Introduction to Digital Logic Missouri S&T University CPE 2210 Flip-Flops

Size: px
Start display at page:

Download "Introduction to Digital Logic Missouri S&T University CPE 2210 Flip-Flops"

Transcription

1 Introduction to igital Logic Missouri S&T University CPE 2210 Flip-Flops Egemen K. Çetinkaya Egemen K. Çetinkaya epartment of Electrical & Computer Engineering Missouri University of Science and Technology 7 March 2018 rev Egemen K. Çetinkaya

2 Introduction Flip-flops and types Summary Flip-Flops Outline 2

3 igital Logic Circuit Types What are the type of digital circuits? 3

4 igital Logic Circuit Types What are the type of digital circuits? Combinatorial output solely depends on present values of input(s) no memory basic blocks of circuits e.g.: lamp with light sensor Sequential output depends on present and past values of input(s) output depends on present state e.g.: calculator 4

5 Sequential Logic Circuits Examples Egemen K. Çetinkaya What are examples of sequential circuit elements? 5

6 Sequential Logic Circuits Examples Examples of sequential logic elements: Latches Flip-flops Registers Controllers Counters 6

7 Basic SR Latch Using NOR Gates We can change state of simple memory using latch NOR gates are connected cross-coupled style S (set) SR latch S R t ( ) 0 0 1/0 0/1 no change R (reset)

8 Level-Sensitive SR Latch Circuit and Symbol SR latch with enable input is a level-sensitive SR latch C is the enable input S C R Level-sensitive SR latch S1 R1 C S R (t+1) 0 x x no change no change x S C R Level-sensitive SR latch symbol 8

9 Level-Sensitive Latch Circuit and Symbol SR latch with enable input and inverter is a latch C is the enable input S S1 latch C (t+1) C 0 x no change C R R latch symbol 9

10 Review uestion Overview Can we do latch functions using NAN gates? instead of NOR gates 10

11 Review uestion Overview 11

12 Review uestion Overview 12

13 Latch Problem elay When C is 1, how many latches will the signal travel? Y 1 1? 1? 1? C1 C2 C3 C4 Clk 13

14 Latch Problem elay When C is 1, how many latches will the signal travel? epends on clk signal: Clk_A: signal may travel through multiple latches Clk_B: signal may travel through fewer latches Y 1 1? 1? 1? C1 C2 C3 C4 Clk Clk_A Clk_B 14

15 1 S1 Latch Problem elay latch 0 >1 0 >1 2 0 >1 S2 0 >1 latch C1 C Clk Clk 1 1/2 S2 R2 2 R1 1 0 >1 Long clock 2nd latch set 1 >0 15 Clk 1 1/2 S2 R2 2 R2 1 >0 2 0 >1 Short clock C3 1 doesn't change C4

16 Latch Problem elay Issue: how to adjust clock cycle for right timing? Can we design bit storage that only stores a value on the rising edge of the clock signal? 16

17 Latch Problem elay Issue: how to adjust clock cycle for right timing? Can we design bit storage that only stores a value on the rising edge of the clock signal? rising edges Clk Level-sensitive vs. edge-triggered: level-sensitive: sensitive to signal level edge-triggered: sensitive to rise/fall of the signal 17

18 Edge-Triggered Flip-Flop Master-Servant esign Flip-flop: stores 1 bit on clock edge flip-flop uses two latches Master-servant is one design, there are others flip-flop latch m m s latch s Cm Cs s master servant Clk 18

19 Clk=0 Edge-Triggered Flip-Flop Timing iagram Egemen K. Çetinkaya master enabled, loads, appears at m, servant disabled Clk=1 Clk master disabled, m stays same servant latch enabled, loads m, appears at s latch m Cm m master s Cs flip-flop latch s servant s 19 Clk /m Cm m/s Cs s

20 Edge-Triggered Flip-Flop Symbols Egemen K. Çetinkaya Symbol for rising-edge triggered flip-flop rising edges Clk Symbol for falling-edge triggered flip-flop Clk falling edges 20

21 Edge-Triggered Flip-Flop Timing iagram Egemen K. Çetinkaya Solves problem of not knowing through how many latches a signal travels when C=1 How many flip-flops does signal travel in each cycle Y Two latches inside each flip-flop Clk Clk_A Clk_B 21

