaranteed life time unachieved physical performance, e.g. minimum power minimum noise excellent timing (very fast, very accurate etc) Best answer: all properties together 7

8 Introduction ASIC problem/definition III The application areas industrial and automotive need very different requirements compared to consumer, communications and computer with respect to lifetime of the IC (e.g. 10 to 20 years) power consumption/cooling (compared to computers) high voltages ESD/EMC requirements life time of a line Is there a chance for special technologies? Answer: Yes, because of automotive as bandwagon 8

9 ASIC design The mask problem I Any fabrication line with all its options is characterized by a number of masks, e.g. nr. of masks basic CMOS transistors 8 1 supply voltage each metal layer 2 e.g. 5 layers 10 any additional supply 2 4 non volatile OTP 02 Flash 5 SRAM 2 (metallization and via s) (at least 2 voltages) (sometimes) 9

10 ASIC design The mask problem II The different process options are characterized by typically mask levels, CMOS Standard (incl. 5 metal layers, + HV, + NV) 3. Silicon prize Wafer processing results in approx. 50 $ per mask layer (independent from line width, higher equipment cost compensated by higher silicon output) strong tendency to use the smallest possible line width 8. Mask costs Prize proportional to the write time, inside of one generation of lithography machines proportional to no. of structures exponential increase with decreasing line width 10

11 ASIC design Chip prize (bare silicon, yield to be expected > 90 %, not tested, 20 mask layers) minimum prize typical 3 /mm² ( 6 wafer, mm², ~ 400 $ 8 wafer, mm², ~ 800 $) These prizes are achieved today for higher quantities > 1000 Wafers/year. They correspond to the real operating cost of a line, i.e. energy and materials/pure nitrogen gases new lines are offered to much higher prizes With amortization of the invest, any factor is possible (until 3) 11

12 ASIC design Production costs per unit area silicon ( /mm²)) 12

13 ASIC design Mask cost I Technology Full mask set $ $ $ $ Layer No Actual costs of a full mask set (Typical prizes of different manufacturer, time period 2007 and 2008) 13

14 ASIC design Mask cost II First time right Any normal run includes 2 shots a first one nearly 100% running and (after detailled qualification) a second one for the final product. To avoid two times the full mask set, the foundry offers MPW run MLM run (Merged Layers Masks) ( Multi project wafer runs, started in an 1 to 3 month interval at fixed dates). Restricted in maximum silicon area, many customer share the expenses of a full mask set. Typical delivered quantity: 20 to 100 untested chips in a package Prize between and $, area dependent, line width > µm 4 mask layers are integrated in one reticle resulting in ¼ of recticle number and cost. The lithography engine needs correspondingly 4 times more exposure time. In summary only 50 % of NRE (mask) cost 50 % higher wafer prize, but to produced chips 14

15 ASIC design Mask cost III In Summary: The mask costs restrict most of ASIC projects (of lower quantities) to mature technologies (where already the basic steps of amortization are over) Corresponding to Moore s law, all 4 years a shift to the next smaller technology may occur rsp. becomes necessary. In 2009, µm represents this corner technology Typical data (XFAB: XH018 HV, 30 masks) MPW $ (10 mm², 45 samples) MLM $ (Wafer prize $) Full mask set $ (Wafer from 2500 $ to 1300 $, quantity dependent) What can be realized in such a technology? 15

16 ASIC design 16

17 ASIC design 17

18 ASIC design 18

19 High Voltage Technology 19

20 High Voltage Technology 20

21 ASIC design 21

22 Silicon Technology What can be realized in XH018KH111? (0.18µm LP3MOS, DEPL, NVM, HVMOS, 30 masks) The 1 $ device: + 3 mm² analog (input amplifier, 12 Bit ADC, output driver) 3 mm² digital 3 mm² memory (16 kbytes SRAM, 64 kbytes OTP/Flash, add. EEPROM) 9 mm² core area 6 mm² I/O pads 14 mm² total area (300 kgates logic, any 32 Bit CPU, any digital interface) multiplied by 0.05$/mm²: 0.70 $ per good die (Test and package may result in additional 0.60 $) 22

23 Silicon Technology XH018HV 23

24 Silicon Technology The 0.18 µm process the most flexible line ever offered in silicon history allows mixed signal, high voltage, bipolar, non volatile together with optical pindiodes and MEMS elements Flash, OTP and specific EEPROM cells available (becomes a) standard for every foundry ideal for actor/sensor SoC s, connected by a field bus interface With this process, the foundry business becomes independent from the short lifetime/production cycles of the computer/consumer/multi media business. Driven by automotive applications, IC s stay alive for years and a production lifetime in a similar range are visible. 24

25 Silicon Technology 25

26 Silicon Technology 26

27 Packaging Technology Main idea If Moore s law became possible by production of some 1000 dies in parallel, why not introduce similar ideas into the packaging process. Therefore eliminate serial steps (e.g. bonding by Flip Chip Technologies) organize the fabrication so that the well known parallel lithography builds the base of a process step reduce the pad pitch (the distance between two pins of the package) as far as possible (in accordance with the necessary progress of the PCB technology) The result are the well known BGA and QFN packages. The singulation is shifted to the last process step done by a cheap sawing machine. Corresponding to the iron rule of silicon the die price is given by the silicon area the price of a package becomes now a strong function of package size, not by reduced material consumption but by dividing the costs of a process step by the number of produced packages. 27