22 Edge-Triggered Flip-Flop Timing iagram Solves problem of not knowing through how many latches a signal travels when C=1 How many flip-flops does signal travel in each cycle? Signal travels exactly one flip-flop per cycle Y Two latches inside each flip-flop Clk Clk_A Clk_B 22

23 Latch vs. Flip-Flop Comparison Latch is level-sensitive, stores when C=1 Flip-flop is edge triggered, stores when C 0 1 Clk ( latch) ( flip-flop) Latch follows while Clk is 1 Flip-flop only loads during Clk rising edge 23

24 Review uestion Overview Construct the timing diagram for the following a Clock Clk a Clock b a b b c c c 24

25 Review uestion Overview Construct the timing diagram for the following a Clock Clk a Clock b a b b c c c 25

26 Similar to SR latch SR Flip-Flop Overview However, instead of changing state with level change It changes state with edge rise/fall 26

27 SR Flip-Flop Symbol and Characteristic Table SR flip-flop: Similar to SR latch, edge-triggered Egemen K. Çetinkaya S R S R (t+1) 0 0 no change (t) X 27

28 T flip-flop: toggle flip-flop T Flip-Flop Overview The output toggles on the rising edge of clock The circuit diagram: T Clock 28

29 T Flip-Flop Symbol and Characteristic Table T flip-flop: toggle flip-flop The output toggles on the rising edge of clock T T (t+1) 0 (t) 1 (t) 29

30 T flip-flop: toggle flip-flop T Flip-Flop Timing iagram The output toggles on the rising edge of clock T T (t+1) 0 (t) 1 (t) Clock T 30

31 T flip-flop: toggle flip-flop T Flip-Flop Timing iagram The output toggles on the rising edge of clock T T (t+1) 0 (t) 1 (t) Clock T 31

32 JK Flip-Flop Overview JK flip-flop: combines features of SR and T flip-flops Instead of T only, we use J and K inputs = J +K The circuit: J K Clock 32

33 JK Flip-Flop Symbol and Characteristic Table JK flip-flop: toggle flip-flop Egemen K. Çetinkaya J K J K (t+1) 0 0 no change (t) toggle (t) 33

34 Flip-Flops Clear and Preset It might be needed to have clear and preset button If clear is 0, is forced to be in 0 e.g. clear counter to be initial state to be 0 If preset is 0, is forced to be in 1 e.g. insert specific value as initial value of a counter Preset Clear 34

35 Clock Signals Overview Clock input is connected to clock signal It is from an oscillator signal Generates pulsing signal What is the period? What is the frequency? How many cycles are there? Osc. Clk 1 Clk 0 Time: 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns

36 Clock Signals Overview Clock input is connected to clock signal It is from an oscillator signal Generates pulsing signal What is the period? 20 ns What is the frequency? 1/20 ns=50 MHz How many cycles are there? 3.5 Osc. Clk 1 Clk 0 Time: 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns

37 Clock Signals Overview Clock input is connected to clock signal It is from an oscillator signal Generates pulsing signal T=1/f Synchronous circuit: storage elements change with clock Asynchronous circuit: storage elements that does not use clock 37

38 Storing Multiple Bits Registers Register: multiple flip-flops sharing common clock More about registers later I3 I2 I1 I0 clk 4-bit register I3 I2 I1 I0 reg(4)

39 Flip-flops store one bit Flip-Flops Summary Latches are level-sensitive Flip-flops are edge-triggered Signal travels one cycle per flip-flop -flip-flops are most commonly used Flip-flop types: SR, JK,, T Two types of flip-flops: edge-triggered: active edge of the clock impacts the state master-slave: with two gated latches 39

40 References and Further Reading [V2011] Frank Vahid, igital esign with RTL esign, VHL, and Verilog, 2nd edition, Wiley, [BV2009] Stephen Brown and Zvonko Vranesic, Fundamentals of igital Logic with VHL esign, 3rd edition, McGraw-Hill, [S2017] John Seiffertt, igital Logic for Computing, 1st edition, Springer,

41 End of Foils 41

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

CSE140: Components and Design Techniques for Digital Systems. More D-Flip-Flops. Tajana Simunic Rosing. Sources: TSR, Katz, Boriello & Vahid

CSE140: Components and Design Techniques for Digital Systems. More D-Flip-Flops. Tajana Simunic Rosing. Sources: TSR, Katz, Boriello & Vahid CSE140: Components and esign Techniques for igital Systems More -Flip-Flops Tajana Simunic Rosing Where we are now. What we covered last time: SRAM cell, SR latch, latch, -FF What we ll do next: -FF review,

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 7 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1 Sequential Logic E&CE 223 igital Circuits and Systems (A. Kennings) Page 1 Sequential Circuits Have considered only combinational circuits in which circuit outputs are determined entirely by current circuit

More information

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany Digital Logic Design Sequential Circuits Dr. Basem ElHalawany Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs

More information

Introduction to Sequential Circuits

Introduction to Sequential Circuits Introduction to Sequential Circuits COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Introduction to Sequential Circuits Synchronous

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

ECE 545 Digital System Design with VHDL Lecture 2. Digital Logic Refresher Part B Sequential Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 2. Digital Logic Refresher Part B Sequential Logic Building Blocks ECE 545 igital System esign with VHL Lecture 2 igital Logic Refresher Part B Sequential Logic Building Blocks Lecture Roadmap Sequential Logic Sequential Logic Building Blocks Flip-Flops, Latches Registers,

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Summer 29 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

ECE 545 Digital System Design with VHDL Lecture 1B. Digital Logic Refresher Part B Sequential Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1B. Digital Logic Refresher Part B Sequential Logic Building Blocks ECE 545 igital System esign with VHL Lecture B igital Logic Refresher Part B Sequential Logic Building Blocks Lecture Roadmap Sequential Logic Sequential Logic Building Blocks Flip-Flops, Latches Registers,

More information

Chapter 11 Latches and Flip-Flops

Chapter 11 Latches and Flip-Flops Chapter 11 Latches and Flip-Flops SKEE1223 igital Electronics Mun im/arif/izam FKE, Universiti Teknologi Malaysia ecember 8, 2015 Types of Logic Circuits Combinational logic: Output depends solely on the

More information

Sequentielle Schaltelemente

Sequentielle Schaltelemente equentielle chaltelemente Grundlagen der technischen Informatik Folien basierend auf F. Vahid und. Werner Review - Ranges for logical values Low: signal must be smaller than the upper border of the Low

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part B Sequential Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part B Sequential Logic Building Blocks ECE 545 igital System esign with VHL Lecture igital Logic Refresher Part B Sequential Logic Building Blocks Lecture Roadmap Sequential Logic Sequential Logic Building Blocks Flip-Flops, Latches Registers,

More information

Chapter. Synchronous Sequential Circuits

Chapter. Synchronous Sequential Circuits Chapter 5 Synchronous Sequential Circuits Logic Circuits- Review Logic Circuits 2 Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs. Performs

More information

Unit 11. Latches and Flip-Flops

Unit 11. Latches and Flip-Flops Unit 11 Latches and Flip-Flops 1 Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs. For n input variables,

More information

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers EEE 304 Experiment No. 07 Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers Important: Submit your Prelab at the beginning of the lab. Prelab 1: Construct a S-R Latch and

More information

NAME SYMBOL CHARACTERISTIC TABLE EXCITATION TABLE. S R Q(next) 0 0 Q. (hold) (reset) (set) 1 1? (undefined) J K Q(next) (hold) (reset) (set) 1 1 Q'

NAME SYMBOL CHARACTERISTIC TABLE EXCITATION TABLE. S R Q(next) 0 0 Q. (hold) (reset) (set) 1 1? (undefined) J K Q(next) (hold) (reset) (set) 1 1 Q' Flip-flops By placing two latches in series, it is possible to create a flip-flop. The flip-flop is a memory element that depends on a clock signal and, therefore, it is edge-sensitive. Each flip-flop