28 Silicon Technology 28

29 Silicon Technology 29

30 Silicon Technology 30

31 Silicon Technology 31

32 Silicon Technology 32

33 Silicon Technology 33

34 Silicon Technology 34

35 Silicon Technology 35

36 Silicon Technology 36

37 Packaging Technology Summary I: Packaging technology is dominated by the invention of new abbreviations, here perhaps the actual 4 most important one s QFN quad flat no leads BGA ball grid array and WLCSP wafer level chip scale package FCCSP flip chip chip scale package (Any packaging company tries to introduce its own abbreviations) The prize pressure of the consumer products introduces parallel (wafer level) processing into the packaging scenery. Cheap devices are the result, available also at lower annual quantities 37

38 Packaging Technology 38

39 Packaging Technology 39

40 Silicon Technology 40

41 Silicon Technology 41

42 Silicon Technology 42

43 Silicon Technology 43

44 Silicon Technology 44

45 Packaging Technology Summary II: Some prizes (no guaranty) BGA with more than 256 pins, 2 x 2 cm² between 1 and 2 $ QFN 4 x 4 mm², 24 pins 0.05 $ stacked die package always cheaper than the sum of corresponding discrete packages bumping of a wafer typical 100 $ NRE cost of a package between and $ in many cases 45

46 High VoltageTechnology General remarks/rules I The term High voltage looks very flexible, ranging from V Integrated technologies rsp. transistors are available until 600 V Always competition (in terms of BoM) between on chip integration and discrete solutions Below some voltages ( < 100 V) typically one chip solutions Above 100 V, special HV technologies with (stacked chip) package integration High currents only with discrete transistors 46

47 High VoltageTechnology General remarks/rules II Integration of HV silicon on chip until V, currents less 1 A on package LV ASIC + HV ASIC, stacked, using a special HV process (e.g. SOI 600 V) on package LV ASIC + bare standard dies (e,g, special high voltage, high current transistors) different packages Decision e.g. inside the triangle cheapest solution, best performance, smallest size 47

48 High VoltageTechnology General remarks/rules III Power limit under standard condition (natural air cooling, typical air/pcb ratio) 1 W and 1 cm² package area 40 C T over ambient Severe limitation for any modern package (Cooling area has to be extended to the PCB using large copper layers) 48

49 High Voltage Technology Integrated technologies XFAB XDH10 650V 1.0 µm Trench Insulated BCD process 49

50 High Voltage Technology SOI wafer preparation 50

51 High Voltage Technology (V)DMOS (vertical doubled diffused MOS transistor) basic structure ID ID 51

52 High Voltage Technology 52

53 Layout DMOS 40V: Metal 2 Layout: Pitch 13µm LayerLegend: CrossSection: 53

54 High Voltage Technology Three basic break through effects in a MOS structure have to be considered 1. Avalanche effect in pn junction Between two collisions, electron/holes are accelerated by the electrical field so that their energy is higher than the band gap energy to generate a new electron/hole pair. The typical field strength is 1.5 x 105 V/cm. 2. Break through of the Gate Oxid Depending on oxid thickness electrons can tunnel the gate at sufficient high voltages. The effect is used for charge storage in the floating gate for EEPROM but destroys the oxid irreversible at higher currents voltages 3. Punch through The increasing space charge region around the drain region starts to reach the space charge region around source. The channel is no longer blocking in the switch off state. 1) and 3) are non destructive, 2) has to be avoided in any case 1) and 3) depend on the space charge around a pnjunction Solution of Poisson s equation 54

55 High Voltage Transistors, Properties and Layout Ron Resistance of DMOS Transistor RON Resistor (between drain and source) 55

56 High Voltage / Break Through Mechanisms Figure 2.2: Break trough voltage and width of a planar pn junction for typical doping concentrations (of the lower doped 56

57 High Voltage Transistors, Properties and Layout 57

58 High Voltage Technology The silicon limit or the 1dim. pn junction (behaviour) Increasing the breakthrough voltage is only possible by. lowering the (low side) doping concentration (and correspondingly). increasing the width of the space charge region Therefore. the ONresistance (i.e the part dominated by the drain/epi region) is increased.. To maintain the same ONResistance, the transistor width (=area) has to be increased correspondingly Increasing the performance of a power transistor means that silicon area, switching capacitance and costs grow more than linear: the so called silicon limit 58

59 High Voltage Technology Overcoming the silicon limit or the 2dim. pn junction (behaviour) n doped region p+ Na p n p n p doped region p N A = ND n++ 59

60 High Voltage Technology Overcoming the silicon limit 2dim. stripe structure 1dim. pnjunction E Distribution of field strength E x x The stripe structure discharges the space charge region already at relatively low voltages allowing higher blocking voltages allowing much higher doping levels (and lower Onresistance) 60

61 High Voltage Technology CoolMOS data sheet (Infineon) 61

62 High Voltage Technology CoolMOS dat sheet 62

63 High Voltage Technology HV Summary I: Planar technologies available until 650 V and 1 A Above discrete vertical devices Package integration of LV and HV chip Interesting cost, performance and size optimized solutions possible 63

64 High Voltage Technology HV Summary II: The silicon technology needs new killer application The modern HVIC s can directly connected to 240 V Ideal for building/house application The number of chips / human being can be multiplied in comparison to the consumption based on telecommunication and computer/games 64