More information

ECE 341. Lecture # 2

ECE 341. Lecture # 2 ECE 341 Lecture # 2 Instructor: Zeshan Chishti zeshan@pdx.edu October 1, 2014 Portland State University Announcements Course website reminder: http://www.ece.pdx.edu/~zeshan/ece341.htm Homework 1: Will

More information

6. Sequential Logic Flip-Flops

6. Sequential Logic Flip-Flops ection 6. equential Logic Flip-Flops Page of 5 6. equential Logic Flip-Flops ombinatorial components: their output values are computed entirely from their present input values. equential components: their

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

Experiment 8 Introduction to Latches and Flip-Flops and registers

Experiment 8 Introduction to Latches and Flip-Flops and registers Experiment 8 Introduction to Latches and Flip-Flops and registers Introduction: The logic circuits that have been used until now were combinational logic circuits since the output of the device depends

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Lecture material adapted from R. Katz, G. Borriello, Contemporary Logic esign (second edition), Prentice-Hall/Pearson

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

Sequential Digital Design. Laboratory Manual. Experiment #3. Flip Flop Storage Elements

Sequential Digital Design. Laboratory Manual. Experiment #3. Flip Flop Storage Elements The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #3 Flip Flop Storage

More information

Other Flip-Flops. Lecture 27 1

Other Flip-Flops. Lecture 27 1 Other Flip-Flops Other types of flip-flops can be constructed by using the D flip-flop and external logic. Two flip-flops less widely used in the design of digital systems are the JK and T flip-flops.

More information

Rangkaian Sekuensial. Flip-flop

Rangkaian Sekuensial. Flip-flop Rangkaian Sekuensial Rangkaian Sekuensial Flip-flop Combinational versus Sequential Functions Logic functions are categorized as being either combinational (sometimes referred to as combinatorial) or sequential.

More information

CMSC 313 Preview Slides

CMSC 313 Preview Slides CMSC 33 Preview Slides These are draft slides. The actual slides presented in lecture may be different due to last minute changes, schedule slippage,... UMBC, CMSC33, Richard Chang CMSC

More information

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active.

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active. Flip-Flops Objectives The objectives of this lesson are to study: 1. Latches versus Flip-Flops 2. Master-Slave Flip-Flops 3. Timing Analysis of Master-Slave Flip-Flops 4. Different Types of Master-Slave

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL DESIGN Assoc. Prof. Dr. Burak Kelleci Spring 2018 OUTLINE Synchronous Logic Circuits Latch Flip-Flop Timing Counters Shift Register Synchronous

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M

CSE Latches and Flip-flops Dr. Izadi. NOR gate property: A B Z Cross coupled NOR gates: S M S R Q M CSE-4523 Latches and Flip-flops Dr. Izadi NOR gate property: A B Z A B Z Cross coupled NOR gates: S M S R M R S M R S R S R M S S M R R S ' Gate R Gate S R S G R S R (t+) S G R Flip_flops:. S-R flip-flop

More information

EET2411 DIGITAL ELECTRONICS

EET2411 DIGITAL ELECTRONICS 5-8 Clocked D Flip-FlopFlop One data input. The output changes to the value of the input at either the positive going or negative going clock trigger. May be implemented with a J-K FF by tying the J input

More information

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 1 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Sequential Circuits Memory Elements Latches Flip-Flops Combinational

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 igital Circuits ECS 371 r. Prapun Suksompong prapun@siit.tu.ac.th Lecture 17 Office Hours: BK 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30 1 Announcement Reading Assignment: Chapter 7: 7-1,

More information

CS 261 Fall Mike Lam, Professor. Sequential Circuits

CS 261 Fall Mike Lam, Professor. Sequential Circuits CS 261 Fall 2018 Mike Lam, Professor Sequential Circuits Circuits Circuits are formed by linking gates (or other circuits) together Inputs and outputs Link output of one gate to input of another Some circuits

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

Clocks. Sequential Logic. A clock is a free-running signal with a cycle time.

Clocks. Sequential Logic. A clock is a free-running signal with a cycle time. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. The length of time the clock is high before changing states is its high

More information

Sequential Design Basics

Sequential Design Basics Sequential Design Basics Lecture 2 topics A review of devices that hold state A review of Latches A review of Flip-Flops Unit of text Set-Reset Latch/Flip-Flops/D latch/ Edge triggered D Flip-Flop 8/22/22

More information

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University Registers & ounters Logic and igital System esign - S 33 Erkay Savaş Sabanci University Registers Registers like counters are clocked sequential circuits A register is a group of flip-flops Each flip-flop

More information

Chapter 5 Sequential Systems. Introduction

Chapter 5 Sequential Systems. Introduction hapter 5 Seuential Systems Latches and Flip-flops Synchronous ounter synchronous ounter 7822 igital Logic esign @epartment of omputer Engineering U. Introduction Up to now everything has been combinational

More information

Sequential circuits. Same input can produce different output. Logic circuit. William Sandqvist

Sequential circuits. Same input can produce different output. Logic circuit. William Sandqvist Sequential circuits Same input can produce different output Logic circuit If the same input may produce different output signal, we have a sequential logic circuit. It must then have an internal memory

More information

Flip-flop and Registers

Flip-flop and Registers ECE 322 Digital Design with VHDL Flip-flop and Registers Lecture Textbook References n Sequential Logic Review Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, 2 nd or

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching Circuits & Logic Design Jie-Hong oland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 22 Latches and Flip-Flops http://www3.niaid.nih.gov/topics/malaria/lifecycle.htm

More information

Unit 9 Latches and Flip-Flops. Dept. of Electrical and Computer Eng., NCTU 1

Unit 9 Latches and Flip-Flops. Dept. of Electrical and Computer Eng., NCTU 1 Unit 9 Latches and Flip-Flops Dept. of Electrical and Computer Eng., NCTU 1 9.1 Introduction Dept. of Electrical and Computer Eng., NCTU 2 What is the characteristic of sequential circuits in contrast

More information

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay)  CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 7 (07 Feb 2008) 1 Announcement 2 1 Combinational vs. Sequential Logic Combinational Logic Memoryless Outputs

More information

Latches, Flip-Flops, and Registers. Dr. Ouiem Bchir

Latches, Flip-Flops, and Registers. Dr. Ouiem Bchir Latches, Flip-Flops, and Registers (Chapter #7) Dr. Ouiem Bchir The slides included herein were taken from the materials accompanying Fundamentals of Logic Design, 6 th Edition, by Roth and Kinney. Sequential

More information

INTRODUCTION TO SEQUENTIAL CIRCUITS

INTRODUCTION TO SEQUENTIAL CIRCUITS NOTE: Explanation Refer Class Notes Digital Circuits(15EECC203) INTRODUCTION TO SEQUENTIAL CIRCUITS by Nagaraj Vannal, Asst.Professor, School of Electronics Engineering, K.L.E. Technological University,

More information

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1 Spring 27 EE 363: Computer Organization Chapter 5: The Processor: atapath & Control - Avinash Kodi epartment of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 457 E-mail: kodi@ohio.edu

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS In the same way that logic gates are the building blocks of combinatorial circuits, latches

More information

Last time, we saw how latches can be used as memory in a circuit

Last time, we saw how latches can be used as memory in a circuit Flip-Flops Last time, we saw how latches can be used as memory in a circuit Latches introduce new problems: We need to know when to enable a latch We also need to quickly disable a latch In other words,

More information

Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops Sequential Circuits: Latches & Flip-Flops Overview Storage Elements Latches SR, JK, D, and T Characteristic Tables, Characteristic Equations, Eecution Tables, and State Diagrams Standard Symbols Flip-Flops

More information

Lec 24 Sequential Logic Revisited Sequential Circuit Design and Timing

Lec 24 Sequential Logic Revisited Sequential Circuit Design and Timing Traversing igital esign EECS - Components and esign Techniques for igital Systems EECS wks 6 - Lec 24 Sequential Logic Revisited Sequential Circuit esign and Timing avid Culler Electrical Engineering and

More information

Digital Circuit And Logic Design I. Lecture 8

Digital Circuit And Logic Design I. Lecture 8 Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Analysis Panupong Sornkhom, 2005/2

More information

Digital Circuit And Logic Design I

Digital Circuit And Logic Design I Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Panupong Sornkhom, 2005/2 2 1 Sequential