65 Smart Wire Darwin 65

66 Deep Sub Micron ASICs SmartWire Darwin Industrial Bus Controller Stacked Die Application TSMC 0.25 / XFAB 0.6, industrial non volatile complex mixed signal structure, 250K pure logic gates LV die (0.25um non volatile) RS485 Phy 12 Bit ADC Integrated Voltage Regulator 32k, 2M and 40M Internal Oscillator ESD protection 4k x 16 bit SRAM direct connection to bus cable 16 bit CPU system 16k x16 bit Flash Flash 16k x 16 HV die (0.6um SOI) voltage regulators 16 bit CPU host interface 485+ daisy chain cfg SWD protocol machine uc peripherals SRAM 4k x 16 analog peripherals optional application CPU sensors & actors Temperature range C 66

67 Technologies Following lines have been used during the last two years Elmos 0.8 μm Mixed Signal Automotive Elmos 0.5 μm Mixed Signal Automotive Elmos 0.35 μm Mixed Signal Automotive XFAB 0.6 µm (SOI) Mixed Signal Industrial XFAB 0.6 µm Mixed Signal Industrial XFAB 0.35 μm Mixed Signal Industrial HHNEC 0.35 μm Medical and Industrial ST 0.35 μm Medical TSMC 0.25 μm Automotive non volatile TSMC 0.18 μm Industrial UMC 0.18 μm Research Atmel 0.15 μm Consumer non volatile Freescale 0.25µm SmartMOS Status: February

68 Technologies Projects in 0.18 µm Standard mixed signal lines TSMC 0.18 μm Industrial UMC 0.18 μm Research Combined 0.18µm line (HV, non volatile) 3 PDK are installed XFAB TSMC Fujitsu 2 Projects under development industrial (Fan motor control) housing (Intelligent wire connector) 68

69 End of Presentation Thank you for your attention! Open Discussion 69

70 Confidential 70

24. Scaling, Economics, SOI Technology

24. Scaling, Economics, SOI Technology 24. Scaling, Economics, SOI Technology Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 December 4, 2017 ECE Department, University

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada 2011/12/19 1 What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails.

More information

SEMICONDUCTOR TECHNOLOGY -CMOS-

SEMICONDUCTOR TECHNOLOGY -CMOS- SEMICONDUCTOR TECHNOLOGY -CMOS- Fire Tom Wada What is semiconductor and LSIs Huge number of transistors can be integrated in a small Si chip. The size of the chip is roughly the size of nails. Currently,

More information

IC TECHNOLOGY Lecture 2.

IC TECHNOLOGY Lecture 2. IC TECHNOLOGY Lecture 2. IC Integrated Circuit Technology Integrated Circuit: An integrated circuit (IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor

More information

InvenSense Fabless Model for the MEMS Industry

InvenSense Fabless Model for the MEMS Industry InvenSense Fabless Model for the MEMS Industry HKSTP Symposium Aug 2016 InvenSense, Inc. Proprietary Outline MEMS Market InvenSense CMOS-MEMS Integration InvenSense Shuttle Program and Process MEMS MARKET

More information

STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes

STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes STMicroelectronics Standard Technology offers at CMP in 2017 Deep Sub-Micron, SOI and SiGe Processes http://cmp.imag.fr STMicroelectronics Technology offers at CMP: 160nm CMOS: BCD8SP 1994 at CMP 160nm

More information

Wafer Thinning and Thru-Silicon Vias

Wafer Thinning and Thru-Silicon Vias Wafer Thinning and Thru-Silicon Vias The Path to Wafer Level Packaging jreche@trusi.com Summary A new dry etching technology Atmospheric Downstream Plasma (ADP) Etch Applications to Packaging Wafer Thinning

More information

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction 1 Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 2 Course Overview Lecturer Teaching Assistant Course Team E-mail:

More information

Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments

Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments Semiconductors Displays Semiconductor Manufacturing and Inspection Equipment Scientific Instruments Electronics 110-nm CMOS ASIC HDL4P Series with High-speed I/O Interfaces Hitachi has released the high-performance

More information

Advanced WLP Platform for High-Performance MEMS. Presented by Dean Spicer, Director of Engineering

Advanced WLP Platform for High-Performance MEMS. Presented by Dean Spicer, Director of Engineering Advanced WLP Platform for High-Performance MEMS Presented by Dean Spicer, Director of Engineering 1 May 11 th, 2016 1 Outline 1. Application Drivers for High Performance MEMS Sensors 2. Approaches to Achieving

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

TKK S ASIC-PIIRIEN SUUNNITTELU

TKK S ASIC-PIIRIEN SUUNNITTELU Design TKK S-88.134 ASIC-PIIRIEN SUUNNITTELU Design Flow 3.2.2005 RTL Design 10.2.2005 Implementation 7.4.2005 Contents 1. Terminology 2. RTL to Parts flow 3. Logic synthesis 4. Static Timing Analysis

More information

Layout Analysis Analog Block

Layout Analysis Analog Block Layout Analysis Analog Block Sample Report Analysis from an HD Video/Audio SoC For any additional technical needs concerning semiconductor and electronics technology, please call Sales at Chipworks. 3685

More information

IC Mask Design. Christopher Saint Judy Saint

IC Mask Design. Christopher Saint Judy Saint IC Mask Design Essential Layout Techniques Christopher Saint Judy Saint McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

More information

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer

Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits. Stanislav Loboda R&D engineer Flexible Electronics Production Deployment on FPD Standards: Plastic Displays & Integrated Circuits Stanislav Loboda R&D engineer The world-first small-volume contract manufacturing for plastic TFT-arrays

More information

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website :

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website : 9 rue Alfred Kastler - BP 10748-44307 Nantes Cedex 3 - France Phone : +33 (0) 240 180 916 - email : info@systemplus.fr - website : www.systemplus.fr January 2012 Written by: Maher SAHMIMI DISCLAIMER :

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

Lecture 1: Circuits & Layout

Lecture 1: Circuits & Layout Lecture 1: Circuits & Layout Outline A Brief History CMOS Gate esign Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick iagrams 2 A Brief History 1958: First integrated circuit Flip-flop

More information

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response

nmos transistor Basics of VLSI Design and Test Solution: CMOS pmos transistor CMOS Inverter First-Order DC Analysis CMOS Inverter: Transient Response nmos transistor asics of VLSI Design and Test If the gate is high, the switch is on If the gate is low, the switch is off Mohammad Tehranipoor Drain ECE495/695: Introduction to Hardware Security & Trust

More information

3D-CHIP TECHNOLOGY AND APPLICATIONS OF MINIATURIZATION

3D-CHIP TECHNOLOGY AND APPLICATIONS OF MINIATURIZATION 3D-CHIP TECHNOLOGY AND APPLICATIONS OF MINIATURIZATION 23.08.2018 I DAVID ARUTINOV CONTENT INTRODUCTION TRENDS AND ISSUES OF MODERN IC s 3D INTEGRATION TECHNOLOGY CURRENT STATE OF 3D INTEGRATION SUMMARY

More information

Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay

Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay Basic Electronics Prof. Mahesh Patil Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 01 A brief history of electronics Welcome to Basic Electronics. I am Mahesh Patil,

More information

I-fuse TM : Best OTP for FD-SOI and Sub-14nm

I-fuse TM : Best OTP for FD-SOI and Sub-14nm I-fuse TM : Best OTP for FD-SOI and Sub-14nm Shine Chung, Chairman May, 2017 Attopsemi Technology 1A2-A1 No. 1 Li-Hsin 1st Rd, Hsinchu, Taiwan 300-76 (886) 3-666-3150x211, (886) 920-566-218 1 1 About Attopsemi

More information

VLSI Design Digital Systems and VLSI

VLSI Design Digital Systems and VLSI VLSI Design Digital Systems and VLSI Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author 1 Overview Why VLSI? IC Manufacturing CMOS Technology

More information

Applied Materials. 200mm Tools & Process Capabilities For Next Generation MEMS. Dr Michel (Mike) Rosa

Applied Materials. 200mm Tools & Process Capabilities For Next Generation MEMS. Dr Michel (Mike) Rosa Applied Materials 200mm Tools & Process Capabilities For Next Generation MEMS Dr Michel (Mike) Rosa 200mm MEMS Global Product / Marketing Manager, Components and Systems Group (CSG), Applied Global Services

More information

STMicroelectronics NAND128W3A2BN6E 128 Mbit NAND Flash Memory Structural Analysis

STMicroelectronics NAND128W3A2BN6E 128 Mbit NAND Flash Memory Structural Analysis July 6, 2006 STMicroelectronics NAND128W3A2BN6E Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor technology,

More information

Technology Overview LTCC

Technology Overview LTCC Sheet Code RFi0604 Technology Overview LTCC Low Temperature Co-fired Ceramic (LTCC) is a multilayer ceramic substrate technology that allows the realisation of multiple embedded passive components (Rs,

More information

Layers of Innovation: How Signal Chain Innovations are Creating Analog Opportunities in a Digital World

Layers of Innovation: How Signal Chain Innovations are Creating Analog Opportunities in a Digital World The World Leader in High Performance Signal Processing Solutions Layers of Innovation: How Signal Chain Innovations are Creating Analog Opportunities in a Digital World Dave Robertson-- VP of Analog Technology

More information

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED)

Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) Chapter 2 Overview of All Pixel Circuits for Active Matrix Organic Light Emitting Diode (AMOLED) ---------------------------------------------------------------------------------------------------------------

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor 14 12 10 8 6 IBM ES9000 Bipolar Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP)

More information

DEPFET Active Pixel Sensors for the ILC

DEPFET Active Pixel Sensors for the ILC DEPFET Active Pixel Sensors for the ILC Laci Andricek for the DEPFET Collaboration (www.depfet.org) The DEPFET ILC VTX Project steering chips Switcher thinning technology Simulation sensor development

More information

Freescale SPC5604BF1CLL6 Embedded NOR Flash with M27V Die Markings 32 Bit Power Architecture Automotive Microcontroller 90 nm Logic Process

Freescale SPC5604BF1CLL6 Embedded NOR Flash with M27V Die Markings 32 Bit Power Architecture Automotive Microcontroller 90 nm Logic Process Freescale SPC5604BF1CLL6 Embedded NOR Flash with M27V Die Markings 32 Bit Power Architecture Automotive Microcontroller 90 nm Logic Process Process Review 3685 Richmond Road, Suite 500, Ottawa, ON K2H

More information

High Performance Microprocessor Design and Automation: Overview, Challenges and Opportunities IBM Corporation

High Performance Microprocessor Design and Automation: Overview, Challenges and Opportunities IBM Corporation High Performance Microprocessor Design and Automation: Overview, Challenges and Opportunities Introduction About Myself What to expect out of this lecture Understand the current trend in the IC Design

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITL TECHNICS Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 10. LECTURE (LOGIC CIRCUITS, PRT 2): MOS DIGITL CIRCUITS II 2016/2017 10. LECTURE: MOS DIGITL CIRCUITS II 1.