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Introduction and Application Areas

Introduction to Digital Logic Missouri S&T University CPE 2210 Introduction and Application Areas Introduction to Digital Logic Missouri S&T University CPE 2210 Introduction and Application Areas Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Chih-Tsun Huang ( 黃稚存 ) http://nthucad.cs.nthu.edu.tw/~cthuang/ Department of Computer Science National Tsing Hua University Outline Introduction Storage Elements:

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

CHAPTER 1 LATCHES & FLIP-FLOPS

CHAPTER 1 LATCHES & FLIP-FLOPS CHAPTER 1 LATCHES & FLIP-FLOPS 1 Outcome After learning this chapter, student should be able to; Recognize the difference between latches and flipflops Analyze the operation of the flip flop Draw the output

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design witching Circuits & Logic esign Jie-Hong oland Jiang 江介宏 epartment of Electrical Engineering National Taiwan University Fall 24 Latches and Flip-Flops http://www3.niaid.nih.gov/topics/malaria/lifecycle.htm

More information

Digital Fundamentals

Digital Fundamentals igital Fundamentals Tenth Edition Floyd Chapter 7 Modified by Yuttapong Jiraraksopakun Floyd, igital Fundamentals, 10 th 2008 Pearson Education ENE, KMUTT ed 2009 Summary Latches A latch is a temporary

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Sequential Logic Circuits

Sequential Logic Circuits Sequential Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has memory

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Latches, Flip-Flops, and Timers Chapter 6 Traffic Signal Control Traffic Signal Control: State Diagram Traffic Signal Control: Block Diagram Traffic Signal Control:

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 7

ELE2120 Digital Circuits and Systems. Tutorial Note 7 ELE2120 Digital Circuits and Systems Tutorial Note 7 Outline 1. Sequential Circuit 2. Gated SR Latch 3. Gated D-latch 4. Edge-Triggered D Flip-Flop 5. Asynchronous and Synchronous reset Sequential Circuit

More information

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs ECEN454 igital Integrated Circuit esign Sequential Circuits ECEN 454 Combinational logic Sequencing Output depends on current inputs Sequential logic Output depends on current and previous inputs Requires

More information

12/31/2010. Overview. 12-Latches and Flip Flops Text: Unit 11. Sequential Circuits. Sequential Circuits. Feedback. Feedback

12/31/2010. Overview. 12-Latches and Flip Flops Text: Unit 11. Sequential Circuits. Sequential Circuits. Feedback. Feedback 2/3/2 Overview 2-atches and Flip Flops Text: Unit equential Circuits et/eset atch Flip-Flops ECEG/IC 2 igital Operations and Computations Winter 2 r. ouie 2 equential Circuits equential circuits: Output

More information

Digital Logic Design I

Digital Logic Design I Digital Logic Design I Synchronous Sequential Logic Mustafa Kemal Uyguroğlu Sequential Circuits Asynchronous Inputs Combinational Circuit Memory Elements Outputs Synchronous Inputs Combinational Circuit

More information

Introduction to Microprocessor & Digital Logic

Introduction to Microprocessor & Digital Logic ME262 Introduction to Microprocessor & Digital Logic (Sequential Logic) Summer 2 Sequential Logic Definition The output(s) of a sequential circuit depends d on the current and past states of the inputs,

More information

Synchronous Sequential Logic

Synchronous Sequential Logic Synchronous Sequential Logic -A Sequential Circuit consists of a combinational circuit to which storage elements are connected to form a feedback path. The storage elements are devices capable of storing

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Bistable Storage Devices and Related Devices Introduction Latches and flip-flops are the basic single-bit memory elements used

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states.