More information

Innovations in PON Cost Reduction

Innovations in PON Cost Reduction Innovations in PON Cost Reduction Abstract Passive Optical Network (PON) deployments become a reality only when the promised price of a Fiber To The Premise (FTTP) network met the carrier s objectives

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興國立高雄大學資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error

More information

In the September/October issue of Small Times

In the September/October issue of Small Times Thinking outside the chip: MEMS-based systems solutions by Roger H. Grace, Roger Grace Associates In the September/October issue of Small Times (p.32) I introduced a MEMS Commercialization Report Card

More information

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking.

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking. EE141-Fall 2011 Digital Integrated Circuits Lecture 2 Clock, I/O Timing 1 4 Administrative Stuff Pipelining Project Phase 4 due on Monday, Nov. 21, 10am Homework 9 Due Thursday, December 1 Visit to Intel

More information

Forward-Looking Statements

Forward-Looking Statements Forward-Looking Statements Information in this presentation regarding MagnaChip s forecasts, business outlook, expectations and beliefs are forward-looking statements within the meaning of the Private

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Leveraging 300 mm Technology Solutions to Enable New MEMS Process Capabilities

Leveraging 300 mm Technology Solutions to Enable New MEMS Process Capabilities Leveraging 300 mm Technology Solutions to Enable New MEMS Process Capabilities Evan Patton Semicon Europa November 2017 Lam Research Corp. 1 Presentation Outline The Internet of Things (IoT) as a market

More information

Through Silicon Via Testing Known Good Die (KGD) or Probably Good Die (PGD) Doug Lefever Advantest

Through Silicon Via Testing Known Good Die (KGD) or Probably Good Die (PGD) Doug Lefever Advantest Through Silicon Via Testing Known Good Die (KGD) or Probably Good Die (PGD) Doug Lefever Advantest Single Die Fab Yield will drive Cost Equation. Yield of the device to be stacked 100% 90% 80% Yield of

More information

MAAP DIEEV1. Ka-Band 4 W Power Amplifier GHz Rev. V1. Features. Functional Diagram. Description. Pin Configuration 2

MAAP DIEEV1. Ka-Band 4 W Power Amplifier GHz Rev. V1. Features. Functional Diagram. Description. Pin Configuration 2 Features Frequency Range: 32 to Small Signal Gain: 18 db Saturated Power: 37 dbm Power Added Efficiency: 23% % On-Wafer RF and DC Testing % Visual Inspection to MIL-STD-883 Method Bias V D = 6 V, I D =

More information

Challenges in the design of a RGB LED display for indoor applications

Challenges in the design of a RGB LED display for indoor applications Synthetic Metals 122 (2001) 215±219 Challenges in the design of a RGB LED display for indoor applications Francis Nguyen * Osram Opto Semiconductors, In neon Technologies Corporation, 19000, Homestead

More information

Alien Technology Corporation White Paper. Fluidic Self Assembly. October 1999

Alien Technology Corporation White Paper. Fluidic Self Assembly. October 1999 Alien Technology Corporation White Paper Fluidic Self Assembly October 1999 Alien Technology Corp Page 1 Why FSA? Alien Technology Corp. was formed to commercialize a proprietary technology process, protected

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) Field Programmable Gate Arrays (FPGAs) Introduction Simulations and prototyping have been a very important part of the electronics industry since a very long time now. Before heading in for the actual

More information

Transforming Electronic Interconnect Breaking through historical boundaries Tim Olson Founder & CTO

Transforming Electronic Interconnect Breaking through historical boundaries Tim Olson Founder & CTO Transforming Electronic Interconnect Breaking through historical boundaries Tim Olson Founder & CTO Remember when? There were three distinct industries Wafer Foundries SATS EMS Semiconductor Devices Nanometers

More information

High Performance TFT LCD Driver ICs for Large-Size Displays

High Performance TFT LCD Driver ICs for Large-Size Displays Name: Eugenie Ip Title: Technical Marketing Engineer Company: Solomon Systech Limited www.solomon-systech.com The TFT LCD market has rapidly evolved in the last decade, enabling the occurrence of large

More information

MEMS Technologies Dresden - Product Development and Fabrication at IPMS Dresden

MEMS Technologies Dresden - Product Development and Fabrication at IPMS Dresden MEMS Technologies Dresden - Product Development and Fabrication at IPMS Dresden MEMS Technologies Dresden - Product Development and Fabrication at IPMS Dresden Michael Müller, Matthias List Outline FhG-IPMS

More information

Lossless Compression Algorithms for Direct- Write Lithography Systems

Lossless Compression Algorithms for Direct- Write Lithography Systems Lossless Compression Algorithms for Direct- Write Lithography Systems Hsin-I Liu Video and Image Processing Lab Department of Electrical Engineering and Computer Science University of California at Berkeley

More information

Enabling Analog Integration. Paul Kempf

Enabling Analog Integration. Paul Kempf TM Enabling Analog Integration Paul Kempf Overview The New Analog Analog in New Markets Opportunity in Integrated Analog/RF Outsourcing Trends in Analog Enabling Functional Integration Technology Requirements

More information

Leakage Current Reduction in Sequential Circuits by Modifying the Scan Chains

Leakage Current Reduction in Sequential Circuits by Modifying the Scan Chains eakage Current Reduction in Sequential s by Modifying the Scan Chains Afshin Abdollahi University of Southern California (3) 592-3886 afshin@usc.edu Farzan Fallah Fujitsu aboratories of America (48) 53-4544

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

MagnaChip HV7161SP 1.3 Megapixel CMOS Image Sensor Process Review

MagnaChip HV7161SP 1.3 Megapixel CMOS Image Sensor Process Review September 21, 2005 MagnaChip HV7161SP 1.3 Megapixel Process Review For questions, comments, or more information about this report, or for any additional technical needs concerning semiconductor technology,

More information

Next Generation of Poly-Si TFT Technology: Material Improvements and Novel Device Architectures for System-On-Panel (SOP)

Next Generation of Poly-Si TFT Technology: Material Improvements and Novel Device Architectures for System-On-Panel (SOP) Next Generation of Poly-Si TFT Technology: Material Improvements and Novel Device Architectures for System-On-Panel (SOP) Tolis Voutsas* Paul Schuele* Bert Crowder* Pooran Joshi* Robert Sposili* Hidayat

More information

Advanced Sensor Technologies

Advanced Sensor Technologies Advanced Sensor Technologies Jörg Amelung Fraunhofer Institute for Photonics Microsystems Name of presenter date Sensors as core element for IoT Next phase of market grow New/Advanced Requirements based

More information

Why Use the Cypress PSoC?

Why Use the Cypress PSoC? C H A P T E R1 Why Use the Cypress PSoC? Electronics have dramatically altered the world as we know it. One has simply to compare the conveniences and capabilities of today s world with those of the late

More information

LCD MODULE SPECIFICATION

LCD MODULE SPECIFICATION TECHNOLOGY CO., LTD. LCD MODULE SPECIFICATION Model : MI0220IT-1 Revision Engineering Date Our Reference DOCUMENT REVISION HISTORY DOCUMENT REVISION DATE DESCRIPTION FROM TO A 2008.03.10 First Release.

More information

Future of Analog Design and Upcoming Challenges in Nanometer CMOS

Future of Analog Design and Upcoming Challenges in Nanometer CMOS Future of Analog Design and Upcoming Challenges in Nanometer CMOS Greg Taylor VLSI Design 2010 Outline Introduction Logic processing trends Analog design trends Analog design challenge Approaches Conclusion

More information

RFSOI and FDSOI enabling smarter and IoT applications. Kirk Ouellette Digital Products Group STMicroelectronics

RFSOI and FDSOI enabling smarter and IoT applications. Kirk Ouellette Digital Products Group STMicroelectronics RFSOI and FDSOI enabling smarter and IoT applications Kirk Ouellette Digital Products Group STMicroelectronics ST in the IoT already Today 2 Kirk Ouellette More then Moore Workshop - Shanghai - March 17,

More information

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver EM MICROELECTRONIC - MARIN SA 2, 4 and 8 Mutiplex LCD Driver Description The is a universal low multiplex LCD driver. The version 2 drives two ways multiplex (two blackplanes) LCD, the version 4, four

More information

Lecture 18 Design For Test (DFT)

Lecture 18 Design For Test (DFT) Lecture 18 Design For Test (DFT) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ASIC Test Two Stages Wafer test, one die at a time, using probe card production

More information

Overcoming Challenges in 3D NAND Volume Manufacturing

Overcoming Challenges in 3D NAND Volume Manufacturing Overcoming Challenges in 3D NAND Volume Manufacturing Thorsten Lill Vice President, Etch Emerging Technologies and Systems Flash Memory Summit 2017, Santa Clara 2017 Lam Research Corp. Flash Memory Summit

More information

AMP DISPLAY INC. SPECIFICATIONS AMP DISPLAY INC 9856 SIXTH STREET RANCHO CUCAMONGA CA TEL: FAX:

AMP DISPLAY INC. SPECIFICATIONS AMP DISPLAY INC 9856 SIXTH STREET RANCHO CUCAMONGA CA TEL: FAX: AMP DISPLA INC. SPECIFICATIONS CUSTOMER CUSTOMER PART NO. AMP PART NO. APPROVED B DATE Approved For Specifications Approved For Specifications & Sample AMP DISPLA INC 9856 SITH STREET RANCHO CUCAMONGA

More information

projectors, head mounted displays in virtual or augmented reality use, electronic viewfinders

projectors, head mounted displays in virtual or augmented reality use, electronic viewfinders Beatrice Beyer Figure 1. (OLED) microdisplay with a screen diagonal of 16 mm. Figure 2. CMOS cross section with OLED on top. Usually as small as fingernails, but of very high resolution Optical system

More information

Study of Pattern Area Reduction. with FinFET and SGT for LSI

Study of Pattern Area Reduction. with FinFET and SGT for LSI Contemporary Engineering Sciences, Vol. 6, 2013, no. 4, 177-190 HIKRI Ltd, www.m-hikari.com Study of Pattern rea Reduction with FinFET and SGT for LSI Takahiro Kodama Japan Process Development Co., Ltd.