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. 1 The length of time the clock is high before changing states is its

More information

Universal Asynchronous Receiver- Transmitter (UART)

Universal Asynchronous Receiver- Transmitter (UART) Universal Asynchronous Receiver- Transmitter (UART) (UART) Block Diagram Four-Bit Bidirectional Shift Register Shift Register Counters Shift registers can form useful counters by recirculating a pattern

More information

Logic Design ( Part 3) Sequential Logic- Finite State Machines (Chapter 3)

Logic Design ( Part 3) Sequential Logic- Finite State Machines (Chapter 3) Logic esign ( Part ) Sequential Logic- Finite State Machines (Chapter ) Based on slides McGraw-Hill Additional material 00/00/006 Lewis/Martin Additional material 008 Roth Additional material 00 Taylor

More information

MC9211 Computer Organization

MC9211 Computer Organization MC9211 Computer Organization Unit 2 : Combinational and Sequential Circuits Lesson2 : Sequential Circuits (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage Lesson2 Outlines the formal procedures for the

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98 More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 98 Review: Bit Storage SR latch S (set) Q R (reset) Level-sensitive SR latch S S1 C R R1 Q D C S R D latch Q

More information

Flip-Flops and Registers

Flip-Flops and Registers The slides included herein were taken from the materials accompanying Fundamentals of Logic Design, 6 th Edition, by Roth and Kinney, and were used with permission from Cengage Learning. Flip-Flops and

More information

D Latch (Transparent Latch)

D Latch (Transparent Latch) D Latch (Transparent Latch) -One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done

More information

CSE115: Digital Design Lecture 23: Latches & Flip-Flops

CSE115: Digital Design Lecture 23: Latches & Flip-Flops Faculty of Engineering CSE115: Digital Design Lecture 23: Latches & Flip-Flops Sections 7.1-7.2 Suggested Reading A Generic Digital Processor Building Blocks for Digital Architectures INPUT - OUTPUT Interconnect:

More information

Chapter 8 Sequential Circuits

Chapter 8 Sequential Circuits Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By 1 Chapter 8 Sequential Circuits 1 Classification of Combinational Logic 3 Sequential circuits

More information

CHAPTER1: Digital Logic Circuits

CHAPTER1: Digital Logic Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits 1 Sequential Circuits Introduction Composed of a combinational circuit to which the memory elements are connected to form a feedback

More information

Topic D-type Flip-flops. Draw a timing diagram to illustrate the significance of edge

Topic D-type Flip-flops. Draw a timing diagram to illustrate the significance of edge Topic 1.3.2 -type Flip-flops. Learning Objectives: At the end of this topic you will be able to; raw a timing diagram to illustrate the significance of edge triggering; raw a timing diagram to illustrate

More information

Sequential Circuit Design: Part 1

Sequential Circuit Design: Part 1 Sequential Circuit esign: Part 1 esign of memory elements Static latches Pseudo-static latches ynamic latches Timing parameters Two-phase clocking Clocked inverters James Morizio 1 Sequential Logic FFs

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Sequential Logic Stephen A. Edwards Columbia University Summer 2016 State-Holding Elements Bistable Elements S Latch Latch Positive-Edge-Triggered Flip-Flop Flip-Flop with

More information

ECE 25 Introduction to Digital Design. Chapter 5 Sequential Circuits ( ) Part 1 Storage Elements and Sequential Circuit Analysis

ECE 25 Introduction to Digital Design. Chapter 5 Sequential Circuits ( ) Part 1 Storage Elements and Sequential Circuit Analysis EE 25 Introduction to igital esign hapter 5 Sequential ircuits (5.1-5.4) Part 1 Storage Elements and Sequential ircuit Analysis Logic and omputer esign Fundamentals harles Kime & Thomas Kaminski 2008 Pearson

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1

COSC 243. Sequential Logic. COSC 243 (Computer Architecture) Lecture 5 - Sequential Logic 1 COC 243 equential Logic COC 243 (Computer Architecture) Lecture 5 - equential Logic 1 Overview Last Lecture This Lecture equential logic circuits ource: Chapter 11 (10 th edition) Next Lecture Computer

More information

MUX AND FLIPFLOPS/LATCHES

MUX AND FLIPFLOPS/LATCHES MUX AN FLIPFLOPS/LATCHES BY: SURESH BALPANE Multiplexers 2:1 multiplexer chooses between two inputs S 1 0 Y 0 X 0 0 0 0 0 X 1 1 1 0 X 0 1 1 X 1 1 1 S Y @BALPANECircuits and Slide 2 Gate-Level Mux esign

More information

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs)

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential Circuits Combinational circuits Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential circuits Combination circuits with memory

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 1/25 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information