More information

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1

A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 A FOUR GAIN READOUT INTEGRATED CIRCUIT : FRIC 96_1 J. M. Bussat 1, G. Bohner 1, O. Rossetto 2, D. Dzahini 2, J. Lecoq 1, J. Pouxe 2, J. Colas 1, (1) L. A. P. P. Annecy-le-vieux, France (2) I. S. N. Grenoble,

More information

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 3, Issue 1 (Sep. Oct. 2013), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Modifying the Scan Chains in Sequential Circuit to Reduce Leakage

More information

STMicroelectronics L6262S BCD-MOS IC Structural Analysis

STMicroelectronics L6262S BCD-MOS IC Structural Analysis April 2, 2004 STMicroelectronics L6262S BCD-MOS IC Structural Analysis For questions, comments, or more information about this report, or for any additional technical needs concerning semiconductor technology,

More information

A pixel chip for tracking in ALICE and particle identification in LHCb

A pixel chip for tracking in ALICE and particle identification in LHCb A pixel chip for tracking in ALICE and particle identification in LHCb K.Wyllie 1), M.Burns 1), M.Campbell 1), E.Cantatore 1), V.Cencelli 2) R.Dinapoli 3), F.Formenti 1), T.Grassi 1), E.Heijne 1), P.Jarron

More information

Chapter 3 Evaluated Results of Conventional Pixel Circuit, Other Compensation Circuits and Proposed Pixel Circuits for Active Matrix Organic Light Emitting Diodes (AMOLEDs) -------------------------------------------------------------------------------------------------------

More information

[2 credit course- 3 hours per week]

[2 credit course- 3 hours per week] Syllabus of Applied Electronics for F Y B Sc Semester- 1 (With effect from June 2012) PAPER I: Components and Devices [2 credit course- 3 hours per week] Unit- I : CIRCUIT THEORY [10 Hrs] Introduction;

More information

Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. R.Bellazzini - INFN Pisa. Vienna February

Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. R.Bellazzini - INFN Pisa. Vienna February Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode Ronaldo Bellazzini INFN Pisa Vienna February 16-21 2004 The GEM amplifier The most interesting feature of the Gas Electron

More information

Application Note AN SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note

Application Note AN SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note Application Note AN-1133 SupIRBuck MCM Power Quad Flat No-lead (PQFN) Inspection Application Note Table of Contents Page Inspection techniques... 3 Examples of good assembly... 3 Summary of rejection criteria...

More information

STAR-07 RGB MULTI-COLOR INDUSTRIAL PATTERN PROJECTION

STAR-07 RGB MULTI-COLOR INDUSTRIAL PATTERN PROJECTION STAR-07 RGB MULTI-COLOR INDUSTRIAL PATTERN PROJECTION STAR-07 RGB is a high performance DLP projector based upon the Texas Instruments micromirror technology and designed to serve in demanding industrial

More information

Performance Modeling and Noise Reduction in VLSI Packaging

Performance Modeling and Noise Reduction in VLSI Packaging Performance Modeling and Noise Reduction in VLSI Packaging Ph.D. Defense Brock J. LaMeres University of Colorado October 7, 2005 October 7, 2005 Performance Modeling and Noise Reduction in VLSI Packaging

More information

NXP t505f Smart Card RFID Die Embedded NOR Flash Die From Smart Card World MIFARE Ultralight C

NXP t505f Smart Card RFID Die Embedded NOR Flash Die From Smart Card World MIFARE Ultralight C NXP t505f Smart Card RFID Die Die From Smart Card World MIFARE Ultralight C Custom Process Analysis For comments, questions, or more information about this report, or for any additional technical needs

More information

DIRECT DRIVE ROTARY TABLES SRT SERIES

DIRECT DRIVE ROTARY TABLES SRT SERIES DIRECT DRIVE ROTARY TABLES SRT SERIES Key features: Direct drive Large center aperture Brushless motor design Precision bearing system Integrated position feedback Built-in thermal sensors ServoRing rotary

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 5 Sequential circuits design - Timing issues ELEN0040 5-228 1 Sequential circuits design 1.1 General procedure 1.2

More information

High-Performance Technologies for an Analog-Centric World

High-Performance Technologies for an Analog-Centric World High-Performance Technologies for an Analog-Centric World Oct 13, 2011 Lou N. Hutter, SVP GM, Analog Foundry Business Unit Dongbu HiTek Agenda Analog in Our World Today Diverse Technology Needs of the

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) IPAD TM 3 LINES EMI FILTER AND ESD PROTECTION MAIN PRODUCT APPLICATIONS EMI filtering and ESD protection for : SIM Interface (Subscriber Identify Module) UIM Interface (Universal Identify Module) DESCRIPTION

More information

Advancements in Acoustic Micro-Imaging Tuesday October 11th, 2016

Advancements in Acoustic Micro-Imaging Tuesday October 11th, 2016 Central Texas Electronics Association Advancements in Acoustic Micro-Imaging Tuesday October 11th, 2016 A review of the latest advancements in Acoustic Micro-Imaging for the non-destructive inspection

More information

Integrated circuits/5 ASIC circuits

Integrated circuits/5 ASIC circuits Integrated circuits/5 ASIC circuits Microelectronics and Technology Márta Rencz Department of Electron Devices 2002 1 Subjects Classification of Integrated Circuits ASIC cathegories 2 Classification of

More information

Power Device Analysis in Design Flow for Smart Power Technologies

Power Device Analysis in Design Flow for Smart Power Technologies Power Device Analysis in Design Flow for Smart Power Technologies A.Bogani, P.Cacciagrano, G.Ferre`, L.Paciaroni, M.Verga ST Microelectronics, via Tolomeo 1 Cornaredo 20010, Milano, Italy M.Ershov,Y.Feinberg

More information

Large-Scale Polysilicon Surface Micro-Machined Spatial Light Modulator

Large-Scale Polysilicon Surface Micro-Machined Spatial Light Modulator Large-Scale Polysilicon Surface Micro-Machined Spatial Light Modulator Clara Dimas, Julie Perreault, Steven Cornelissen, Harold Dyson, Peter Krulevitch, Paul Bierden, Thomas Bifano, Boston Micromachines

More information

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping Introductory Medical Device Prototyping Digital Circuits Part 1 Logic Gates, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics CMOS Logic

More information

Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process

Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process (Lec 11) From Logic To Layout What you know... Boolean, 1s and 0s stuff: synthesis, verification, representation This is what happens in the front end of the ASIC design process High-level design description

More information

DIY KIT MHZ 8-DIGIT FREQUENCY METER

DIY KIT MHZ 8-DIGIT FREQUENCY METER This kit is a stand-alone frequency meter capable of measuring repetitive signals up to a frequency of 50MHz. It has two frequency ranges (15 and 50 MHz) as well as two sampling rates (0.1 and 1 second).

More information

Designing VeSFET-based ICs with CMOS-oriented EDA Infrastructure

Designing VeSFET-based ICs with CMOS-oriented EDA Infrastructure Designing VeSFET-based ICs with CMOS-oriented ED Infrastructure Xiang Qiu, Malgorzata Marek-Sadowska University of California, Santa arbara Wojciech Maly Carnegie Mellon University Outline Introduction

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2017

EE C247B ME C218 Introduction to MEMS Design Spring 2017 EE C247B ME C218 Introduction to MEMS Design Spring 2017 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture Module

More information

Scan. This is a sample of the first 15 pages of the Scan chapter.

Scan. This is a sample of the first 15 pages of the Scan chapter. Scan This is a sample of the first 15 pages of the Scan chapter. Note: The book is NOT Pinted in color. Objectives: This section provides: An overview of Scan An introduction to Test Sequences and Test

More information

Large Area, High Speed Photo-detectors Readout

Large Area, High Speed Photo-detectors Readout Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun Tang +, Gary Varner ++, and Henry Frisch + + University

More information

SoC IC Basics. COE838: Systems on Chip Design

SoC IC Basics. COE838: Systems on Chip Design SoC IC Basics COE838: Systems on Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview SoC

More information

MAXIM INTEGRATED PRODUCTS

MAXIM INTEGRATED PRODUCTS RELIABILITY REPORT FOR PLASTIC ENCAPSULATED DEVICES May 4, 2009 MAXIM INTEGRATED PRODUCTS 120 SAN GABRIEL DR. SUNNYVALE, CA 94086 Approved by Ken Wendel Quality Assurance Director, Reliability Engineering

More information

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current

FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current FP 12.4: A CMOS Scheme for 0.5V Supply Voltage with Pico-Ampere Standby Current Hiroshi Kawaguchi, Ko-ichi Nose, Takayasu Sakurai University of Tokyo, Tokyo, Japan Recently, low-power requirements are

More information

Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test

Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test Lecture 17: Introduction to Design For Testability (DFT) & Manufacturing Test Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Agenda Introduction to testing Logical

More information

Bartels Micropumps. ( ) Rev. 2.8

Bartels Micropumps. ( ) Rev. 2.8 EN Bartels Micropumps Micropumps transporting the tiniest amounts of gases or liquids can be considered the heart of microfluidics. In many sectors they have become indispensable. Dosing lubricants, feeding

More information

VG5761, VG5661 VD5761, VD5661 Data brief

VG5761, VG5661 VD5761, VD5661 Data brief VG5761, VG5661 VD5761, VD5661 Data brief Automotive 1.6-2.3 megapixel high-dynamic global shutter image sensor Features Product summary Root part number Resolution (megapixel) Package VG5661 1.6 IM2BGA

More information

TCP-3039H. Advance Information 3.9 pf Passive Tunable Integrated Circuits (PTIC) PTIC. RF in. RF out

TCP-3039H. Advance Information 3.9 pf Passive Tunable Integrated Circuits (PTIC) PTIC. RF in. RF out TCP-3039H Advance Information 3.9 pf Passive Tunable Integrated Circuits (PTIC) Introduction ON Semiconductor s PTICs have excellent RF performance and power consumption, making them suitable for any mobile

More information

CCD 143A 2048-Element High Speed Linear Image Sensor

CCD 143A 2048-Element High Speed Linear Image Sensor A CCD 143A 2048-Element High Speed Linear Image Sensor FEATURES 2048 x 1 photosite array 13µm x 13µm photosites on 13µm pitch High speed = up to 20MHz data rates Enhanced spectral response Low dark signal

More information